COMP 520 - Compilers

Lecture 19 (April 18)

Dataflow Analysis

- Please pick up from back of class
 - WA4 (single sheet) on register allocation - due Tue 4/25 start of class.
Announcements Thu Apr 18

• Final project submission due Fri April 26
 – Accepted through Sun Apr 28
 – No new functionality
 • get credit for functionality missing previously
 • possibility for extra credit from additional capabilities
 – See handout on the web

• Short written assignment due Tue April 25 start of class
 – WA4 register allocation for expressions
Data Flow Analysis

• Topics
 – Determining properties of programs with multiple execution paths
 – Control flow graphs
 – Dataflow equations and their solution
 – Dataflow frameworks
 – Sample applications
Analysis of programs

• Determine properties of programs
 – true for all possible executions
 – irrespective of input values
 – of use in program analysis and code optimization
 – … but an undecidable problem, in general

• Example
 – “dead code” elimination
 • find unused computations
 – introduced by programmer or compiler
 • delete them from program
 – without changing program meaning
 • which statements are “dead” and can be removed?
 – a statement is “dead” if it performs an assignment that can not influence the value of any variable at termination

Program

(1) \(x = y + 1; \)
(2) \(y = 2 \cdot z; \)
(3) \(x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)
Analysis of programs

• Determine properties of programs
 – true for all possible executions
 – irrespective of input values
 – of use in program analysis and code optimization
 – … but an undecidable problem, in general

• Example
 – “dead code” elimination
 • find unused computations
 – introduced by programmer or compiler
 • delete them from program
 – without changing program meaning
 • which statements are “dead” and can be removed?
 – a statement is “dead” if it performs an assignment that can not influence the value of any variable at termination

Program

(1) \(x = y + 1; \)
(2) \(y = 2 * z; \)
(3) \(x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)
Analysis in presence of control structures

- Add alternative construct to example
 - suppose we don’t know the value of \(d \) (e.g. it is an input)
 - is statement (4) dead?
 - there are no possible executions where this value of \(z \) could be used
 - is statement (1) dead?
 - in some possible execution (where \(d == \text{false} \)), its final value of \(x \) may be used later

Program

(1) \(x = y + 1; \)
(2) \(y = 2 * z; \)
(3) \(\text{if (d) } x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)

Program

(1) \(x = y + 1; \)
(2) \(y = 2 * z; \)
(3) \(\text{if (d) } x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)
Analysis in presence of control structures

• Add repetitive control construct to example
 – we don’t know the value of c or d or z
 – is statement (2) dead?
 • No, in some execution, the value of x may be used in line 7
 – is statement (5) dead?
 • No, in some executions, value from z = 1 may be used in the next iteration!

Program
(1) while (c) {
(2) x = y + 1;
(3) y = 2 * z;
(4) if (d) x = y + z;
(5) z = 1;
(6) }
(7) z = x;

Program
(1) while (c) {
(2) x = y + 1;
(3) y = 2 * z;
(4) if (d) x = y + z;
(5) z = 1;
(6) }
(7) z = x;
Control flow and optimization

• Optimization requires analysis
 – dead code elimination: need to know if values are possibly used in a program

• Required information
 – not explicit in the program
 – must be computed statically (i.e. at compile time)
 – must consider all potential run-time executions

• Control flow complicates analysis
 – different executions may follow different paths through the program
Control Flow Graphs

• Control Flow Graph (CFG)
 – directed graph representation of computation and control flow in a program
 – framework for static analysis of programs

• Control constructs are reduced to (conditional) jumps
 – like flow charts

• Nodes are basic blocks of tuple code operations
 – straight line tuple code
 • no jumps except possibly in the last tuple in the block
 – no tuple in a basic block is the target of any jump program-wide
 • except possibly the first tuple in the block

• Directed edges represent possible flow of control from one block to others
 – there may be multiple incoming/outgoing edges for each block
CFG Example

Program

\[
\begin{align*}
x &= x - 2; \\
y &= 2 \times z; \\
\text{if } (c) \{ & \quad \text{\begin{align*}x &= x + 1; \\
y &= y + 1; \end{align*}} \\
\text{else} \{ & \quad \text{\begin{align*}x &= x - 1; \\
y &= y - 1; \end{align*}} \\
z &= x + y;
\end{align*}
\]

Control Flow Graph

\[
\begin{align*}
B_1 & : x = x - 2; \\
& \quad \text{y = 2 \times z;} \\
& \quad \text{if } (c) \\
T & : x = x + 1; \\
& \quad \text{y = y + 1;} \\
F & : x = x - 1; \\
& \quad \text{y = y - 1;} \\
B_2 & : x = x + 1; \\
& \quad \text{y = y + 1;} \\
B_3 & : x = x - 1; \\
& \quad \text{y = y - 1;} \\
B_4 & : z = x + y;
\end{align*}
\]
Basic Blocks

