
Compiler Project Assignment 1

COMP 520 – PA1 1 January 13, 2022

Compiler Project
PA1 – Syntactic Analysis

Assigned: Thu Jan 13
Due: Mon Jan 31 (Midnight)

The programming project in this class is the construction of a compiler for miniJava, a subset of
Java. Every miniJava program is a legal Java program with Java semantics. The miniJava compiler
project is built over the course of the semester and is divided into 4 phases (syntactic analysis,
abstract syntax tree construction, type checking, and code generation). Each phase will be tested
separately. You will receive a report shortly after the due date of each phase, and the tests will
be provided as well. A final fifth phase provides an opportunity to make corrections and add
optional extensions.

The first assignment, syntactic analysis, is to build a scanner and parser to recognize syntactically
correct miniJava programs, and reject syntactically incorrect inputs. The next section describes
the miniJava language syntax and section 2 details the assignment.

1. miniJava syntax
Following is an informal summary of the syntactic restrictions to Java that define miniJava. Later
assignments will modify some of these restrictions.

A miniJava program is a single ASCII text file. It lacks a package declaration, hence corresponds to
an unnamed or anonymous Java package, and has no imports. It consists of Java class
declarations. Classes are simple: there are no subclasses, interface classes, or nested classes.

The members of a class are fields and methods. Member declarations can specify public or
private access, and can specify static instantiation. Fields do not have an initializing
expression in their declaration. Methods have a parameter list and a body. There are no
constructor methods.

The types of miniJava are primitive types, class types, and array types. The primitive types are
limited to int and boolean. A class type is the name of a declared class. The array types are
the integer array int [] and the class[] array where class is a class type.

The statements of miniJava are limited to the statement block ({ ... }), declaration statement,
assignment statement, method invocation, conditional statement (if), and the repetitive
statement (while). A declaration of a local variable can only appear as a statement within a
statement-block and must include an initial value assignment. The return statement can appear
anywhere a statement can appear and has an optional expression for a result to be returned.

The expressions of miniJava consist of operations applied to literals (e.g numbers) and references
(including simple identifiers, qualified references, and indexed references), method invocation,
and new array or object creation. Expressions may be parenthesized to specify evaluation order.

Compiler Project Assignment 1

COMP 520 – PA1 2 January 13, 2022

Operators in miniJava are limited to

 relational operators: > < == <= >= !=
 logical operators: && || !
 arithmetic operators: + - * /

All operators are infix binary operators (binop) with the exception of the prefix unary operators
(unop) that consists of logical negation (!), and arithmetic negation (-). The latter is both a unary
and binary operator.

1.1. Lexical rules

The text of a miniJava program is partitioned into lexical units (known as tokens). An identifier
token (id) is formed from a sequence of letters, digits, and the underscore character, and must
start with a letter. Uppercase letters are distinguished from lowercase letters. The miniJava
keywords (if, boolean, etc.) each have their own eponymous token. Keyword names cannot be
used as identifiers. A number token (num) is a sequence of decimal digit characters. The operators
shown above will each have a corresponding unique token.

Whitespace and comments may appear before or after any token. Whitespace is limited to
spaces, tabs (\t), newlines (\n) and carriage returns (\r). There are two forms of comments.
One starts with /* and ends with */, while the other begins with // and extends to the end of
the line.

Classes binop and unop stand for sets of operator tokens. Token eot stands for the end of the
input text. The remaining tokens stand for themselves (i.e. for the sequence of characters that
are used to spell them). Keywords of the language are shown in bold for readability only; they
are written in regular lowercase text.

The text of miniJava programs is written in ASCII. Any characters other than those that are part
of a token, whitespace, or a comment, are erroneous.

1.2. Grammar

The miniJava context-free grammar is shown on the last page. Nonterminals are displayed in the
normal font and start with a capital letter, while terminals are tokens and are displayed in fixed-
width font. Terminals id, num, unop, and binop and represent a set of possible terminals.
The remaining symbols are part of the BNF extensions for grouping, choice, and repetition.
Besides these extensions the option construct is used and is defined as follows: (α)? ≡ (α | ε). To
help distinguish the parentheses used in grouping from the left and right parentheses used as
terminals, the latter are shown in bold. The start symbol of the grammar is “Program”.

Compiler Project Assignment 1

COMP 520 – PA1 3 January 13, 2022

2. PA1 assignment

The first task in the compiler project is to create a scanner and parser for miniJava starting from
the lexical rules and the grammar given in this document. For this assignment you will create a
miniJava package that includes a Compiler mainclass and a SyntacticAnalyzer
subpackage.

Populate the miniJava.SyntacticAnalyzer package with Scanner, Parser, and Token
classes. A simple scanner and top-down parser design will be shown in class that can be used as
the basis for your miniJava syntactic analyzer. You can also study the Triangle compiler, although
details differ between miniJava and Triangle. You will want to include auxiliary classes for reading
the sourcefile and keeping track of a token’s position in the sourcefile (although not required at
the PA1 checkpoint), as well as handling parsing errors. You can study the classes defined in the
syntactic analyzer in the Triangle distribution (e.g. SourceFile, SourcePosition,
SyntaxError). You will not be building an Abstract Syntax Tree (AST) in this assignment, so you
need not import AbstractSyntaxTree classes in the parser.

The Compiler.java mainclass should contain a main method that parses the sourcefile named
as the first argument on the command line (the extension may be .java or .mjava). Execution
of your compiler must terminate using the method System.exit(rc) where 𝑟𝑟𝑟𝑟 = 0 if the input
file was successfully parsed, and 𝑟𝑟𝑟𝑟 = 4 otherwise. A diagnostic message is helpful in case the
parse fails.

An example scanner and parser for arithmetic expressions using the structure developed in our
text are provided on the class web page and is named simpleScannerParser.

The miniJava grammar is shown on the next page.

Compiler Project Assignment 1

COMP 520 – PA1 4 January 13, 2022

miniJava Grammar

Program ::= (ClassDeclaration)* eot

ClassDeclaration ::= class id { (FieldDeclaration | MethodDeclaration)* }

FieldDeclaration ::= Visibility Access Type id ;

MethodDeclaration ::= Visibility Access (Type | void) id (ParameterList?) {Statement*}

Visibility ::= (public | private)?

Access ::= static ?

Type ::= int | boolean | id | (int | id) []

ParameterList ::= Type id (, Type id)*

ArgumentList ::= Expression (, Expression)*

Reference ::= id | this | Reference . id

Statement ::=
 { Statement* }
 | Type id = Expression ;
 | Reference = Expression ;
 | Reference [Expression] = Expression ;
 | Reference (ArgumentList?) ;
 | return Expression? ;
 | if (Expression) Statement (else Statement)?
 | while (Expression) Statement

Expression ::=
 Reference
 | Reference [Expression]
 | Reference (ArgumentList?)
 | unop Expression
 | Expression binop Expression
 | (Expression)
 | num | true | false
 | new (id () | int [Expression] | id [Expression])

	Compiler Project
	PA1 – Syntactic Analysis
	miniJava Grammar

