COMP 520 - Compilers

Lecture 19 (April 29, 2021)

Dataflow Analysis

- WA4 short written assignment
 - due Tue May 4

- Final submission for compiler project
 - due Wed May 5

- Final exam
 - Tue May 11, noon – 3PM, via gradescope
Dates and deadlines

• Final project submission PA5 due Wed May 5
 – No new functionality (different tests from PA4, however)
 • get credit for functionality missing previously
 • possibility for extra credit from additional capabilities
 – See PA5 handout on the web

• Written assignment WA4 due Tue May 4 (11.59pm) on gradescope
 – see WA4 assignment on our web page

• Final exam Tue May 11, noon – 3PM on gradescope
 – coverage is comprehensive, somewhat longer than midterm
 • expect 2 hours of work, you have 3 hours to complete the exam
 – access to all slides, handouts, notes, text is permitted
 – NO online search or compilation
 – NO communication
Codegen topic: qualified references

- e.g. a.b.c

```
start id • Intermediate id • final id
```

- classname
- static field
- field
- instance
- (static) field
- (static) field
- this
- (static) field
- <none>
- method
- array
- array.length
Data Flow Analysis

- Topics
 - Determining properties of programs with multiple execution paths
 - Control flow graphs
 - Dataflow equations and their solution
 - Dataflow frameworks
 - Sample applications
Analysis of programs

• Determine properties of programs
 – true for all possible executions
 – irrespective of input values
 – of use in program analysis and code optimization
 – ... but an undecidable problem, in general

• Example
 – “dead code” elimination
 • find unused computations
 – introduced by programmer or compiler
 • delete them from program
 – without changing program meaning
 • which statements are “dead” and can be removed?
 – a statement is “dead” if it performs an assignment that can not influence the value of any variable at termination

Program
(1) $x = y + 1$;
(2) $y = 2 * z$;
(3) $x = y + z$;
(4) $z = 1$;
(5) $z = x$;
Analysis of programs

- Determine properties of programs
 - true for all possible executions
 - irrespective of input values
 - of use in program analysis and code optimization
 - ... but an undecidable problem, in general

- Example
 - “dead code” elimination
 - find unused computations
 - introduced by programmer or compiler
 - delete them from program
 - without changing program meaning
 - which statements are “dead” and can be removed?
 - a statement is “dead” if it performs an assignment that can not influence the value of any variable at termination

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x = y + 1;</td>
</tr>
<tr>
<td>(2) y = 2 * z;</td>
</tr>
<tr>
<td>(3) x = y + z;</td>
</tr>
<tr>
<td>(4) z = 1;</td>
</tr>
<tr>
<td>(5) z = x;</td>
</tr>
</tbody>
</table>
Analysis in presence of control structures

• Add conditional construct to example
 – suppose we don’t know the value of d (e.g. it is an input)
 – is statement (4) dead?
 • there are no possible executions where this value of z could be used
 – is statement (1) dead?
 • in some possible execution (where d == false), its final value of x may be used later

Program

(1) \(x = y + 1; \)
(2) \(y = 2 * z; \)
(3) \(\text{if (d) } x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)
Analysis in presence of control structures

- Add repetitive control construct to example
 - we don’t know the value of c or d or z
 - is statement (2) dead?
 - No, in some execution, the value of x may be used in line 7
 - is statement (5) dead?
 - No, in some executions, value from z = 1 may be used in the next iteration!

Program
(1) while (c) {
(2) x = y + 1;
(3) y = 2 * z;
(4) if (d) x = y + z;
(5) z = 1;
(6) }
(7) z = x;

Program
(1) while (c) {
(2) x = y + 1;
(3) y = 2 * z;
(4) if (d) x = y + z;
(5) z = 1;
(6) }
(7) z = x;
Control flow and optimization

• Optimization requires analysis
 – dead code elimination: need to know if values are possibly used in a program

• Required information
 – not explicit in the program
 – must be computed statically (i.e. at compile time)
 – must consider all potential run-time executions

• Control flow complicates analysis
 – different executions may follow different paths through the program
Control Flow Graphs

- **Control Flow Graph (CFG)**
 - directed graph representation of computation and control flow in a program
 - framework for static analysis of programs

- **Control constructs are reduced to (conditional) jumps**
 - like flow charts

- **Nodes are *basic blocks* of tuple code operations**
 - straight line tuple code
 - no jumps except possibly in the last tuple in the block
 - no tuple in a basic block is the target of any jump program-wide
 - except possibly the first tuple in the block

- **Directed edges represent possible flow of control from one block to others**
 - there may be multiple incoming/outgoing edges for each block
CFG Example

