
COMP 520 - Compilers

Lecture 19 – April 26, 2022

Compiler Bootstrapping

COMP 520 Compilers [19] Compiler Bootstrapping

2

Announcements
• PA5 – final checkpoint

– submission directory will close Wed May 27 at midnight
– submission instructions are identical to PA4, plus

• upload guide to your compiler (see assignment)
• if you have implemented extra credit, include a Tests directory

– readiness tester: /check/pa4.pl (i.e. same as pa4)

• Final exam
– Thu May 5, Noon – 3PM

• exam is intended to take 2 hours, but you have 3 hours to complete it
• comprehensive with emphasis on the second half of the class
• midterm and final have equal weight

– rules
• Open book, open notes

– No general search or outside help
– You have to sign the pledge

COMP 520 Compilers [20] Compiler Bootstrapping

4

Topics today

• Compilers, Interpreters, and Bootstrapping
– material from Chapter 2 in our text
– this material will not be on the exam

COMP 520 Compilers [20] Compiler Bootstrapping

5

Compilers and Interpreters: diagrams

• your miniJava compiler

mJava mJAM

Java

Java JVM

ia-32

Java JVM

ia-32

mJava mJAM

JVM

mJava mJAM

Java

• javac compiler on ia-32 machine

• Compiling the miniJava compiler using javac on ia-32

ia-32

COMP 520 Compilers [20] Compiler Bootstrapping

6

Compiling the mJAM interpreter

• mJAM interpreter

Java JVM

ia-32

Java JVM

ia-32

• javac compiler on ia-32

• Compiling the TAM interpreter using javac on ia-32

ia-32

mJAM

Java

mJAM

Java

mJAM

JVM

COMP 520 Compilers [20] Compiler Bootstrapping

7

The miniJava compiler in action

• Compiling a miniJava program
p1.mJava on ia-32

• Executing the compiled program on
ia-32

mJava mJAM

JVM

p1.mJava

JVM

ia-32
ia-32

p1.mJAM p1.mJAM

JVM

ia-32

mJAM

JVM

ia-32

COMP 520 Compilers [20] Compiler Bootstrapping

8

Compiler implementation language

• The miniJava compiler is implemented in Java

• Why?
– Java is a high-level language

• can express key features of a compiler
– sophisticated modularization
– advanced data structures
– design patterns

– Java is portable
• can develop a miniJava compiler under Windows or Linux and run on

either

mJava mJAM

Java

COMP 520 Compilers [20] Compiler Bootstrapping

9

Compiler implementation language

• What is the implementation language of Oracle’s Java compiler?

• Like us, the authors of the (Sun) Java compiler also prefer to implement
the compiler in Java!

• A compiler for language L written in L is called a portable compiler
– How do we compile such a compiler?

Java JVM

?

Java JVM

Java

COMP 520 Compilers [20] Compiler Bootstrapping

10

Compiler bootstrapping

• Given a pair of compilers from (high-level) language L into (machine)
language M

we can conveniently
– retarget: a compiler for L generating code for a different machine M’
– extend: a compiler for L’, an extension of language L
– improve: a better (e.g. more optimized) compiler for L into M

using a technique called compiler bootstrapping
– which yields a new pair of (portable, native) compilers

L M

L

L M

M

portable compiler native compiler

COMP 520 Compilers [20] Compiler Bootstrapping

11

Retargeting a compiler

1. Write a new code generator to retarget the portable compiler to M’

2. Two-step bootstrap to construct the native compiler

L M

L

L M’

L

L M

M

L M’

M

L M’

L

COMP 520 Compilers [20] Compiler Bootstrapping

M

L M’

M

L M’

M’

L M’

L

M

Portable
compiler

Native
compiler

12

Improving a compiler

1. Incorporate optimizations into the portable compiler

2. Two-step bootstrap to create (optimized) native compiler

L M

L

L Mfast

L

L M

M

L Mfast

M

L Mfast

M

L Mfast

Mfast

L Mfast

L

L Mfast

L

COMP 520 Compilers [20] Compiler Bootstrapping

13

Extending the source language (1)

1. Extend the compiler to handle new features of source language L’ ⊇ L
– but stick to features of L in the implementation

2. Bootstrap (first half)

L M

L

L’ M

L

L M

M

L’ M

M

L’ M

L

COMP 520 Compilers [20] Compiler Bootstrapping

14

Extending the source language (2)

3. Rewrite the new compiler using the extended features of L’

4. Bootstrap (second half)

L’ M

M

L’ M

M

L’ M

L’

L’ M

L

L’ M

L’

COMP 520 Compilers [20] Compiler Bootstrapping

15

How to construct the first portable compiler?