• Sequence of consecutive statements such that
 – control enters only at the beginning of the sequence
 • control may come from any of the predecessor blocks
 – control leaves only at the end of the sequence
 • control may transfer to any of the successor blocks
 – no branching into or out of the middle of basic blocks!
 • easy to insure in modern “structured” languages

\[\begin{align*}
 x &= x - 2; \\
 y &= 2 \times z; \\
 \text{if (c)}
\end{align*} \]
CFG models all potential program executions

• Potential execution
 – path in graph
 • from start block (indegree 0)
 • to end block (outdegree 0)
 – possible paths
 • B₁ B₂ B₄
 • B₁ B₃ B₄
 – some executions may be infeasible
 • why?

\[
\begin{align*}
B_1 & : x = x - 2; \quad y = 2 \times z; \\
 & \quad \text{if (c)}
\end{align*}
\]

\[
\begin{align*}
T & : B_2 \quad x = x + 1; \quad y = y + 1;
\end{align*}
\]

\[
\begin{align*}
F & : B_3 \quad x = x - 1; \quad y = y - 1;
\end{align*}
\]

\[
\begin{align*}
B_4 & : z = x + y;
\end{align*}
\]
CFG Example 2

Program
(1) while (c) {
(2) x = y + 1;
(3) y = 2 * z;
(4) if (d) x = y + z;
(5) z = 1;
(6) }
(7) z = x;
Building the CFG

- Construct CFG by traversal of the AST
 - each statement type generates one or more nodes
 - nodes with straight line control flow can be merged

- Level of the CFG
 - high level, e.g. statements with arbitrary expressions
 - low level
 - tuple code

- Low level view is most useful for many optimizations
 - register allocation
 - common subexpression elimination

- What about functions and procedures?
 - a set of CFGs, one for each function/procedure
 - *global* dataflow analysis: interprocedural data flow analysis
Dataflow Analysis on CFG

• Live variable analysis
 – variable v is live at a program point i if there is a path from i to a use of v
 – there is a program point at the start and end of every line of the tuple code
 – what are the live variables at each program point?

• Method
 – Let L_i be the set of variables live at program point i
 – Define a rule that relates L_i to L_{i+1}
 • L_i may determine L_{i+1} or vice versa
Derive rules for computing L_i

- rule for a statement S

 $L_i = (L_{i+1} - \text{def}[S]) \cup \text{use}[S]$

 v is live at program point i if
 - v is live at $i+1$ and is not defined by S
 - OR
 - v is used in S

- rule for a basic block B

 $L_{\text{out}(B)} = \bigcup_{B' \in \text{succ}(B)} L_{\text{in}(B')}$

- Examples
 - statement “$y = 2 \times z$”
 - $L_4 = (L_5 - \{y\}) \cup \{z\}$
 - basic block
 - $L_6 = L_7 \cup L_9$
Simplify the rules for the given problem

\[L_1 = L_2 \cup \{c\} \]
\[L_2 = L_3 \cup L_{11} \]
\[L_3 = (L_4 - \{x\}) \cup \{y\} \]
\[L_4 = (L_5 - \{y\}) \cup \{z\} \]
\[L_5 = L_6 \cup \{d\} \]
\[L_6 = L_7 \cup L_9 \]
\[L_7 = (L_8 - \{x\}) \cup \{y,z\} \]
\[L_8 = L_9 \]
\[L_9 = (L_{10} - \{z\}) \]
\[L_{10} = L_1 \]
\[L_{11} = (L_{12} - \{z\}) \cup \{x\} \]
\[L_{12} = \]

\[
\begin{align*}
\text{if (c)} & \\
x &= y + 1; \\
y &= 2 \times z; \\
\text{if (d)} & \\
x &= y + z; \\
z &= 1; \\
z &= x;
\end{align*}
\]
Solving dataflow equations

- A set of dataflow equations F has a unique solution if
 - the domain D of the equations has a partial order \subseteq with a least element and greatest element
 - all equations in F are monotonic
 - If $X \subseteq Y$ then $F(X) \subseteq F(Y)$ meaning for each $f \in F$ we have $f(X) \subseteq f(Y)$
 - all chains $X_1 \subseteq X_2 \subseteq \ldots$ in D are finite and have a least upper bound

