
• Reading for today
– PLPJ Chapter 6: secn 6.7
– Also need to know: code generation, chapter 7

COMP 520 - Compilers

Lecture 16 (April 19, 2022)

Runtime organization of object oriented
languages

[16] Runtime organization for OO languagesCOMP 520: Compilers

2[16] Runtime organization for OO languagesCOMP 520: Compilers

Today’s topics
• Review of miniJava classes without inheritance

– mJAM representation of objects
– layout of mJAM memory

• mJAM support for classes with single inheritance
– representation
– mJAM support

• Related issues

3COMP 520: Compilers

mJAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded

into code segment
• predefined runtime functions are located

in the primitive segment
• mJAM can not write into code store

– Data store
• static constants and variables are loaded

into static segment
• method invocation creates a frame
• expression evaluation occurs at stack top

– expands downwards
• object instances are dynamically

allocated on the heap
– expands upwards
– (no garbage collection)

• ABI defines fixed addresses and usage
conventions

– various locations in memories are
accessed relative to machine registers
(CB, SB, LB, ST, etc.) code store

code
segment

primitive
segment

CB

CP

CT

PB

PT

data store

static
segment

dynamic
data

(heap)

execution
stack

SB

LB

ST

HT

HB

[16] Runtime organization for OO languages

current
frame

4[16] Runtime organization for OO languagesCOMP 520: Compilers

miniJava: simple classes, no inheritance

• Classes
class A { int x; void p(){x = x + 3;} }

– runtime entity descriptions in AST
• class A : SA = size of class A (# fields) = 1
• field x: dx = displacement of field x = 0
• method p: dp = displacement of code for p = ?

• Objects
– objects are created on the heap: A a = new A();
– let da be displacement of local var “a” in activation record

mJAM
runtime
layout

a

LB

da

activation record on stack

object instance in heap

xdx

SA

reserved

5[16] Runtime organization for OO languagesCOMP 520: Compilers

mJAM – adapted from TAM (text appx C)

• Instructions

call instance method at d[CB],
instance code addr at stacktop

call static method at d[CB]

6

• mJAM code sequences

[16] Runtime organization for OO languagesCOMP 520: Compilers

mJAM: runtime support for simple classes

A a = new A();
(object creation)

LOADL -1
LOADL SA
CALL newobj
STORE da[LB]

a.x;
(qualified reference)

LOAD da[LB]
LOADL dx
CALL fieldref

a.p();
(method invocation)

LOAD da[LB]
CALLI dp[CB]

x = x + 3;
(field upd within p())

LOAD dx[OB]
LOADL 3
CALL ADD
STORE dx[OB]

reserved
-1 | SA

OB
[within p()]

instance address

a

LB

da

activation record on stack

object instance in heap

xdx

SA

instance call

7

Another example

[16] Runtime organization for OO languagesCOMP 520: Compilers

class T {
public int x;

public T get_this() {
x = 3;
return this;

}
}

class Mainclass {

public static void main(String [] args) {
T t = new T();
T s = t.get_this();
System.out.println(s.x);

}
}

what code should
be generated?

8

PA4 / PA5

• PA4 functionality is the goal for your miniJava compiler project
– PA4 due Thu 4/21
– test results will be available a few days later
– You can make changes and resubmit a final version

• PA5 adds optional extensions
– PA5 will be distributed 4/21 and due Tue 4/26 (last class)
– list of additional options and point values will be described
– You can choose to implement one or more option(s) or simply go

with PA4 functionality.

