
• Reading for today 
– PLPJ Chapter 6: secn 6.7
– Also need to know: code generation, chapter 7 
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Today’s topics
• Review of miniJava classes without inheritance

– mJAM representation of objects
– layout of mJAM memory

• mJAM support for classes with single inheritance
– representation
– mJAM support

• Related issues
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mJAM memory organization
• Two separate memories

– Code store
• compiler-generated program is loaded 

into code segment
• predefined runtime functions are located 

in the primitive segment
• mJAM can not write into code store

– Data store
• static constants and variables are loaded 

into static segment
• method invocation creates a frame
• expression evaluation occurs at stack top

– expands downwards
• object instances are dynamically 

allocated on the heap
– expands upwards
– (no garbage collection)

• ABI defines fixed addresses and usage 
conventions

– various locations in memories are 
accessed relative to machine registers 
(CB, SB, LB, ST, etc.) code store
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miniJava: simple classes, no inheritance

• Classes
class A { int x; void p(){x = x + 3;} }

– runtime entity descriptions in AST
• class A : SA = size of class A (# fields) = 1
• field x:  dx   = displacement of field x = 0
• method p:  dp = displacement of code for p  = ?

• Objects
– objects are created on the heap:  A a = new A();
– let da be displacement of local var “a” in activation record

mJAM
runtime
layout

a

LB

da

activation record on stack 

object instance in heap

xdx

SA

reserved
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mJAM – adapted from TAM (text appx C)

• Instructions

call instance method at d[CB],
instance code addr at stacktop

call static method at d[CB]
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• mJAM code sequences 
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mJAM: runtime support for simple classes

A a = new A();
(object creation)

LOADL -1
LOADL SA
CALL    newobj
STORE da[LB]

a.x;
(qualified reference)

LOAD da[LB]
LOADL dx
CALL fieldref

a.p();
(method invocation)

LOAD da[LB]
CALLI dp[CB]

x = x + 3;
(field upd within p() )

LOAD dx[OB]
LOADL 3
CALL ADD
STORE  dx[OB]

reserved
-1   |   SA

OB
[ within p() ]

instance address

a

LB

da

activation record on stack 

object instance in heap

xdx

SA

instance call
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Another example
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class T {
public int x;

public T get_this() {
x = 3;
return this;

}
}

class Mainclass {

public static void main(String [] args) {
T t = new T();
T s = t.get_this();
System.out.println(s.x);

}
}

what code should 
be generated?
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PA4 / PA5

• PA4 functionality is the goal for your miniJava compiler project
– PA4 due Thu 4/21 
– test results will be available a few days later
– You can make changes and resubmit a final version

• PA5 adds optional extensions
– PA5 will be distributed 4/21  and due Tue 4/26 (last class)
– list of additional options and point values will be described
– You can choose to implement one or more option(s) or simply go 

with PA4 functionality.

[16] Runtime organization for OO languagesCOMP 520:  Compilers
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Classes with single inheritance (Java)

• Class hierarchy
class A {int x; void p(){ … } }

class B extends A {int y; void p(){ … } void q(){ … } }

• inheritance hierarchy 
– “class B extends class A”, or “B is a subtype of A”

• fields 
– fields of B extend the fields of A
– runtime layout of fields in A is a prefix of the runtime layout of fields in B

• methods
– methods of B extend the methods of A
– methods of B can redefine (override) methods of A

A

B
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Static and dynamic type with single inheritance

• Object type
– static type (declared type)

• used  by compiler for type checking
– determines accessible fields and available methods on objects
– type rules for assignments 

» assignment:  (type of RHS) must be a subtype (≤) of (type of LHS)
» method call:  type of arg i must be a subtype of type of parameter i

– dynamic type (run-time type)
• generally only known at runtime

– part of the representation of an object
» initialized at time of creation from object constructor

– dynamic type is always a subtype of the static type (guaranteed by type system)
– dynamic type determines which method is invoked (runtime lookup)

– examples
A a = new A();
B b = new B();
A c = b;
B d = a;

a.p();
b.q();
c.p();

A

B

class A {int x; void p(){ … } }

class B extends A {
int y; 
void p(){ … } 
void q(){ … } 

}

[16] Runtime organization for OO languages
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mJAM representation of single inheritance
class A {int x; void p(){ … } }

class B extends A
{int y; void p(){ … } void q(){ … } }

• runtime entity descriptions in AST
• class A : SA = size of class A
• class A: dA = displacement of class descriptor for A
• class B: SB = size of class B (including size of class A)
• class B: dB = displacement of class descriptor for B
• field x  dx   = displacement of field x in A and B
• field y dy = displacement of field y in B
• method p: hp = index of method p in A and B
• method q: hq = index of method q in B
• method p in A: dp[A] = displacement of code for p() in A
• method p in B: dp[B] = displacement of code for p() in B
• method q in B: dq[B] = displacement of code for q() in B

[16] Runtime organization for OO languages
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Classes with single inheritance

