COMP 520 - Compilers

Lecture 11 (Thu Feb 21)

Contextual analysis: Type Checking

• Reading
 – (Tue 2/26) Contextual Analysis (secn 5.3)
Topics

- Type checking
 - examples of type checking
 - role of types in programming languages
 - structural vs. name equivalence

- A general framework for type checking
 - definitions
 - type synthesis
 - type constraints
 - examples
Type analysis

- **Basic examples**
 - assignment statements
 - do target and value type agree? \(x = 1 + 2; \)
 - Expressions
 - what is the type of the result? \(x + 3 \neq 4 \)
 - What are the types of the intermediate expressions?
 - function/procedure calls
 - do arguments types agree with parameter types?
 - does a function return a result of the appropriate type?
 - type definitions and variable declarations
 - is the type well-formed?
 - does a class type refer to an identified class?
 - void []

- **Systematically answering such questions is called “type checking”**
Type analysis

• Where do we need to use type analysis
 – automatic conversions/coercions
 • convert byte or short to int or long
 • convert byte, short, int, long to float or double
 • automatic boxing/unboxing of int to/from Integer in Java
 – overload resolution
 • which definition of “+” should be used?
 – inheritance
 • which methods are available on an object?
 • can the invocation of an overridden method be statically determined?
 – type inference
 • variables or parameters without type declarations (e.g. python)
 • can a type be inferred for the missing declaration?
Types in modern programming languages

• What is a type?
 – a set of possible values (and their representation)
 – a set of permissible operations

• Purpose of types
 – safety and correctness
 • apply only permissible operations on values with correct representation
 – improve readability and comprehensibility
 – provide consistency checks on programs
 – provide information to improve efficiency of execution
 • eliminate run-time type checks
 • efficient space (re)use
Type safety

• **Type safety is also known as “strong typing”**
 – all operations applied to values with a known representation
 • pointer dereference can not be applied to arbitrary integers
 • arithmetic operations are applied to values of known representation
 • appropriate methods are applied to objects

 – strongly typed languages guarantee to detect any situation where this is not the case at compile time
 • Java, Triangle, modern C (C99 and later)

• **Dynamic typing**
 – the type is part of the value
 • python

 – type safety is checked at runtime, not compile time
 • so may result in runtime error
When does type checking take place?

- Compile time
 - statically typed
 - Java, Triangle, C++, Fortran, Haskell, ...

- Run-time
 - dynamically typed
 - JavaScript, Perl, Python, PHP, Ruby, ...
 - Java casts

- Never
 - untyped
 - Assembler (but even this is changing towards strong typing)
Type wars

- **Static vs. dynamic typing**
 - **static typing**
 - catches many common programming errors at compile time
 - avoids run-time overhead of dynamic typing
 - **dynamic typing**
 - static type systems are restrictive
 - type declarations are wordy and slow the programmer down

- **In practice**
 - static type systems are restrictive so an escape system is added
 - e.g. C casts (void *) defeat typing
 - unclear whether this is the best or worst of the two worlds
 - static type systems are getting better
 - overloading, generics, type inference, virtual method invocation
 - dynamic typing used where static typing is too restrictive
 - “casts” with type checks and conversions
Type agreement

• In many modern languages we can define named types

 \[
 \begin{align*}
 \text{type } & \text{Height} = \text{Integer} \\
 \text{type } & \text{Weight} = \text{Integer} \\
 \text{var } & h : \text{Height}, \text{w: Weight} \\
 \text{... } & h := 130; \text{ w := 150; h := h + w } \ldots
 \end{align*}
 \]

 is this OK?

• When are two types equivalent?

 – Structural equivalence
 • when they are the same following substitution of type definitions
 – example languages: C, Triangle

 – Name equivalence
 • only when they are the same named type
 – example languages: Ada, Pascal, (C++), (Java)

• The form of type equivalence has fundamental bearing on type checking
miniJava type checking

• Fairly simple – bottom up
 – leaves of the AST are Terminals: Identifiers, Literals, and Operators
 • We can assign each of these a specific TypeDenoter (BaseType, ClassType, or ArrayType)
 – The specific types are manifest (Literals) or extracted from the declaration of an Identifier
 – Expression, Reference, and Declaration nodes compute their type from their children
 – specific Statement nodes make some checks for type agreement
 • AssignStmt
 • IfStmt
 – special types
 • ERROR, UNSUPPORTED
Simple approach to type checking

• Define a set of possible types
 – set of base types and some ways to build new types

• Define a representation of programs
 – simple class of ASTs

• Define a type-assignment algorithm that
 – labels all nodes of an AST with zero or more types
 – handles many forms of overloading
 • essentially all languages have some form of overloading
 – addition: operation on integers or floats?

