COMP 520 - Compilers

Lecture 20 (April 14, 2016)

Dataflow Analysis

• Pickup WA5 from back of class
 – Due at start of class next Tue 4/19
 – Aidos will review solutions

• PA4 is due this Saturday
 – Submission instructions online
Updates Thu Apr 21

• PA3 grading status
 – pa3 scores will be uploaded to your submission directory in two parts
 • final-pa3-score.txt points for each testcase (~115 max)
 • Supplmental-pa3-score.txt points for error messages (18 max)

• PA4 grading status
 – Initial triage complete – half of the submissions do not pass the simplest possible test
 • You’ve received email if it appears this is due to a systematic problem
 • You may fix the systematic problem and be graded with no penalty
 • You may send me a new version by tomorrow (Fri 4/22 9am) that will be graded with a 20% penalty
 • Testcases will be released with scores by saturday

• Project due anytime through May 1 (official due date Wed Apr 27)
 – Opportunity to get credit for functionality missing previously
 – Extra credit

• Extra credit discussion
 – