COMP 520 - Compilers

Lecture 11 (Tue Feb 16, 2016)

Contextual analysis: Type Checking

• Please turn in to red folder at front at start of class
 – WA3

• Reading
 – (Thu 2/18) Contextual Analysis (secn 5.3)
Topics

• Type checking
 – examples of type checking
 – role of types in programming languages
 – structural vs. name equivalence

• A general framework for type checking
 – definitions
 • type synthesis
 • type constraints
 – examples
Type analysis

- Basic examples
 - assignment statements
 - do target and value type agree? \(x = 1 + 2; \)

 - Expressions
 - what is the type of the result? \(X + 3 \neq 4 \)
 - What are the types of the intermediate expressions?

- function/procedure calls
 - do arguments types agree with parameter types?
 - does a function return a result of the appropriate type?

- type definitions and variable declarations
 - is the type well-formed?
 - does a class type refer to an identified class?
 - void []

- Systematically answering such questions is called “type checking”
Type analysis

- Where do we need to use type analysis
 - automatic conversions/coercions
 - convert byte or short to int or long
 - convert byte, short, int, long to float or double
 - automatic boxing/unboxing of int to/from Integer in Java

 - overload resolution
 - which definition of “+” should be used?

 - inheritance
 - which methods are available on an object?
 - can the invocation of an overridden method be statically determined?

 - type inference
 - variables or parameters without type declarations (e.g. perl)
 - can a type be inferred for the missing declaration?
Types in modern programming languages

- What is a type?
 - a set of possible values (and their representation)
 - a set of permissible operations

- Purpose of types
 - safety and correctness
 - apply only permissible operations on values with correct representation
 - improve readability and comprehensibility
 - provide consistency checks on programs
 - provide information to improve efficiency of execution
 - eliminate run-time type checks
 - efficient space (re)use
Type safety

• Type safety is also known as “strong typing”
 – all operations applied to values with a known representation
 • pointer dereference can not be applied to arbitrary integers
 • arithmetic operations are applied to values of correct representation
 • appropriate methods are applied to objects
 – strongly typed languages guarantee to detect any situation where this is not the case
 • Java, Triangle, Ada

– Weakly typed languages may not detect such situations
 • C (old C, not C99 and later)
When does type checking take place?

- **Compile time**
 - statically typed
 - Java, Triangle, C++, Fortran, Haskell, ...

- **Run-time**
 - dynamically typed
 - JavaScript, Perl, Python, PHP, Ruby, ...
 - Java casts

- **Never**
 - untyped
 - Assembler (but even this is changing towards strong typing)
Type wars

• Static vs. dynamic typing
 – static typing
 • catches many common programming errors at compile time
 • avoids run-time overhead of dynamic typing
 – dynamic typing
 • static type systems are restrictive
 • type declarations slow the programmer down

• In practice
 – static type systems are restrictive so an escape system is added
 • e.g C casts (void *) defeat typing
 • unclear whether this is the best or worst of the two worlds
 – static type systems are getting better
 • overloading, generics, type inference, virtual method invocation
 • dynamic typing used where static typing is too restrictive
 – “casts” with type checks and conversions
Type agreement

• In many modern languages we can define named types

 \[
 \begin{align*}
 \text{type } & \text{Height} = \text{Integer} \\
 \text{type } & \text{Weight} = \text{Integer} \\
 \text{var } & h : \text{Height}, \ w : \text{Weight} \\
 \ldots & h := 130; \ w := 150; \ h := h + w \ldots
 \end{align*}
 \]
 is this OK?

• When are two types equivalent?
 – Structural equivalence
 • when they are the same following substitution of type definitions
 – example languages: C, Triangle
 – Name equivalence
 • only when they are the same named type
 – example languages: Ada, Pascal, (C++), (Java)

• The form of type equivalence has fundamental bearing on type checking
Simple approach to type checking

• Define a set of possible types
 – set of base types and some ways to build new types

• Define a representation of programs
 – simple class of ASTs

• Define a type-assignment algorithm that
 – labels all nodes of an AST with zero or more types
 – handles many forms of overloading
 • essentially all languages have some form of overloading
 – addition: operation on integers or floats?