[16] Runtime organization for OO languagesCOMP 520: Compilers

9COMP 520: Compilers

Classes with single inheritance (Java)

• Class hierarchy
class A {int x; void p(){ … } }

class B extends A {int y; void p(){ … } void q(){ … } }

• inheritance hierarchy
– “class B extends class A”, or “B is a subtype of A”

• fields
– fields of B extend the fields of A
– runtime layout of fields in A is a prefix of the runtime layout of fields in B

• methods
– methods of B extend the methods of A
– methods of B can redefine (override) methods of A

A

B

[16] Runtime organization for OO languages

10COMP 520: Compilers

Static and dynamic type with single inheritance

• Object type
– static type (declared type)

• used by compiler for type checking
– determines accessible fields and available methods on objects
– type rules for assignments

» assignment: (type of RHS) must be a subtype (≤) of (type of LHS)
» method call: type of arg i must be a subtype of type of parameter i

– dynamic type (run-time type)
• generally only known at runtime

– part of the representation of an object
» initialized at time of creation from object constructor

– dynamic type is always a subtype of the static type (guaranteed by type system)
– dynamic type determines which method is invoked (runtime lookup)

– examples
A a = new A();
B b = new B();
A c = b;
B d = a;

a.p();
b.q();
c.p();

A

B

class A {int x; void p(){ … } }

class B extends A {
int y;
void p(){ … }
void q(){ … }

}

[16] Runtime organization for OO languages

11COMP 520: Compilers

mJAM representation of single inheritance
class A {int x; void p(){ … } }

class B extends A
{int y; void p(){ … } void q(){ … } }

• runtime entity descriptions in AST
• class A : SA = size of class A
• class A: dA = displacement of class descriptor for A
• class B: SB = size of class B (including size of class A)
• class B: dB = displacement of class descriptor for B
• field x dx = displacement of field x in A and B
• field y dy = displacement of field y in B
• method p: hp = index of method p in A and B
• method q: hq = index of method q in B
• method p in A: dp[A] = displacement of code for p() in A
• method p in B: dp[B] = displacement of code for p() in B
• method q in B: dq[B] = displacement of code for q() in B

[16] Runtime organization for OO languages

12COMP 520: Compilers

Classes with single inheritance

• mJAM runtime layout

hp

SB

p:

p:

q:

dA

dB

dp[B]

dq[B]

dp[A]

hq

hp

a:

b:

LB
x

SB

y

SA

dx

dy
dx

dA | SA

dB | SB

x

class descriptors
in global segment
of data memory

[16] Runtime organization for OO languages

13COMP 520: Compilers

Classes with single inheritance
• mJAM code sequences (only changed sequences are shown)

A a = new A();
(object creation)
LOADL dA
LOADL SA
CALL newobj
STORE da[LB]

a.p();
(dynamic invocation)

LOAD da[LB]
CALLD hp

hp

SB

p:

p:

q:

dA

dB

dp[B]

dq[B]

dp[A]

hq

hp

a:

b:

LB
x y

dx

dydx

dA | SA

dB | SB

x

[16] Runtime organization for OO languages

14COMP 520: Compilers

Related issues
• single inheritance

– type operations
• instanceof
• casting

– super() superclass constructor invocation

• multiple inheritance
– we lose the prefix property of runtime layout!
– not supported as such in Java, instead provides “interfaces”

• optimization
– dynamic method dispatch has high cost
– converting dynamic to static calls

• dynamically loaded classes
– Java loads classes on demand, hence cannot use simple

representations such as those used by mJAM

[16] Runtime organization for OO languages

15

Interfaces and classes

• interface
– specifies methods (name,

signature) required of an
implementation
interface List {

…
add(Object x);
…

}

– is a type (can be used in type
declarations)
List a = new ArrayList();

• class
– implements one or more

interfaces
– provides method bodies

class ArrayList implements List
{

…
add(Object x) { … }
…

}

– is a type
Arraylist a = b;

– has a constructor
Arraylist a = new ArrayList();

[16] Runtime organization for OO languagesCOMP 520: Compilers

16

interface vs inheritance

• inheritance
– extends a single super-class

• fields and methods are extended or overridden
– requires compile time and run-time support

• interface
– an interface can extend one or more interfaces

• it just adds additional requirements, there is no implementation
– requires only compile-time support

• a class
– can implement many interfaces
– can only extend (inherit) one other class

