
• PA4 comments

• Lecture covers material not in the text
– No additional reading beyond slides

COMP 520 - Compilers

Lecture 18 (April 21, 2022)

Register Code Generation

Lec 18 - RISC Code GenerationCOMP 520 Compilers

2COMP 520 Compilers

Topics
1. mJAM CG for local variable declarations in block scopes

– where and how to store local variable declarations in a stack machine

2. Code generation for RISC architectures
– RISC: Reduced Instruction Set Architecture

• register machine, not a stack-machine

– Register use in expression evaluation
• temporary values
• lifetime of temporaries
• expression evaluation order and number of temporaries

– Basic optimization steps
• tuple code
• common subexpression elimination
• register allocation
• spill code
• linkage optimization

Lec 18 - RISC Code Generation

3

PA4: A tricky point in codegen

• what’s the difference between these two examples?

Lec 18 - RISC Code GenerationCOMP 520 Compilers

A a = new A();

LOADL -1
LOADL SA
CALL newobj
STORE da[LB]

a = new A();

LOADL -1
LOADL SA
CALL newobj
STORE da[LB]

a

LB

da

ST
a

LB

da

ST

4

Frame maintenance with local VarDecls

• What does Triangle do?

Lec 18 - RISC Code GenerationCOMP 520 Compilers

let

const b ~ 10;

var i: Integer;

in

i := i * b

LOAD 4[SB]
LOADL 10
mult
STORE 4[SB]

5

Frame maintenance in miniJava nested scopes
• miniJava nested scopes

Lec 18 - RISC Code GenerationCOMP 520 Compilers

class C {

foo(int x)

{ int a = 3 + x;

{ int b;

b = a + 5;

}

while (x < 7) {
C c = new C;
}

}

}

What do we need to know?
• BlockStmt RED scopeBase: offset from LB at start of BlockStmt
• currentBase: current offset from LB

currentBase

3

4
5

4

4
5
4

3

scopeBase

3

4

4

POP (currentBase – scopebase)

6

Static variable management in mJAM

• what is the lifetime of a static variable?
– lifetime of the program

• where can we allocate them?
– stack? heap?

• how much space is needed?
– # static vars

• when must we allocate them?
– before the program starts!

• how?
– in the preamble (before calling main)

Lec 18 - RISC Code GenerationCOMP 520 Compilers

7COMP 520 Compilers

Code generation for RISC instruction sets
• How does a RISC machine compare to a stack-oriented machine

• all arithmetic and logical functions operate on registers
– no explicit stack

• minimal support for procedure/function call
– no frame maintenance

• registers are a compiler-managed cache

• Compiler challenges related to a RISC instruction set
– large but finite set of registers (32 – 128)

• register allocation – a problem for the compiler
– which values should be placed in registers?
– what should we do when we run out of registers?

– procedure and function calling conventions
• no direct support for execution stack

– frame pointer, stack pointer, and other linkage conventions must be defined
• flexible strategy for register use

– needed to limit register save/restore work in call/return
– parameters and results passed in registers instead of on the stack

Lec 18 - RISC Code Generation

8Lec 18 - RISC Code GenerationCOMP 520 Compilers

MIPS memory organization
• Key areas

– Reserved
• for use by operating system

– Text segment
• compiler-generated program is loaded here

– Stack segment
• procedure invocation stack

– expands downwards
– holds some local variables, some

linkage information

– Data segment
• static constants and variables are placed at the bottom

– their locations are known by the compiler

• dynamically allocated values are placed above the static data
– this area is the heap
– heap allocation addresses cannot be predicted by the compiler
– heap expands upwards
– memory for deleted values can be reused/compacted

$gp

$fp
$sp

heap

stack

9COMP 520 Compilers

MIPS register conventions

Register Symbolic name Value Set by
0 $zero Constant zero Not set
1 $at ASM use only ASM
2-3 $v0, $v1 Function results Callee
4-7 $a0, $a3 Functions args 1-4 Caller
8-15 $t0, $t7 Temp – not preserved
16-23 $s0, $s7 Temp – preserved
24-25 $t8, $t9 Temp – not preserved
26-27 $k0, $k1 OS use only OS
28 $gp Global pointer OS
29 $sp Stack pointer Callee
30 $fp Frame pointer Callee
31 $ra Return address Caller