• Type checking
 – following type assignment each AST node is labeled with a set of types
 • program is type correct if all nodes have a single type
 • program contains type error(s) if some node has no type assignment or more than one possible type assignment
Characterization of a set of types

- Type values constructed from
 - basic types
 - Int, Real, Bool, ...
 - parameterized types
 (in the following, a type variable \((\alpha, \beta, \ldots)\) stands for any type)
 - tuple types
 \(\alpha_1 \times \ldots \times \alpha_n\)
 - function types
 \(\alpha \rightarrow \beta\)
 - array types
 \(\text{Array}(\alpha)\)
 - named types
 - for name equivalence, if needed
 Complex = Real \(\times\) Real
Characterization of a simple class of ASTs

• **AST structure**

 – **Leaves: two kinds**
 * constants
 * identifiers (applied occurrences)
 – denoting variables or functions (including operators)

 – **interior nodes: two kinds**
 * tuple constructor \((\cdot)\)
 * function application \(\cdot\)

 – **Example**
 * Concrete syntax: \(a + 10\)
 * AST:
Type values at leaves

• Declarations provide type value(s) for AST leaves
 – a variable type is obtained from its (unique) declaration
 a: Int

 – constants have a manifest (unique) type
 10: Int
 5.3: Real
 true: Bool

 – functions or operators may have multiple types as a result of overloading
 +: Int × Int → Int
 +: Real × Real → Real

• The declarations are external to our simple ASTs
Generate possible type assignments

• Step 1: generate possible type assignments $\tau(v)$ for each node v by bottom-up traversal of AST

 – v is a leaf of the AST
 • $\tau(v)$ = set of types associated with v

 – v is a tuple constructor (v_1, \ldots, v_k)
 • $\tau(v) = \{ t_1 \times \ldots \times t_k \mid t_1 \in \tau(v_1), \ldots, t_k \in \tau(v_k) \}$

 – v is function application $f(a)$
 • $\tau(v) = \{ r \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \}$
Constrain type assignments

- Step 2: constrain type assignments $\sigma(v) \subseteq \tau(v)$ for each node v by top-down traversal of AST
 - v is root
 - $\sigma(v) = \tau(v)$
 - v is function application $f(a)$
 - $\sigma(f) = \{ d \rightarrow r \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - $\sigma(a) = \{ d \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - v is tuple constructor (v_1, \ldots, v_k)
 - $\sigma(v_i) = \{ t_i \mid t_1 \times \ldots \times t_i \times \ldots \times t_k \in \sigma(v) \}$
Type checking

- Type checking of an AST is successful if and only if $|\sigma(v)| = 1$ for every v in the AST
 - ex: $a + 10$
 - $\tau(v)$ is shown as $\{ \ldots \}$
 - $\sigma(v) \subseteq \tau(v)$ is shown by underlining elements of $\tau(v)$
 - type checking is successful
 - overloading is resolved

\[
\begin{array}{c}
\text{+} \\
\text{(}) \\
\text{a} \\
\text{10}
\end{array}
\]

\{ Int \}
\{ Int \}
\{ Int \} \times \{ Int \}
\{ Int \} \times \{ Int \} \rightarrow \{ Int \}
\{ Int \} \times \{ Int \} \rightarrow \{ Int \}
\{ Int \} \times \{ Int \} \rightarrow \{ Int \}
\{ Int \} \times \{ Int \} \rightarrow \{ Int \}
More examples

• Declarations

 +: Real × Real → Real
 +: Complex × Complex → Complex
 +: Real × Real → Complex

 =: Real × Real → Bool
 =: Complex × Complex → Bool

 r: Real
 c: Complex

• Examples

 r + r = r
 r = c
 (r + r) = (r + r)
Extensions

• Parametric polymorphism (generic types)
 – parameterized types that include type variables that vary over all types
 index: \(\text{Array}(\alpha) \times \text{Int} \rightarrow \alpha \)
 \(=: \alpha \times \alpha \rightarrow \text{Bool} \)
 – substitute type variables in generate and constrain phases
 – ex
 • \(a: \text{Array}(\text{Real}), \ i: \text{Int} \)
 • type assignment for \(a[i] \)?
Commands

• Include commands in AST with a new type Stmt
 – parametric polymorphism: type variables α vary over all types

 \[
 \text{ifCmd: } \text{Bool} \times \text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}
 \]

 \[
 \text{assignCmd: } \alpha \times \alpha \rightarrow \text{Stmt}
 \]

 \[
 \text{sequenceCmd: } \text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}
 \]

 – ex

 • x: Int

 • type assignment for x := 3; x := 4 ?
Type inference

- No types declared for variables – types must be inferred
 - a type variable α_x is used to describe the type of each occurrence of program variable x
 - equality and membership become equations rather than true/false propositions (solved using resolution theorem proving)
 - types are inferred if there exists a unique solution for type equations at end of constrain phase
- found in various languages including Haskell
- Example
 What is the type assignment for a, b and i

 $a[i] := b[i+1] \times 5.5$

 Given only the types for the operators (+, *, :=, , and indexing) as defined in these slides