Program

\[
\begin{align*}
 x &= x - 2; \\
 y &= 2 \times z; \\
 \text{if (c)} \{ & \quad x = x + 1; \\
 & \quad y = y + 1; \\
 \} \\
 \text{else} \{ & \quad x = x - 1; \\
 & \quad y = y - 1; \\
 \} \\
 z &= x + y;
\end{align*}
\]

Control Flow Graph

\[
\begin{align*}
 \text{B}_1 & \quad x = x - 2; \\
 & \quad y = 2 \times z; \\
 & \quad \text{if (c)} \\
 \text{B}_2 & \quad x = x + 1; \\
 & \quad y = y + 1; \\
 \text{B}_3 & \quad x = x - 1; \\
 & \quad y = y - 1; \\
 \text{B}_4 & \quad z = x + y;
\end{align*}
\]
Basic Blocks

• Sequence of consecutive statements such that
 – control enters only at the beginning of the sequence
 • control may come from any of the predecessor blocks
 – control leaves only at the end of the sequence
 • control may transfer to any of the successor blocks
 – no branching into or out of the middle of basic blocks!
 • easy to insure in modern “structured” languages

```c
x = x - 2;
y = 2 * z;
if (c)
```
CFG models all potential program executions

- Potential execution
 - path in graph
 - from start block (indegree 0)
 - to end block (outdegree 0)
 - possible paths
 - B₁ B₂ B₄
 - B₁ B₃ B₄
 - some executions may be infeasible
 - why?

```plaintext
B₁
x = x - 2;
y = 2 * z;
if (c)
```

```
T
```

```
F
```

```
B₂
x = x + 1;
y = y + 1;
```

```
B₃
x = x - 1;
y = y - 1;
```

```
B₄
z = x + y;
```
Dataflow Analysis

CFG Example 2

Program
(1) while (c) {
(2) x = y + 1;
(3) y = 2 * z;
(4) if (d) x = y + z;
(5) z = 1;
(6) }
(7) z = x;
Building the CFG

- Construct CFG by traversal of the AST
 - each statement type generates one or more nodes
 - nodes with straight line control flow can be merged

- Level of the CFG
 - high level, e.g. statements with arbitrary expressions
 - low level
 - tuple code

- Low level view is most useful for many optimizations
 - register allocation
 - common subexpression elimination

- What about functions and procedures?
 - a set of CFGs, one for each function/procedure
 - global dataflow analysis: interprocedural data flow analysis
Dataflow Analysis on CFG

- **Live variable analysis**
 - variable v is live at a program point i if there is a path from i to a use of v
 - there is a program point at the start and end of every line of the tuple code
 - what are the live variables at each program point?

- **Method**
 - Let L_i be the set of variables live at program point i
 - Define a rule that relates L_i to L_{i+1}
 - L_i may determine L_{i+1} or vice versa
Derive rules for computing L_i

- **rule for a statement S**

 $L_i = (L_{i+1} - \text{def}[S]) \cup \text{use}[S]$

 v is live at program point i if

 - v is live at i+1 and is not defined by S

 OR

 - v is used in S

- **rule for a basic block B**

 $L_{\text{out}(B)} = \bigcup_{B' \in \text{succ}(B)} L_{\text{in}(B')}$

- **Examples**

 - statement “$y = 2 * z$”

 - $L_4 = (L_5 - \{y\}) \cup \{z\}$

 - basic block

 - $L_6 = L_7 \cup L_9$

 - $x = y + 1;$

 - $y = 2 * z;$

 - if (d)

 - $x = y + z;$

 - if (d)

 - $z = 1;$
Simplify the rules for the given problem

\[L_1 = L_2 \cup \{c\} \]
\[L_2 = L_3 \cup L_{11} \]
\[L_3 = (L_4 \setminus \{x\}) \cup \{y\} \]
\[L_4 = (L_5 \setminus \{y\}) \cup \{z\} \]
\[L_5 = L_6 \cup \{d\} \]
\[L_6 = L_7 \cup L_9 \]
\[L_7 = (L_8 \setminus \{x\}) \cup \{y, z\} \]
\[L_8 = L_9 \]
\[L_9 = (L_{10} \setminus \{z\}) \]
\[L_{10} = L_1 \]
\[L_{11} = (L_{12} \setminus \{z\}) \cup \{x\} \]
\[L_{12} = \]

if (c)
\[x = y + 1; \]
\[y = 2 \times z; \]

if (d)
\[x = y + z; \]
\[z = x; \]
\[z = 1; \]
Solving dataflow equations

• A set of dataflow equations F has a unique solution if
 – the domain D of the equations has a partial order \subseteq with a least element and greatest element
 – all equations in F are monotonic
 • If $X \subseteq Y$ then $F(X) \subseteq F(Y)$ meaning for each $f \in F$ we have $f(X) \subseteq f(Y)$
 – all chains $X_1 \subseteq X_2 \subseteq \ldots$ in D are finite and have a least upper bound

