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The goal for the miniJava project is that miniJava programs compile and execute with semantics 
given by the Java language.  Syntactically valid miniJava programs are defined by the miniJava 
grammar (PA1/PA2) along with the contextual constraints specified in this assignment.  There will 
remain a few cases where miniJava programs deviate from Java semantics. 

1.  miniJava extensions, syntax, and ASTs 
The null literal should be added to miniJava.  null can be assigned to any object or tested for 
(in)equality against any object.  Aside from this, there are no further changes in miniJava syntax 
from PA2.  Starting with this assignment you become the owner of the AST classes and may 
change them as you wish.  Please maintain a summary of changes you make to AST classes since 
this summary will be a component of the final project submission at the end of the semester.  If 
you add or remove AST classes, you must update the Visitor interface to properly traverse ASTs.  
While ASTs will no longer be inspected starting with this checkpoint, it may be useful to you to 
maintain the ASTDisplay capability so you can check the ASTs yourself.   

2. Contextual analysis  
Contextual analysis consists of identification and type checking of the AST.  

2.1. Identification 
Identification records declarations of names, and links uses (“applied occurrences”) of names to 
their corresponding declaration.  All declarations in a miniJava AST are subclasses of Declaration 
and every applied occurrence of a name is an Identifier node. Each identifier in a miniJava 
program should have a single corresponding declaration. 

Declarations.  Add a single new attribute, Declaration decl, to the Identifier class and link 
this attribute to the corresponding declaration node in the AST or report an error when there is 
no such declaration.  The declaration for an identifier can vary with the identifier’s position in a 
program statement (e.g. is it where a type is expected or where a variable name is expected).  In 
addition, in Java and miniJava, declarations of class names and member names are not required 
to precede their use in the program text.  Thus the traversal order requires some thought.  Local 
variable and parameter names, on the other hand, must be declared textually before their first 
use.  An identification example is included in Lecture 10, slides 17-18. 

The declaration of an identifier may also depend on the surrounding scopes.  We have the 
following nesting of scopes in a miniJava program. 

1. class names 
2. member names within a class 
3. parameters names within a method  
4+ local variable names in successively nested scopes within a method. 
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At each scope level we may have at most one declaration for an identifier and it can hide 
declarations with the same name in surrounding (lower-numbered) scope levels.  However, 
declarations at level 4 or higher may not hide declarations at levels 3 or higher.  Thus a local 
variable name can hide a class member name, but not a parameter name or any name declared 
in a surrounding scope within the same method.  Duplicate declarations at the same level are 
erroneous.   

You likely will want to implement a scoped identification table to support your traversal of the 
AST.  Rather than the tedious linked-list implementation in our text, the use of a 
Stack<HashMap<String,Declaration>> representation is recommended . 

Starting a statement block increases the scope level, and local variables can be declared anywhere 
within the statement block.   Their scope is from the point of declaration forward to the end of 
the statement block.  It is an error in Java to use the declared variable in the initializing expression.  
A variable declaration cannot be the solitary statement in a branch of a conditional statement.   

References.  A reference can denote a local variable or a method parameter, a member of the 
enclosing class, a class, or the current instance (i.e. the reference “this”).  A qualified reference 
such as b.x may denote a member in another class (e.g. in the class denoted by the ClassType of 
b), provided it respects the visibility and access modifier in the declaration of x.  A qualified 
reference to a member of another class may not have private visibility.  

Each reference has a controlling declaration, e.g. the controlling declaration for reference b.x is 
the declaration of member x in whatever class b denotes.  Thus for identification of references it 
makes sense to introduce an attribute Declaration decl in the Reference class as well, and 
to link it to the controlling declaration for the reference as part of identification. 

Static members.  Member declarations may specify static access.  Thus identification of a 
reference should enforce the rules for static access.  This means that in a qualified reference like 
A.x, where A denotes a class, x must be declared to have static access.  It also means that within 
a static method in a class C, a reference cannot directly access a non-static member of class C.  

Predefined names.  There are no imports in miniJava; instead we introduce a small number of 
predefined declarations to support some minimal functionality normally provided by classes 
implicitly imported in Java.  For miniJava these consist of: 

class System { public static _PrintStream out; } 

class _PrintStream { public void println(int n){}; } 

class String { } 

These declarations should be included at level 1.  By the rules defined for static members, 
System.out.println(42); is a valid statement.  By construction of the class name, an instance 
of _PrintStream cannot be declared in a miniJava program.  Class String has no members, but 
enables the declaration of a main method public static void main(String [] args). 

2.2. Type checking  
Type checking is performed bottom-up in the AST.   The type of AST leaf nodes is known, either 
because the leaf is a Literal for which the type is manifest, or because it is an Identifier, for which 
we know the declaration and hence its type.  The type of a non-leaf node is determined from the 
types of its children. 
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A simple strategy is to introduce a type attribute in appropriate AST classes, and use the type 
rules to set the value of this attribute in a bottom up traversal.   

You should define a method to determine equality between types.  Recall that, in Java, type 
equality is by name.  In addition to the miniJava types described in PA1-PA2, you may wish to use 
two additional types.  The ERROR type is equal to any type and can be used to limit the cascading 
of errors in contextual analysis once a type error is found.  The UNSUPPORTED type is not equal 
to any type, hence values of this type when referenced should generate an error.  You should 
assign String the UNSUPPORTED type, so that any attempts to reference such values generate 
an error.  The ERROR and UNSUPPORTED types are included in the TypeKind enumeration) 

2.3. Implementation of contextual analysis  
You may implement contextual analysis in a single traversal that performs identification and type 
checking simultaneously, or you may implement it using two separate traversals.  The latter will 
result in more code, but may be simpler to construct, understand, and extend.   

Identification will use the scoped identification table and should have access to specific 
identification tables such as the list of ClassDecls for all classes and the list of MemberDecls for a 
given class.  The idTables may be accessed during AST traversal through fields in the visitor, in 
which case identification can be an implementation of Visitor<Object,Object> where the arg 
and result of each visit method are always null.  Alternatively an idTable can be supplied as an 
inherited attribute and returned as a synthesized attribute, in which case identification traversal 
can be an implementation of Visitor<IdTable,IdTable>.  It is more efficient to use a single 
global scoped identification table during traversal rather than to attach idTable attributes to each 
node. 

For type checking, each node synthesizes a TypeDenoter attribute from the types returned by its 
children, so a traversal could be constructed as an implementation of Visitor<Object,Type> 
where the argument to a visit method will always be null, and the result is always a Type. 

The predefined class declarations allow us to introduce a mainclass with a suitable main method.  
However, we do not verify the existence of a mainclass and main method in contextual analysis 
(this is true of Java as well).  This requirement will be included in PA4. 

3. Reporting results 
The Compiler.java mainclass in your compiler will function much like it did in PA2, exiting with 
termination code 0 in the case of a valid miniJava program (i.e. following syntactic and contextual 
analysis), and exiting with termination code 4 in the case of an invalid miniJava program.  There 
are two changes: (1) there is no need to display the AST in the case of a valid miniJava program 
and (2) an input program that is found to be invalid in contextual analysis should write a text error 
message to stdout (not stderr).  For example, if line 5 of the input program contains the 
assignment boolean a = 3; the output might be  
*** line 5: Type error – incompatible types in assignment  

The first nine characters of the error report (“*** line “) should follow the exact form shown 
here, and must be followed by the line number and a colon. Any text thereafter is free-form and 
terminated by a newline. Your contextual analyzer should attempt to check the entire program, 
even after an error is encountered.  However, it is reasonable to stop contextual analysis upon 
failure in identification, because it may render further checking meaningless.  
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