• $s0 - $s7 are expected to be preserved across a function call
• $t0 - $t9 are not expected to be preserved across a function call

Lec 18 - RISC Code Generation

10COMP 520 Compilers

Example Code 1 – simple statement

x = y + z; lw $t0, @y
lw $t1, @z
add $t2, $t0, $t1
sw $t2, @x

• Notes
– x, y, z are local int vars

• represented as 32-bit binary values
• word-aligned
• @y stands for address of y in memory

– typically some offset added to $fp (local vars) or $gp (global vars)

– all operations take place between registers
• values of y, z are fetched from frame
• value of result is stored into x in frame

miniJava MIPS assembler

Lec 18 - RISC Code Generation

11COMP 520 Compilers

Example Code 2 – multiple statements

x = y + z;
w = y – z;

lw $t0, @y
lw $t1, @z
add $t2, $t0, $t1
sw $t2, @x
lw $t0, @y
lw $t1, @z
sub $t2, $t0, $t1
sw $t2, @w

lw $t0, @y
lw $t1, @z
add $t2, $t0, $t1
sw $t2, @x
sub $t3, $t0, $t1
sw $t3, @w

register allocation
within a statement

register allocation
across two statements

Lec 18 - RISC Code Generation

12COMP 520 Compilers

Code Example 3 – multiple execution paths

if (x < y)
x = y + 1;

lw $t0, @x
lw $t1, @y
bge $t0, $t1, L10
addi $t0, $t1, 1
sw $t1, @x

L10:

while (x != y) {
if (x > y)

x = x – y;
else

y = y – x;
}

lw $t0, @x
lw $t1, @y

Ltop:
beq $t0, $t1, Lend
ble $t0, $t1, Lelse

Lthen:
sub $t0, $t0, $t1
b Ltop

Lelse:
sub $t1, $t1, $t0
b Ltop

Lend:
sw $t0, @x
sw $t1, @y

register allocation
across execution
paths

register allocation
across loops –

large payoff

Lec 18 - RISC Code Generation

13COMP 520 Compilers

Example Code 4 – function call

x = x + f(x)+ x;

lw $s0, @x
mv $a0, $s0
jal @f
aw $t0, $s0, $v0
aw $t0, $t0, $s0
sw $t0, @x

f:
subiu $sp, $sp, 8
sw $ra, 8($sp)
sw $fp, 4($sp)
addiu $fp, $sp, 8

addiu $v0, $a0, 3

lw $ra, 8($sp)
lw $fp, 4($sp)
addiu $sp, $sp, 8
jr $ra

Function invocation in an
expression

Function body
explicit frame/stack management

can be omitted in this case!

int f(x){ return 3 + x;}

Lec 18 - RISC Code Generation

14COMP 520 Compilers

Expression evaluation

• How many registers are needed to evaluate an expression?
– using our stack-based expression evaluation strategy we could use a

new register for each temporary value

(A - B) + ((C + D) + (E * F))
t1 := A
t2 := B
t3 := t1 - t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10

+

+

*+

-

A B

C D E F

Lec 18 - RISC Code Generation

Tuple code:
each ti is a
temporary

value

We may easily run out of registers using this strategy !

15COMP 520 Compilers

Expression evaluation
• Minimizing the number of registers needed

– Sethi-Ullman labeling
• each subexpression is labeled with the minimum number of registers

needed to evaluate it
• defined inductively by the rules below

– rearrange expression evaluation order to minimize register use
• evaluate the subexpression requiring more registers first

k
e

op

k h
e1 e2

h < k
A

simple
variable

unary
expr

op

binary
expr

binary
expr

__

__

op

k k
e1 e2

__ __

Lec 18 - RISC Code Generation

1

k k+1 hk k+1 k

16

• Questions
– is evaluation order rearrangement always possible?
– is minimal register usage always best?