• For live variables problem
 – domain $D =$ all subsets of $\{t_1, \ldots, t_n\}$ where t_1, \ldots, t_n are the program variables
 – the partial order is the subset relation
 – Least element $= \{\}$ $\subseteq \{t_1\} \subseteq \{t_1, t_2\} \subseteq \ldots \subseteq \{t_1, \ldots, t_n\} =$ greatest element
 – check that the equations are monotonic
 • $L_i = (L_{i+1} - \text{def}[S]) \cup \text{use}[S]$ \hspace{1cm} $F(X) = (X - \text{def}[S]) \cup \text{use}[S]$
 • $L_{\text{out}(B)} = \bigcup_{B' \in \text{succ}(B)} L_{\text{in}(B')}$ \hspace{1cm} $F(X_1, \ldots X_k) = X_1 \cup \ldots \cup X_k$
 – D is finite so all chains have a L.U.B.
Solving dataflow equations

• Algorithm
 – Initialize value at each program point to the least element of D
 – Iteratively re-evaluate rules (in any order) until a fixpoint for all program points is reached

• The algorithm must terminate
 – because every chain has a least upper bound
 • but some evaluation orders terminate faster than others

• The solution S satisfies $F(S) = S$ for every rule
 – It is also guaranteed to be the least solution
 • for any other solution S' we can prove $S \subseteq S'$
Solution: Initialization

L₁ = L₂ U {c}
L₂ = L₃ U L₁₁
L₃= (L₄ - {x}) U {y}
L₄ = (L₅ - {y}) U {z}
L₅ = L₆ U {d}
L₆ = L₇ U L₉
L₇ = (L₈ - {x}) U {y,z}
L₈ = L₉
L₉ = (L₁₀ - {z})
L₁₀ = L₁
L₁₁ = (L₁₂ - {z}) U {x}
L₁₂ =

L₁ = {} L₁₀ = {}
L₂ = {} L₁₁ = {}
L₃ = {} L₁₂ = {}
L₄ = {} L₅ = {}
L₅ = {} L₆ = {}
L₆ = {} L₇ = {}
L₇ = {} L₈ = {}
L₈ = {} L₉ = {}
L₉ = {} L₁₀ = {}
L₁₁ = {} L₁₂ = {}
Iteration 1

\[
\begin{align*}
L_1 &= L_2 \cup \{c\} \\
L_2 &= L_3 \cup L_{11} \\
L_3 &= (L_4 - \{x\}) \cup \{y\} \\
L_4 &= (L_5 - \{y\}) \cup \{z\} \\
L_5 &= L_6 \cup \{d\} \\
L_6 &= L_7 \cup L_9 \\
L_7 &= (L_8 - \{x\}) \cup \{y,z\} \\
L_8 &= L_9 \\
L_9 &= (L_{10} - \{z\}) \\
L_{10} &= L_1 \\
L_{11} &= (L_{12} - \{z\}) \cup \{x\} \\
L_{12} &= \{} \\
\end{align*}
\]

\[
\begin{align*}
\text{if (c):} \\
x &= y + 1; \\
y &= 2 \times z; \\
\text{if (d):} \\
x &= y + z; \\
z &= 1; \\
z &= x; \\
\end{align*}
\]

\[
\begin{align*}
L_1 &= \{x, y, z, c, d\} \\
L_2 &= \{x, y, z, d\} \\
L_3 &= \{y, z, d\} \\
L_4 &= \{z, d\} \\
L_5 &= \{y, z, d\} \\
L_6 &= \{y, z\} \\
L_7 &= \{y, z\} \\
L_8 &= \{} \\
L_9 &= \{} \\
L_{10} &= \{} \\
L_{11} &= \{x\} \\
L_{12} &= \{} \\
\end{align*}
\]
Iteration 2

\[
\begin{align*}
L_1 &= L_2 \cup \{c\} \\
L_2 &= L_3 \cup L_{11} \\
L_3 &= (L_4 - \{x\}) \cup \{y\} \\
L_4 &= (L_5 - \{y\}) \cup \{z\} \\
L_5 &= L_6 \cup \{d\} \\
L_6 &= L_7 \cup L_9 \\
L_7 &= (L_8 - \{x\}) \cup \{y,z\} \\
L_8 &= L_9 \\
L_9 &= (L_{10} - \{z\}) \\
L_{10} &= L_1 \\
L_{11} &= (L_{12} - \{z\}) \cup \{x\} \\
L_{12} &= \{} \\
\end{align*}
\]
Itaration 3: Fixpoint!