- For live variables problem
 - domain $D =$ all subsets of $\{t_1, \ldots, t_n\}$ where t_1, \ldots, t_n are the program variables
 - the partial order is the subset relation
 - Least element = $\{\}$ \subseteq $\{t_1\}$ \subseteq $\{t_1, t_2\}$ \subseteq $\ldots \subseteq \{t_1, \ldots, t_n\} =$ greatest element
 - check that the equations are monotonic
 - $L_i = (L_{i+1} - \text{def}[S]) \cup \text{use}[S]$
 - $F(X) = (X - \text{def}[S]) \cup \text{use}[S]$
 - $L_{\text{out}(B)} = \bigcup_{B' \in \text{succ}(B)} L_{\text{lin}(B')}$
 - $F(X_1, \ldots X_k) = X_1 \cup \ldots \cup X_k$
 - D is finite so all chains have a L.U.B.
Solving dataflow equations

- **Algorithm**
 - Initialize value at each program point to the least element of D
 - Iteratively re-evaluate rules (in any order) until a fixpoint for all program points is reached

- **The algorithm must terminate**
 - because every chain has a least upper bound
 - but some evaluation orders terminate faster than others

- **The solution S satisfies F(S) = S for every rule**
 - It is also guaranteed to be the least solution
 - for any other solution S’ we can prove $S \subseteq S’$
Solution: Initialization

\[
L_1 = L_2 \cup \{c\} \\
L_2 = L_3 \cup L_{11} \\
L_3 = (L_4 - \{x\}) \cup \{y\} \\
L_4 = (L_5 - \{y\}) \cup \{z\} \\
L_5 = L_6 \cup \{d\} \\
L_6 = L_7 \cup L_9 \\
L_7 = (L_8 - \{x\}) \cup \{y,z\} \\
L_8 = L_9 \\
L_9 = (L_{10} - \{z\}) \\
L_{10} = L_1 \\
L_{11} = (L_{12} - \{z\}) \cup \{x\} \\
L_{12} = \\
\]

\[
\begin{align*}
\text{if (c)} \\
x &= y + 1; \\
y &= 2 \times z; \\
\text{if (d)} \\
x &= y + z; \\
z &= 1; \\
z &= x;
\end{align*}
\]

\[
L_1 = \{} \\
L_2 = \{} \\
L_3 = \{} \\
L_4 = \{} \\
L_5 = \{} \\
L_6 = \{} \\
L_7 = \{} \\
L_8 = \{} \\
L_9 = \{} \\
L_{10} = \{} \\
L_{11} = \{} \\
L_{12} = \{}
\]
Iteration 1

\[\text{L}_1 = \text{L}_2 \cup \{c\} \]
\[\text{L}_2 = \text{L}_3 \cup \text{L}_{11} \]
\[\text{L}_3 = (\text{L}_4 - \{x\}) \cup \{y\} \]
\[\text{L}_4 = (\text{L}_5 - \{y\}) \cup \{z\} \]
\[\text{L}_5 = \text{L}_6 \cup \{d\} \]
\[\text{L}_6 = \text{L}_7 \cup \text{L}_9 \]
\[\text{L}_7 = (\text{L}_8 - \{x\}) \cup \{y, z\} \]
\[\text{L}_8 = \text{L}_9 \]
\[\text{L}_9 = (\text{L}_{10} - \{z\}) \]
\[\text{L}_{10} = \text{L}_1 \]
\[\text{L}_{11} = (\text{L}_{12} - \{z\}) \cup \{x\} \]
\[\text{L}_{12} = \]

\[\text{L}_1 = \{x, y, z, c, d\} \]
\[\text{L}_2 = \{x, y, z, d\} \]
\[\text{L}_3 = \{y, z, d\} \]
\[\text{L}_4 = \{z, d\} \]
\[\text{L}_5 = \{y, z, d\} \]
\[\text{L}_6 = \{y, z\} \]
\[\text{L}_7 = \{y, z\} \]
\[\text{L}_8 = \{\} \]
\[\text{L}_9 = \{\} \]
\[\text{L}_{10} = \{\} \]
\[\text{L}_{11} = \{x\} \]
\[\text{L}_{12} = \{\} \]
Iteration 2

\[L_1 = L_2 \cup \{c\} \]
\[L_2 = L_3 \cup L_{11} \]
\[L_3 = (L_4 - \{x\}) \cup \{y\} \]
\[L_4 = (L_5 - \{y\}) \cup \{z\} \]
\[L_5 = L_6 \cup \{d\} \]
\[L_6 = L_7 \cup L_9 \]
\[L_7 = (L_8 - \{x\}) \cup \{y,z\} \]
\[L_8 = L_9 \]
\[L_9 = (L_{10} - \{z\}) \]
\[L_{10} = L_1 \]
\[L_{11} = (L_{12} - \{z\}) \cup \{x\} \]
\[L_{12} = \]