• Incrementally, using repeated language extensions!

• Example: the first Pascal compiler
– ETH Zurich, circa 1970
– Machine: CDC 6000
– Available languages: Scallop (CDC Assembler), Fortran

• Initial attempt to write Pascal compiler using Fortran was a failure, and
was discarded

– A very simple and small compiler was written in a highly incomplete
version of Pascal (P1)

• It was translated by hand (!) to CDC Assembler
– Thus started the bootstrap cycle!

P1 6000

P1

P1 6000

6000
hand-translation

COMP 520 Compilers [20] Compiler Bootstrapping

16

The First Pascal Compiler

P1 = incomplete Pascal
P2 = full Pascal

P1 6000

P1

P2 6000

P1 P1 6000

6000

P2 6000

6000

P2 6000

P2

P2 6000

6000

P1 6000

6000

P2 6000

P1

P2 6000

P2

hand translation

language
extension

compiler
improvement

Two-step bootstrap

COMP 520 Compilers [20] Compiler Bootstrapping

18

The Java compiler

• So is our javac the native compiler for ia-32 (or x86-64) ?
– Well, actually not
– it’s actually more like a pre-jitted set of JVM classes for the portable

compiler
– but the compiler does use language improvement bootstrapping to

make use of new language features

• JVM is a C++ program
– it leverages the C++ compilers to generate a high quality interpreter

on each architecture
– and performs JIT compilation
– it also provides native code for a boatload of basic library capabilities

• e.g. GUIs, graphics

COMP 520 Compilers [20] Compiler Bootstrapping

19

Language extension: example
• We have a compiler C1 for a subset of C

– handles escape sequences ‘\\’ and ‘\n’ in character literals
– produces MIPS assembly code

• We want to extend the subset of C
– allow the escape sequence ‘\t’ (horizontal tab, ASCII code 0x09) to

appear in character literals

• Relevant routine is convert(), in LexicalAnalysis section of C1

– converts character escape sequences in char literals to ascii codes

COMP 520 Compilers [20] Compiler Bootstrapping

20

procedure convert()

int convert() {
int c = nextchar();
if (c != ‘\\’)

return c;
c = nextchar();
if (c == ‘\\’)

return ‘\\’;
if (c == ‘n’)

return ‘\n’;
error();

}

convert:
subu sp, sp, 24
sw ra, 16(sp)
jal nextchar ; $2 result
li $3, 0x5c ; backslash
bne $2, $3, $L1

jal nextchar ; $2 result
move $3, $2
li $2, 0x5c ; backslash
beq $3, $2, $L1
li $4, 0x6e ; ‘n’
li $2, 0x0a ; ‘\n’
beq $3, $4, $L1
jal error

$L1:
lw ra, 16(sp) ; return
addu sp, sp, 24 ; result in $2
j ra

code in C1 compiler
written in C1 subset

C1 compiled code for convert()

COMP 520 Compilers [20] Compiler Bootstrapping

21

Extending C1

Generates a compile time error

Where?

int convert() {
int c = nextchar();
if (c != ‘\\’)

return c;
c = nextchar();
if (c == ‘\\’)

return ‘\\’;
if (c == ‘n’)

return ‘\n’;
if (c == ‘t’)

return ‘\t’;
error();

}

• First try

COMP 520 Compilers [20] Compiler Bootstrapping

22

Extending C1
• Second try

• The C1 compiler handles this just fine
– C1 compiles the extended compiler
– produces a compiler C2 that

accepts ‘\t’ in char literals

int convert() {
int c = nextchar();
if (c != ‘\\’)

return c;
c = nextchar();
if (c == ‘\\’)

return ‘\\’;
if (c == ‘n’)

return ‘\n’;
if (c == ‘t’)

return 0x09;
error();

}

convert:
subu sp, sp, 24
sw ra, 16(sp)
jal nextchar ; $2 result
li $3, 0x5c ; backslash
bne $2, $3, $L1

jal nextchar ; $2 result
move $3, $2
li $2, 0x5c ; backslash
beq $3, $2, $L1
li $4, 0x6e ; ‘n’
li $2, 0x0a ; ‘\n’
beq $3, $4, $L1
li $4, 0x74 ; ‘t’
li $2, 0x09 ; 0x09
beq $3, $4, $L1
jal error

$L1:
lw ra, 16(sp) ; return
addu sp, sp, 24 ; result in $2
j ra

COMP 520 Compilers [20] Compiler Bootstrapping

23

Completing the bootstrap
• C2 will now be able to compile the preferred version of convert()

– generates a third compiler C3

– now discard C1, C2 and retain the clean version of convert() in C3

int convert() {
int c = nextchar();
if (c != ‘\\’)

return c;
c = nextchar();
if (c == ‘\\’)

return ‘\\’;
if (c == ‘n’)

return ‘\n’;
if (c == ‘t’)

return ‘\t’;
error();

}

COMP 520 Compilers [20] Compiler Bootstrapping

24

So what happened?