• mJAM runtime layout

hp
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class descriptors
in global segment 
of data memory
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Classes with single inheritance
• mJAM code sequences (only changed sequences are shown)

A a = new A();
(object creation)
LOADL dA
LOADL SA
CALL    newobj
STORE da[LB]

a.p();
(dynamic invocation)

LOAD da[LB]
CALLD   hp

hp

SB

p:

p:

q:

dA

dB

dp[B]

dq[B]

dp[A]

hq

hp

a:

b:

LB
x y

dx

dydx

dA |  SA

dB   |  SB

x
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Related issues
• single inheritance 

– type operations
• instanceof
• casting

– super() superclass constructor invocation

• multiple inheritance
– we lose the prefix property of runtime layout!
– not supported as such in Java, instead provides “interfaces”

• optimization
– dynamic method dispatch has high cost
– converting dynamic to static calls

• dynamically loaded classes
– Java loads classes on demand, hence cannot use simple 

representations such as those used by mJAM

[16] Runtime organization for OO languages
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Interfaces and classes

• interface
– specifies methods (name, 

signature) required of an 
implementation 
interface List { 

… 
add(Object x); 
… 

}

– is a type (can be used in type 
declarations)
List a = new ArrayList();

• class
– implements one or more 

interfaces
– provides method bodies

class ArrayList implements List 
{ 

… 
add(Object x) { … } 
… 

}

– is a type
Arraylist a = b; 

– has a constructor
Arraylist a = new ArrayList();

[16] Runtime organization for OO languagesCOMP 520:  Compilers
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interface vs inheritance

• inheritance
– extends a single super-class

• fields and methods are extended or overridden
– requires compile time and run-time support

• interface
– an interface can extend one or more interfaces

• it just adds additional requirements, there is no implementation
– requires only compile-time support

• a class
– can implement many interfaces
– can only extend (inherit) one other class

• when a class extends a superclass, it inherits an implementation
• inherited methods can be overridden

[16] Runtime organization for OO languagesCOMP 520:  Compilers
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static vs. dynamic types

• Variables and expressions have a static (compile-time) type
– derived from declarations
– applicability defined by scope rules
– known at compile time, without running the program
– does not change 

• Every object has a dynamic (run-time) type
– obtained when the object is created using new
– dynamic type can be any subtype of the static type
– dynamic type can depend on inputs and is undecidable, in general

[16] Runtime organization for OO languagesCOMP 520:  Compilers
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run-time dispatching of overridden methods

• required for objects 
– when dynamic type specifies an overridden method

• not needed for interfaces
– interfaces cannot be instantiated (with new)
– so static type is always equal to dynamic type
– and compiler can work out correct method to invoke at compile time

[16] Runtime organization for OO languagesCOMP 520:  Compilers
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The PA4 checkpoint (4/21)
• your pa4 directory should have

– miniJava package 
• Compiler.java
• SyntacticAnalyzer
• AbstractSyntaxTrees
• ContextualAnalyzer
• CodeGenerator (new subpackage)

– mJAM package (supplied on our web page)
• Interpreter.java
• Disassembler.java
• Instruction.java
• Machine.java
• ObjectFile.java

• mJAM is needed only to check everything is working
– pa4 testing will not copy your mJAM, it uses the mJAM as distributed

• pa4 readiness check will be available:  /check/pa4.pl

mJAMCOMP 520:  Compilers  - J. F. Prins
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Compiling and running miniJava programs (Linux)
• Compiling test.java

– java miniJava/Compiler test.java
• use mJAM.ObjectFile to write test.mJAM (note spelling!), be sure that it is 

written in the same directory as test.java
• do not run the generated program as part of compilation!

• Disassembling test.mJAM
– java mJAM/Disassembler test.mJAM

• should write test.asm in same directory as test.mJAM

• Executing test.mJAM
– java mJAM/Interpreter test.mJAM

• System.out.println results from test.java will appear on stdout prefixed by 
“>>> “

• Debugging test.mJAM
– java mJAM/Interpreter test.mJAM test.asm

• Show machine data store and state, show code, set/remove breakpoints, 
single instruction execution

• Type “?” for help
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Check results

• To compare miniJava and java semantics of program foo.java

1. Run as miniJava program
java miniJava/Compiler foo.java  
java mJAM/Interpreter foo.mJAM

2. Run as java program
javac foo.java 
java  foo.class

• Note that mJAM println prefixes output with “>>> “

mJAMCOMP 520:  Compilers  - J. F. Prins
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PA4codegenExample

• The PA4-example (lec 15) is available on our web page
– generates code for the Counter.java example (lec 16)

• illustrates the Machine interface to generate mJAM instructions

– .. then executes the generated code using mJAM
• the Interpreter is started in debug mode so you can trace execution of the 

example code
• to simplify the testing of your code generator you can install a similar 

shortcut to automatically execute generated code (e.g. in your compiler 
driver)

– If you do so, be sure to restore standard functionality before submitting PA4

mJAMCOMP 520:  Compilers  - J. F. Prins
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