COMP 520 - Compilers

Lecture 11 (Tue Feb 21, 2017)

Contextual analysis: Type Checking

• Please pick up from the back of the class
 – WA3 graded papers

• Reading
 – (Thu 2/23) Contextual Analysis (secn 5.3)
Topics

• Type checking
 – examples of type checking
 – role of types in programming languages
 – structural vs. name equivalence

• A general framework for type checking
 – definitions
 • type synthesis
 • type constraints
 – examples
Type analysis

- Basic examples
 - assignment statements
 - do target and value type agree? \(x = 1 + 2; \)
 - Expressions
 - what is the type of the result? \(X + 3 \neq 4 \)
 - What are the types of the intermediate expressions?
- function/procedure calls
 - do arguments types agree with parameter types?
 - does a function return a result of the appropriate type?
- type definitions and variable declarations
 - is the type well-formed?
 - does a class type refer to an identified class?
 - void []
- Systematically answering such questions is called “type checking”
Type analysis

Where do we need to use type analysis

- automatic conversions/coercions
 - convert byte or short to int or long
 - convert byte, short, int, long to float or double
 - automatic boxing/unboxing of int to/from Integer in Java

- overload resolution
 - which definition of “+” should be used?

- inheritance
 - which methods are available on an object?
 - can the invocation of an overridden method be statically determined?

- type inference
 - variables or parameters without type declarations (e.g. perl)
 - can a type be inferred for the missing declaration?
Types in modern programming languages

- **What is a type?**
 - a set of possible values (and their representation)
 - a set of permissible operations

- **Purpose of types**
 - safety and correctness
 - apply only permissible operations on values with correct representation
 - improve readability and comprehensibility
 - provide consistency checks on programs
 - provide information to improve efficiency of execution
 - eliminate run-time type checks
 - efficient space (re)use
Type safety

- Type safety is also known as “strong typing”
 - all operations applied to values with a known representation
 - pointer dereference can not be applied to arbitrary integers
 - arithmetic operations are applied to values of correct representation
 - appropriate methods are applied to objects
 - strongly typed languages guarantee to detect any situation where this is not the case
 - Java, Triangle, Ada
 - Weakly typed languages may not detect such situations
 - C (old C, not C99 and later)
When does type checking take place?

- **Compile time**
 - statically typed
 - Java, Triangle, C++, Fortran, Haskell, ...

- **Run-time**
 - dynamically typed
 - JavaScript, Perl, Python, PHP, Ruby, ...
 - Java casts

- **Never**
 - untyped
 - Assembler (but even this is changing towards strong typing)
Type wars

• Static vs. dynamic typing
 – static typing
 • catches many common programming errors at compile time
 • avoids run-time overhead of dynamic typing
 – dynamic typing
 • static type systems are restrictive
 • type declarations are wordy and slow the programmer down

• In practice
 – static type systems are restrictive so an escape system is added
 • e.g. C casts (void *) defeat typing
 • unclear whether this is the best or worst of the two worlds
 – static type systems are getting better
 • overloading, generics, type inference, virtual method invocation
 • dynamic typing used where static typing is too restrictive
 – “casts” with type checks and conversions
Type agreement

• In many modern languages we can define named types

  ```
  type Height = Integer
  type Weight = Integer
  var h : Height, w : Weight
  ...
  h := 130;  w := 150;  h := h + w ...
  ```

 is this OK?

• When are two types equivalent?
 – Structural equivalence
 • when they are the same following substitution of type definitions
 – example languages: C, Triangle
 – Name equivalence
 • only when they are the same named type
 – example languages: Ada, Pascal, (C++), (Java)

• The form of type equivalence has fundamental bearing on type checking
miniJava type checking

• Fairly simple – bottom up
 – leaves of the AST are Terminals: Identifiers, Literals, and Operators
 • We can assign each of these a specific TypeDenoter (BaseType, ClassType, or ArrayType)
 – The specific types are manifest (Literals) or extracted from the declaration of an Identifier

 – Expression, Reference, and Declaration nodes compute their type from their children

 – specific Statement nodes make some checks for type agreement
 • AssignStmt
 • IfStmt

 – special types
 • ERROR, UNSUPPORTED
Simple approach to type checking

• Define a set of possible types
 – set of base types and some ways to build new types

• Define a representation of programs
 – simple class of ASTs

• Define a type-assignment algorithm that
 – labels all nodes of an AST with zero or more types
 – handles many forms of overloading
 • essentially all languages have some form of overloading
 – addition: operation on integers or floats?