L_1 = L_2 \cup \{c\}
L_2 = L_3 \cup L_{11}
L_3 = (L_4 - \{x\}) \cup \{y\}
L_4 = (L_5 - \{y\}) \cup \{z\}
L_5 = L_6 \cup \{d\}
L_6 = L_7 \cup L_9
L_7 = (L_8 - \{x\}) \cup \{y, z\}
L_8 = L_9
L_9 = (L_{10} - \{z\})
L_{10} = L_1
L_{11} = (L_{12} - \{z\}) \cup \{x\}
L_{12} =

if (c)
 x = y + 1;
 y = 2 \times z;
 if (d)
 x = y + z;
 T
 F
 z = 1;
 T
 F
 z = x;

L_1 = \{x, y, z, c, d\}
L_2 = \{x, y, z, c, d\}
L_3 = \{y, z, c, d\}
L_4 = \{x, z, c, d\}
L_5 = \{x, y, z, c, d\}
L_6 = \{x, y, z, c, d\}
L_7 = \{y, z, c, d\}
L_8 = \{x, y, c, d\}
L_9 = \{x, y, c, d\}
L_{10} = \{x, y, z, c, d\}
L_{11} = \{x\}
L_{12} = \{\}
Generalization

• Live variable analysis and detection of dead code are related
 – An assignment statement \(x = \ldots \) is dead if \(x \) is not live at the completion of the statement

• Other examples
 – Uninitialized variables
 – Common subexpressions (available expressions)
 – Dynamic type determination

• Data flow analysis framework
 – a common framework for many compiler analyses
 – forward and backward equations (information flow)
 – any path vs all path equations
 • may happen on some execution, must happen on all executions
Applications of dataflow Analysis

1. Global register allocation
 - Solve live variables at all points in a method body
 - Variable t_i is live at program point j if $t_i \in L_j$

 - Construct interference graph $G=(V,E)$
 - $V = \{t_1, \ldots, t_n\}$
 - $(t_i, t_j) \in E$ if $\exists_{1 \leq k \leq n} (t_i \in L_k \text{ and } t_j \in L_k)$

 - Use graph coloring heuristic algorithm to color graph and assign registers

 - This optimization is performed by all optimizing compilers and is particularly effective when combined with method inlining
Applications of dataflow Analysis

2. Dynamic classtype inference for instance variables
 - What is the domain of values
 - Sequence of program variables with a declared class type
 - \([c_1, \ldots, c_n]\)
 - Possible values for \(c_i\)
 - Suppose \(c_i\) is declared to be of type \(A\) and \(A\) has subclasses \(A_1, \ldots, A_k\)
 - Ordering of values for \(c_i\)

 Rules
 - The functions are defined in the \textit{forward} direction to track the dynamic type of program variables with a declared class type
 - \([c_1, \ldots, c_n]\) \(\text{“} c_i = \text{new} \ A_j() \text{”} \Rightarrow [c_1, \ldots, c_{i-1}, A_j, c_{i+1}, \ldots, c_n]\)
 - \([c_1, \ldots, c_n]\) \(\text{“} c_i = c_j \text{”} \Rightarrow [c_1, \ldots, c_{i-1}, c_j, c_{i+1}, \ldots, c_n]\)

 - We need to know the dynamic type along \textit{all} paths reaching a program point so
 - \(\text{ln}_B = \bigcap_{B' \in \text{pred}(B)} \text{out}_{B'}\)
 - \(\bot \cap c = \bot, \quad c \cap d = \text{if} \ (c == d) \ \text{then} \ c \ \text{else} \ T, \quad c \cap T = T\)
Example: dynamic type inference in Java

• Types
 – A, B with B subclass of A
 – foo() is redefined in B

• Instance variables
 – a, b

• Dataflow values
 – \([\text{dynT}(a), \text{dynT}(b)]\]

• All path calculation
 – \(L_7 = L_4 \cap L_6 = [A, B] \cap [B, B] = [T, B]\)

A a = new A();
A b = new B();
if (e)
a.foo();
b.foo();
a = b;
a.foo();
b.foo();

\(L_1 = [\bot, \bot]\)
\(L_2 = [A, \bot]\)
\(L_3 = [A, B]\)
\(L_4 = [A, B]\)
\(L_5 = [A, B]\)
\(L_6 = [B, B]\)
\(L_7 = [T, B]\)
\(L_8 = [T, B]\)
\(L_9 = [T, B]\)

dynamic call since dynamic type of “a” can vary
monomorphic call of foo() in class B