COMP 520 Compilers

Sethi-Ullman labeling and expression reordering

(A - B) + ((C + D) + (E * F)) t1 := C
t2 := D
t1 := t1 + t2
t2 := E
t3 := F
t2 := t2 * t3
t1 := t1 + t2
t2 := A
t3 := B
t2 := t2 - t3
t1 := t2 + t1

Lec 18 - RISC Code Generation

+

+

*+

-

A B

C D E FA B

t1 := A
t2 := D
t1 := t1 + t2
t2 := B
t3 := F
t2 := t2 * t3
t1 := t1 + t2
t2 := A
t3 := B
t2 := t2 - t3
t1 := t2 + t1

17COMP 520 Compilers

Expression evaluation
• Reusing registers

– Consider tuple code - how long is each temporary value needed?
• Lifetime starts at definition, ends at last use

– values with disjoint lifetimes may use the same register

(A - B) + ((A + D) + (B * F))

t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 := A
t2 := B
t3 := t1 - t2
t4 := D
t5 := t1 + t4
t6 := F
t7 := t2 * t6
t8 := t5 + t7
t9 := t3 + t8

Lec 18 - RISC Code Generation

18

Register allocation for expressions

COMP 520 Compilers

tuple code
generation

lifetime
analysis

common
subexpression

elimination

interference analysis

register
allocation

AST tuple code tuple code

live rangesinterference graph

object code generationtuple code with
machine registers object code

Lec 18 - RISC Code Generation

19COMP 520 Compilers

Tuple code generation
• Tuple code

– list of tuples
– each tuple represents a machine instruction

• (destination, operation, operands)
– use temporaries rather than registers
– operations at level of target instruction set

• Tuple code generation
– postorder traversal of AST

t1 := A
t2 := B
t3 := t1 - t2
t4 := A
t5 := D
t6 := t4 + t5
t7 := A
t8 := B
t9 := t7 - t8
t10 := t6 + t9
t11 := t3 + t10

+

+

+

-

A B

A D A B

-

Example: (A - B) + ((A + D) + (A - B))

tuple code
generation

AST tuple code

Lec 18 - RISC Code Generation

20COMP 520 Compilers

Common subexpression elimination

• Replace redundant loads and computations

Tuple code
t1 := A
t2 := B
t3 := t1 - t2
t4 := A
t5 := D
t6 := t4 + t5
t7 := A
t8 := B
t9 := t7 - t8
t10 := t6 + t9
t11 := t3 + t10

Example: (A - B) + ((A + D) + (A - B))

repl tuples by copy
t1 := A
t2 := B
t3 := t1 - t2
t4 := t1
t5 := D
t6 := t4 + t5
t7 := t1
t8 := t2
t9 := t3
t10 := t6 + t9
t11 := t3 + t10

subst, del copy
t1 := A
t2 := B
t3 := t1 - t2

t5 := D
t6 := t1 + t5

t10 := t6 + t3
t11 := t3 + t10

common subexpression elimination
tuple code tuple code

renumb temps
t1 := A
t2 := B
t3 := t1 - t2

t4 := D
t5 := t1 + t4

t6 := t5 + t3
t7 := t3 + t6

Lec 18 - RISC Code Generation

21COMP 520 Compilers

Lifetime analysis

• For each temporary
– construct interval from first definition to last use

lifetime
analysis

tuple code

live ranges

Lec 18 - RISC Code Generation

t1 := A

t2 := B

t3 := t1 - t2

t4 := D

t5 := t1 + t4

t6 := t5 + t3

t7 := t3 + t6

t1 t2 t3 t4 t5 t6 t7

22COMP 520 Compilers

Allocating temporaries to registers

• Create interference graph
– node for each temporary
– edge (u,v) if live range of u overlaps live range of v

• Allocate tuple code temporaries to registers
– temporaries connected by an edge in the interference graph must be

in distinct registers
• because the lifetimes of the two temporaries overlap

– can all temporaries be allocated to k registers?
• possible iff interference graph can be k-colored

interference analysis live rangesinterference graph

Lec 18 - RISC Code Generation

23COMP 520 Compilers

Interference graph

Lec 18 - RISC Code Generation

t1 := A

t2 := B

t3 := t1 - t2

t4 := D

t5 := t1 + t4

t6 := t5 + t3

t7 := t3 + t6

t1 t2 t3 t4 t5 t6 t7
t2

t1

t3

t4t5

t6

t7

24Lec 18 - RISC Code GenerationCOMP 520 Compilers

Register Allocation
• k-coloring interference graph

– k is number of available registers
– k-coloring is an NP-complete problem
– linear time greedy heuristic algorithm (may fail)