• Type checking
 – following type assignment each AST node is labeled with a set of types
 • program is type correct if all nodes have a single type
 • program contains type error(s) if some node has no type assignment or more than one possible type assignment
Characterization of a set of types

- Type values constructed from
 - basic types
 - Int, Real, Bool, ...
 - parameterized types
 (in the following, a *type variable* (α, β, ...) stands for any type)
 - tuple types
 $\alpha_1 \times \ldots \times \alpha_n$
 - function types
 $\alpha \rightarrow \beta$
 - array types
 Array(α)
 - named types
 - for name equivalence, if needed
 Complex = Real \times Real
Characterization of a simple class of ASTs

- **AST structure**
 - **Leaves:** two kinds
 - **constants**
 - **identifiers (applied occurrences)**
 - denoting variables or functions (including operators)
 - **interior nodes:** two kinds
 - **tuple constructor**
 - **function application**

- **Example**
 - Concrete syntax: \(a + 10 \)
 - AST:
Type values at leaves

- Declarations provide type value(s) for AST leaves
 - a variable type is obtained from its (unique) declaration
 a: Int

 - constants have a manifest (unique) type
 10: Int
 5.3: Real
 true: Bool

 - functions or operators may have multiple types as a result of overloading
 +: Int × Int → Int
 +: Real × Real → Real

- The declarations are external to our simple ASTs
Generate possible type assignments

- Step 1: generate possible type assignments $\tau(v)$ for each node v by bottom-up traversal of AST
 - v is a leaf of the AST
 - $\tau(v)$ = set of types associated with v
 - v is a tuple constructor (v_1, \ldots, v_k)
 - $\tau(v) = \{ t_1 \times \ldots \times t_k | t_1 \in \tau(v_1), \ldots, t_k \in \tau(v_k) \}$
 - v is function application $f(a)$
 - $\tau(v) = \{ r | (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \}$
Constrain type assignments

- Step 2: constrain type assignments $\sigma(v) \subseteq \tau(v)$ for each node v by top-down traversal of AST
 - v is root
 - $\sigma(v) = \tau(v)$
 - v is function application $f(a)$
 - $\sigma(f) = \{ d \rightarrow r | (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - $\sigma(a) = \{ d | (d \rightarrow r) \in \tau(f) \text{ and } d \in \tau(a) \text{ and } r \in \sigma(v) \}$
 - v is tuple constructor (v_1, \ldots, v_k)
 - $\sigma(v_i) = \{ t_i | t_1 \times \ldots \times t_i \times \ldots \times t_k \in \sigma(v) \}$
Type checking

- Type checking of an AST is successful if and only if $|\sigma(v)| = 1$ for every v in the AST
 - ex: $a + 10$
 $\tau(v)$ is shown as $\{ ... \}$
 $\sigma(v) \subseteq \tau(v)$ is shown by underlining elements of $\tau(v)$
 - type checking is successful
 - overloading is resolved

```
+ (
  a { Int } 10 { Int }

{ Int × Int → Int,
 Real × Real → Real }
```
More examples

• Declarations

\[+: \text{Real} \times \text{Real} \rightarrow \text{Real} \]
\[+: \text{Complex} \times \text{Complex} \rightarrow \text{Complex} \]
\[+: \text{Real} \times \text{Real} \rightarrow \text{Complex} \]
\[=: \text{Real} \times \text{Real} \rightarrow \text{Bool} \]
\[=: \text{Complex} \times \text{Complex} \rightarrow \text{Bool} \]

r: Real

c: Complex

• Examples

\[r + r = r \]
\[r = c \]
\[(r + r) = (r + r) \]
Extensions

- **Parametric polymorphism (generic types)**
 - parameterized types that include type variables that vary over all types

 index: $\text{Array}(\alpha) \times \text{Int} \rightarrow \alpha$

 $=\alpha \times \alpha \rightarrow \text{Bool}$
 - substitute type variables in generate and constrain phases
 - ex
 - $a: \text{Array}(\text{Real})$, $i: \text{Int}$
 - type assignment for $a[i]$?
Commands

• Include commands in AST with a new type Stmt
 – parametric polymorphism: type variables α vary over all types
 ifCmd: $\text{Bool} \times \text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}$
 assignCmd : $\alpha \times \alpha \rightarrow \text{Stmt}$
 sequenceCmd : $\text{Stmt} \times \text{Stmt} \rightarrow \text{Stmt}$
 – ex
 • $x: \text{Int}$
 • type assignment for $x := 3; x := 4$?
Type inference

- No types declared for variables – types must be inferred
 - a type variable α_x is used to describe the type of each occurrence of program variable x
 - equality and membership become equations rather than true/false propositions (solved using resolution theorem proving)
 - types are inferred if there exists a unique solution for type equations at end of constrain phase
- found in various languages including Haskell
- Example
 What is the type assignment for a, b and i
 $a[i] := b[i+1] * 5.5$
 Given only the types for the operators (+, *, :=, and indexing) as defined in these slides