
 Programming Assignment 5

COMP 520 1 April 26, 2022

COMP 520: Compilers
Compiler Project – Final submission

Due: Wed Apr 27, 11:59 PM

The final submission of the project adds no new functionality, but provides an opportunity to
correct PA1-PA4 errors in your compiler and make improvements as you wish. It also provides an
opportunity to add extensions to your compiler for extra credit. The extra credit is not needed -
all grades can be obtained with just the basic project (an exception is a team project which earns
score at a lower rate). The following details the parts of your submission that you should place in
your final submission directory

1. Guide to your compiler
This is a short document titled guide.pdf or guide.txt that you place in your final submission
directory. The document should contain the following:

• Scope of your project. Please make clear any optional parts of the project you have
implemented, if any. List known limitations of your implementation (it is better for you
to identify these than for me to find them).

• Summary of changes to AST classes. Summarize any changes you made to the
AbstractSyntaxTree classes that were distributed. Describe changes, if any, made to
the AST class structure as well as additions made to the classes to support contextual
analysis and code generation.

• A description of tests (if tests are supplied). This should describe any tests in the Tests
directory (see below). If you are not able to run PA4Test.java you should include
some test(s) that exercise the portion of the compiler that is working. If you have
completed optional extensions of the project, you should include some comprehensive
tests for each extension. You can follow the passxxx, failxxx convention we have
been using for tests that should demonstrate correct behavior from your compiler and
those that should be rejected by your compiler.

2. miniJava Compiler
Place a copy of your miniJava directory in the submission directory. Your compiler should
compile miniJava programs supplied as files with extension ".java". For example, if test35.java
is a valid miniJava program, your compiler should terminate with exit(0) and generate object
code file test35.mJAM.
If the source program is not a valid miniJava program, your compiler should write a diagnostic
message and exit(4). Error messages beyond syntactic analysis need to be prefixed with “***”.

The operation of your compiler should be as specified in PA1-PA4 except where it conflicts with
any extensions added.

3. Tests
This directory (if present) contains any special test programs described in your guide.

 Programming Assignment 5

COMP 520 2 April 26, 2022

Grading
The base functionality of the final project, as specified in PA4, will be assessed by functional
testing, inspection of the generated code, and inspection of generated diagnostics. The overall
score of the project is obtained by combining contributions from all five checkpoints to obtain a
normalized project score out of 100.
If you wish, you may earn additional points to add to the overall score by incorporating further
features of Java into miniJava, as shown below. Unless indicated otherwise, the intended
semantics of each feature correspond to Java semantics, and, in general, may involve extensions
or changes in all phases of your compiler.
You can get a fine grade without attempting any extension, so it is perfectly reasonable (and the
typical choice) to concentrate on finalizing the base project. If you do want to investigate an
extension, make sure to think it through in advance by checking Java semantics. Some extensions
may be more work than their point value suggests.

Point
value

 Feature

2 Static field initialization.

2
 Parameterized class constructors. There should only be one constructor per

class, but it may have parameters. If none is defined, the default constructor
should be available.

3 for loops. Be sure to consider the possible forms of the initialization (including
declaration of the iterator variable), loop test, and increment parts.

1-3

 Improve code generation for the condition (test) in while and if statements,
focusing on efficient evaluation of short-circuit boolean operators && and ||.
Ideally, efficient evaluation means: (1) minimize alternation between jumps and
construction of truth values on the stack and (2) no chains of consecutive jumps
without intervening tests in the evaluation of a conditional expression. Partial
credit is available for anything that improves on the base strategy.

4

 Add the String type and string literals. No operations need to be supported on
strings, but you must be able to assign a string literal or a String reference to a
variable of type String, and it must be possible to print String values by
overloading System.out.println().

5 Add overloaded methods that differ in the types of their arguments, and
perform type checking to determine their validity and to resolve overloading.

10–20
 Inheritance of fields and methods, and dynamic method invocation. Be sure

type checking is extended appropriately. Optionally support instanceof
and/or super().

	COMP 520: Compilers
	Compiler Project – Final submission
	1. Guide to your compiler
	2. miniJava Compiler
	3. Tests
	Grading