• when a class extends a superclass, it inherits an implementation
• inherited methods can be overridden

[16] Runtime organization for OO languagesCOMP 520: Compilers

17

static vs. dynamic types

• Variables and expressions have a static (compile-time) type
– derived from declarations
– applicability defined by scope rules
– known at compile time, without running the program
– does not change

• Every object has a dynamic (run-time) type
– obtained when the object is created using new
– dynamic type can be any subtype of the static type
– dynamic type can depend on inputs and is undecidable, in general

[16] Runtime organization for OO languagesCOMP 520: Compilers

18

run-time dispatching of overridden methods

• required for objects
– when dynamic type specifies an overridden method

• not needed for interfaces
– interfaces cannot be instantiated (with new)
– so static type is always equal to dynamic type
– and compiler can work out correct method to invoke at compile time

[16] Runtime organization for OO languagesCOMP 520: Compilers

19

The PA4 checkpoint (4/21)
• your pa4 directory should have

– miniJava package
• Compiler.java
• SyntacticAnalyzer
• AbstractSyntaxTrees
• ContextualAnalyzer
• CodeGenerator (new subpackage)

– mJAM package (supplied on our web page)
• Interpreter.java
• Disassembler.java
• Instruction.java
• Machine.java
• ObjectFile.java

• mJAM is needed only to check everything is working
– pa4 testing will not copy your mJAM, it uses the mJAM as distributed

• pa4 readiness check will be available: /check/pa4.pl

mJAMCOMP 520: Compilers - J. F. Prins

20mJAMCOMP 520: Compilers - J. F. Prins

Compiling and running miniJava programs (Linux)
• Compiling test.java

– java miniJava/Compiler test.java
• use mJAM.ObjectFile to write test.mJAM (note spelling!), be sure that it is

written in the same directory as test.java
• do not run the generated program as part of compilation!

• Disassembling test.mJAM
– java mJAM/Disassembler test.mJAM

• should write test.asm in same directory as test.mJAM

• Executing test.mJAM
– java mJAM/Interpreter test.mJAM

• System.out.println results from test.java will appear on stdout prefixed by
“>>> “

• Debugging test.mJAM
– java mJAM/Interpreter test.mJAM test.asm

• Show machine data store and state, show code, set/remove breakpoints,
single instruction execution

• Type “?” for help

21

Check results

• To compare miniJava and java semantics of program foo.java

1. Run as miniJava program
java miniJava/Compiler foo.java
java mJAM/Interpreter foo.mJAM

2. Run as java program
javac foo.java
java foo.class

• Note that mJAM println prefixes output with “>>> “

mJAMCOMP 520: Compilers - J. F. Prins

22

PA4codegenExample

• The PA4-example (lec 15) is available on our web page
– generates code for the Counter.java example (lec 16)

• illustrates the Machine interface to generate mJAM instructions

– .. then executes the generated code using mJAM
• the Interpreter is started in debug mode so you can trace execution of the

example code
• to simplify the testing of your code generator you can install a similar

shortcut to automatically execute generated code (e.g. in your compiler
driver)

– If you do so, be sure to restore standard functionality before submitting PA4

mJAMCOMP 520: Compilers - J. F. Prins

	COMP 520 - Compilers��Lecture 16 (April 19, 2022)��Runtime organization of object oriented �languages
	Today’s topics
	mJAM memory organization
	miniJava: simple classes, no inheritance
	mJAM – adapted from TAM (text appx C)
	mJAM: runtime support for simple classes
	Another example
	PA4 / PA5	
	Classes with single inheritance (Java)
	Static and dynamic type with single inheritance
	mJAM representation of single inheritance
	Classes with single inheritance
	Classes with single inheritance
	Related issues
	Interfaces and classes
	interface vs inheritance
	static vs. dynamic types
	run-time dispatching of overridden methods
	The PA4 checkpoint (4/21)
	Compiling and running miniJava programs (Linux)
	Check results
	PA4codegenExample