• Some knowledge was “baked into” the (portable, native) compiler pair
– The relationship between ‘\t’ and its character code 0x09 is no longer

visible in the portable compiler
– Yet the native compiler somehow reproduces it

• Is this OK?
– It’s great for compiler development
– It’s not ok for computer security!

• The compiler can contain an embedded virus that propagates itself to
future compilers

– not visible in the portable compiler
– but propagated into binaries
– and into binaries of detectors!

• “Reflections on trusting trust” – Ken Thompson 1984

COMP 520 Compilers [20] Compiler Bootstrapping

25

Generating a compiler from an interpreter

• Partial evaluator
– a kind of JIT compiler, but highly optimizing

• Suppose we have prog(x,y), partial evaluator PE and known input x
• (PE prog x) is a residual program such that
• (PE prog x)(y) = prog(x,y)

– The partial evaluator “specializes” prog for known input x

• Bootstrapping a partial evaluator: the “Futamura projections”
– First projection: compiles a program P in language L given an

interpreter for L
• (PEL interpreterL PL)(x) = PL (x)

– Second projection: builds a compiler given an interpreter
• (PEL PEL interpreterL)(PL) (x) = (PEL interpreterL PL) (x)

– Third projection: builds a compiler generator 
• (PEL PEL PEL) (interpreterL) = (PEL PEL InterpreterL)

COMP 520 Compilers [20] Compiler Bootstrapping

26

Back to something real …

• miniJava compiler
– Built a few years ago by Bill Lewis
– miniJava plus multidimensional arrays and floating point arithmetic

and lots of other features
• also able to link to an external libraries

– targeted to .NET (Microsoft’s virtual machine)

(1) Question about open source implementation of .NET (mono) ?
• Answered by dusting off the miniJava compiler
• and substituting mono for .NET
• It runs!

(2) Portability of the mono environment ?
• Recompiled the mono environment for a Raspberry Pi Zero ($5)
• It runs!

COMP 520 Compilers [20] Compiler Bootstrapping

COMP 520 Compilers [20] Compiler Bootstrapping

COMP 520 Compilers [20] Compiler Bootstrapping

COMP 520 Compilers [20] Compiler Bootstrapping

30

Wrap-up
• Compilers and interpreters

– Critical components in modern programming
• Portability, IDEs, version control, configuration management, etc.
• Their construction draws on all parts of CS
• algorithms, data structures, automata theory, programming languages,

graph theory, and software engineering

• (Much) we didn’t cover
– error recovery

• in the scanner and parser
– optimization

• loops and arrays, compiling for the memory hierarchy
– complex programming language features

• separate compilation (imports / exports / packages)
• overloading and overriding
• interfaces, generics, nested classes
• concurrency

COMP 520 Compilers [20] Compiler Bootstrapping

31

Course evaluation

• Please provide some feedback on this course
– This has not been my best semester 
– I hope you were nevertheless gain some insight and interest in

compilers and compilation

• Course evaluation mechanism
– online through Connect Carolina
– closes at midnight tomorrow night!

• Compilers
– compilers are one of the key tools enabling computer science
– you might not ever write another compiler, but you’ll know how they

work and you’ll be less daunted by errors from a compiler
– there’s much more to compilers than we’ve covered!

COMP 520 Compilers [20] Compiler Bootstrapping

	COMP 520 - Compilers�Lecture 19 – April 26, 2022��Compiler Bootstrapping
	Announcements
	Topics today
	Compilers and Interpreters: diagrams
	Compiling the mJAM interpreter
	The miniJava compiler in action
	Compiler implementation language
	Compiler implementation language
	Compiler bootstrapping
	Retargeting a compiler
	Improving a compiler
	Extending the source language (1)
	Extending the source language (2)
	How to construct the first portable compiler?
	The First Pascal Compiler
	The Java compiler
	Language extension: example
	procedure convert()
	Extending C1
	Extending C1
	Completing the bootstrap
	So what happened?
	Generating a compiler from an interpreter
	Back to something real …
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Wrap-up
	Course evaluation