• Type checking
 – following type assignment each AST node is labeled with a set of types
 • program is type correct if all nodes have a single type
 • program contains type error(s) if some node has no type assignment or more than one possible type assignment
Characterization of a set of types

- Type values constructed from
 - basic types
 - Int, Real, Bool, ...
 - parameterized types
 (in the following, a type variable \((\alpha, \beta, \ldots)\) stands for any type)
 - tuple types
 \(\alpha_1 \times \ldots \times \alpha_n\)
 - function types
 \(\alpha \rightarrow \beta\)
 - array types
 \(\text{Array}(\alpha)\)
- named types
 - for name equivalence, if needed
 Complex = Real \times Real
Characterization of a simple class of ASTs

- **AST structure**
 - **Leaves:** two kinds
 - **constants**
 - **identifiers (applied occurrences)**
 - denoting variables or functions (including operators)
 - **interior nodes:** two kinds
 - **tuple constructor** ()
 - **function application**

- **Example**
 - Concrete syntax: \(a + 10 \)
 - AST:
Type values at leaves

• Declarations provide type value(s) for AST leaves
 – a variable type is obtained from its (unique) declaration
 \(a: \text{Int} \)

 – constants have a manifest (unique) type
 \(10: \text{Int} \)
 \(5.3: \text{Real} \)
 \(\text{true}: \text{Bool} \)

 – functions or operators may have multiple types as a result of
 overloading
 \(+: \text{Int} \times \text{Int} \rightarrow \text{Int} \)
 \(+: \text{Real} \times \text{Real} \rightarrow \text{Real} \)

• The declarations are external to our simple ASTs
Generate possible type assignments

- Step 1: generate possible type assignments $\tau(v)$ for each node v by bottom-up traversal of AST
 - v is a leaf of the AST
 - $\tau(v) =$ set of types associated with v
 - v is a tuple constructor (v_1, \ldots, v_k)
 - $\tau(v) = \{ t_1 \times \ldots \times t_k \mid t_1 \in \tau(v_1), \ldots, t_k \in \tau(v_k) \}$
 - v is function application $f(a)$
 - $\tau(v) = \{ r \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \}$
Constrain type assignments

- **Step 2**: constrain type assignments $\sigma(v) \subseteq \tau(v)$ for each node v by top-down traversal of AST
 - v is root
 - $\sigma(v) = \tau(v)$
 - v is function application $f(a)$
 - $\sigma(f) = \{ d \rightarrow r \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - $\sigma(a) = \{ d \mid (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - v is tuple constructor (v_1, \ldots, v_k)
 - $\sigma(v_i) = \{ t_i \mid t_1 \times \ldots \times t_i \times \ldots \times t_k \in \sigma(v) \}$
Type checking

- Type checking of an AST is successful if and only if \(| \sigma(v) | = 1\) for every \(v\) in the AST
 - ex: \(a + 10\)
 \(\tau(v)\) is shown as \{ ... \}
 \(\sigma(v) \subseteq \tau(v)\) is shown by underlining elements of \(\tau(v)\)
- type checking is successful
- overloading is resolved

```
+   \{ Int \}       \{ Int \}
   \{ Int \}         \{ Int \}
   \{ Int \times Int \}
```

\[
\{ \text{Int} \times \text{Int} \rightarrow \text{Int}, \quad \text{Real} \times \text{Real} \rightarrow \text{Real} \}
\]
More examples

• **Declarations**

 +: Real × Real → Real
 +: Complex × Complex → Complex
 +: Real × Real → Complex

 =: Real × Real → Bool
 =: Complex × Complex → Bool

 r: Real
 c: Complex

• **Examples**

 r + r = r
 r = c
 (r + r) = (r + r)
Extensions

• Parametric polymorphism (generic types)
 – parameterized types that include type variables that vary over all types
 index: $\text{Array}(\alpha) \times \text{Int} \rightarrow \alpha$
 $\Rightarrow: \alpha \times \alpha \rightarrow \text{Bool}$
 – substitute type variables in generate and constrain phases
 – ex
 • a: $\text{Array}($Real$)$, i: Int
 • type assignment for a[i]?
 Commands

- Include commands in AST with a new type Stmt
 - parametric polymorphism: type variables α vary over all types
 ifCmd: $\text{Bool} \times \text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}$
 assignCmd : $\alpha \times \alpha \rightarrow \text{Stmt}$
 sequenceCmd : $\text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}$
 - ex
 - x: Int
 - type assignment for $x := 3; x := 4$?
Type inference

• No types declared for variables – types must be inferred
 – a type variable α_x is used to describe the type of each occurrence of program variable x
 – equality and membership become equations rather than true/false propositions (solved using resolution theorem proving)
 • types are inferred if there exists a unique solution for type equations at end of constrain phase
 – found in various languages including Haskell
 – ex
 type assignment for $a[i] := b[i+1] * 5.5$?