\[L_1 = \{x,y,z,c,d\} \]
\[L_2 = \{x,y,z,c,d\} \]
\[L_3 = \{y,z,c,d\} \]
\[L_4 = \{x,z,c,d\} \]
\[L_5 = \{x,y,z,c,d\} \]
\[L_6 = \{x,y,z,c,d\} \]
\[L_7 = \{y,z,c,d\} \]
\[L_8 = \{x,y,c,d\} \]
\[L_9 = \{x,y,c,d\} \]
\[L_{10} = \{x,y,z,c,d\} \]
\[L_{11} = \{x\} \]
\[L_{12} = \{} \]
Itaration 3: Fixpoint!

\[L_1 = L_2 \cup \{c\} \]
\[L_2 = L_3 \cup L_{11} \]
\[L_3 = (L_4 - \{x\}) \cup \{y\} \]
\[L_4 = (L_5 - \{y\}) \cup \{z\} \]
\[L_5 = L_6 \cup \{d\} \]
\[L_6 = L_7 \cup L_9 \]
\[L_7 = (L_8 - \{x\}) \cup \{y,z\} \]
\[L_8 = L_9 \]
\[L_9 = (L_{10} - \{z\}) \]
\[L_{10} = L_1 \]
\[L_{11} = (L_{12} - \{z\}) \cup \{x\} \]
\[L_{12} = \]
Generalization

• Live variable analysis and detection of dead code are related
 – An assignment statement \(x = \ldots \) is *dead* if \(x \) is *not live* at the completion of the statement

• Other examples
 – Uninitialized variables
 – Common subexpressions (available expressions)
 – Dynamic type determination

• Data flow analysis framework
 – a common framework for many compiler analyses
 – forward and backward equations (information flow)
 – any path vs all path equations
 • may happen on some execution, must happen on all executions
Applications of dataflow Analysis

1. Global register allocation
 - Solve live variables at all points in a method body
 • Variable t_i is live at program point j if $t_i \in L_j$

 - Construct interference graph $G=(V,E)$
 • $V = \{t_1, \ldots, t_n\}$
 • $(t_i, t_j) \in E$ if $\exists 1 \leq k \leq n \ (t_i \in L_k$ and $t_j \in L_k$)

 - Use graph coloring heuristic algorithm to color graph and assign registers

 - This optimization is performed by most all optimizing compilers and is particularly effective when combined with method inlining
Applications of dataflow Analysis

2. Dynamic class type inference for instance variables
 - What is the domain of values
 - Sequence of program variables with a declared class type
 - \([c_1, \ldots, c_n]\)
 - Possible values for \(c_i\)
 - Suppose \(c_i\) is declared to be of type \(A\) and \(A\) has subclasses \(A_1, \ldots, A_k\)
 - Ordering of values for \(c_i\)
 - Rules
 - The functions are defined in the *forward* direction to track the dynamic type of program variables with a declared class type
 - \([c_1, \ldots, c_n]\) “\(c_i = \text{new } A_j()\)” => \([c_1, \ldots c_{i-1}, A_j, c_{i+1} \ldots c_n]\)
 - \([c_1, \ldots, c_n]\) “\(c_i = c_j\)” => \([c_1, \ldots c_{i-1}, c_j, c_{i+1} \ldots c_n]\)
 - We need to know the dynamic type along *all* paths reaching a program point so
 - \(\text{In}_B = \bigcap_{B' \in \text{pred}(B)} \text{out}_{B'}\)
 - \(\bot \cap c = \bot, \quad c \cap d = \text{if } (c == d) \text{ then } c \text{ else } T, \quad c \cap T = T\)
Example: dynamic type inference in Java

- **Types**
 - A, B with B subclass of A
 - foo() is redefined in B

- **Instance variables**
 - a, b

- **Dataflow values**
 - [dynT(a), dynT(b)]

- **All path calculation**
 - \(L_7 = L_4 \cap L_6 = [A, B] \cap [B, B] = [T, B] \)

```
a = b;
a = new A();
b = new B();
if (e)
a.foo();
b.foo();
```

\(L_1 = [\bot, \bot] \)
\(L_2 = [A, \bot] \)
\(L_3 = [A, B] \)
\(L_4 = [A, B] \)
\(L_5 = [A, B] \)
\(L_6 = [B, B] \)
\(L_7 = [T, B] \)
\(L_8 = [T, B] \)
\(L_9 = [T, B] \)

Dynamic call since dynamic type of “a” can vary
Monomorphic call of foo() in class B