• repeatedly remove a node and all associated edges from a graph and add to a list
– choose a node with indegree < k whenever possible

• when graph is empty, color nodes in reverse of order removed
– if heuristic algorithm fails

• pick a temporary t with a long lifetime and indegree ≥ k
• Generate spill code

– insert tuple operation to store t when generated and fetch t where needed
– repeat lifetime analysis, interference analysis

• Additional considerations
– constrain temporaries for function arguments to appropriate machine

registers
– constrain temporaries live across a call to callee-preserved registers

(i.e. s0-s7)

register
allocation

interference graph

tuple code with
machine registers

25

• Given undirected graph G = (V,E), try to color the nodes in V using k
colors so that for any (u,v) ∈ E, color(u) ≠ color(v)

Stack of nodes S initially empty
Undirected graph G = (V,E)

while G ≠ {} do

choose some minimum degree node t in V
S.push(t)

G.remove(t) // remove t and edges incident on t from G
end

while S ≠ {} do

t = s.pop()

G.insert(t) // add t and edges in G incident on t
color t, if possible

end

Greedy k-coloring algorithm [Kempe 1879]

COMP 520 Compilers

simplify

color

Lec 18 - RISC Code Generation

26

Stack of nodes S initially empty
Undirected graph G = (V,E)

while G ≠ {} do

choose some minimum degree
node t in V

S.push(t)

G.remove(t)

Kempe algorithm – simplify step

COMP 520 Compilers Lec 18 - RISC Code Generation

t2

t1

t3

t4t5

t6

t7 t2

t1

t3

t4t5

t6

t1

t3

t4t5

t1

t3

t4t5

t6

t1

t3

t4

t1

t3

t1

S = t1

t3

t4

t5

t6

t2

t7

G =

27

Stack of nodes S to color in order
Undirected graph G = (V,E) initially empty

while S ≠ {} do

t = s.pop()

G.insert(t) // add t and edges in G incident on t
color t, if possible

end

Kempe algorithm – color step

COMP 520 Compilers Lec 18 - RISC Code Generation

t2

t1

t3

t4t5

t6

t7 t2

t1

t3

t4t5

t6

t1

t3

t4t5

t1

t3

t4t5

t6

t1

t3

t4

t1

t3

t1

S = t1

t3

t4

t5

t6

t2

t7

G

k = 3 colors:

28Lec 18 - RISC Code GenerationCOMP 520 Compilers

Register Allocation
• rewrite tuple code with register allocation

t1 := A r1 := A
t2 := B r2 := B
t3 := t1 - t2 r2 := r1 – r2
t4 := D r3 := D
t5 := t1 + t4 r1 := r1 + r3
t6 := t5 + t3 r3 := r1 + r2
t7 := t3 + t6 r1 := r2 + r3

register
allocation

interference graph

tuple code with
machine registers

t2

t1

t3

t4t5

t6

t7
r1

r2

r3

29

Putting it together : RISC code generation

COMP 520 Compilers

tuple code
generation

lifetime
analysis

common
subexpression

elimination

interference analysis

register
allocation

AST tuple code tuple code

live rangesinterference graph

object code generationtuple code with
machine registers object code

Lec 18 - RISC Code Generation

	COMP 520 - Compilers�Lecture 18 (April 21, 2022)�Register Code Generation
	Topics
	PA4: A tricky point in codegen
	Frame maintenance with local VarDecls
	Frame maintenance in miniJava nested scopes
	Static variable management in mJAM
	Code generation for RISC instruction sets
	MIPS memory organization
	MIPS register conventions
	Example Code 1 – simple statement
	Example Code 2 – multiple statements
	Code Example 3 – multiple execution paths
	Example Code 4 – function call
	Expression evaluation
	Expression evaluation
	Sethi-Ullman labeling and expression reordering
	Expression evaluation
	Register allocation for expressions
	Tuple code generation
	Common subexpression elimination
	Lifetime analysis
	Allocating temporaries to registers
	Interference graph
	Register Allocation
	Greedy k-coloring algorithm [Kempe 1879]
	Kempe algorithm – simplify step
	Kempe algorithm – color step
	Register Allocation
	Putting it together : RISC code generation

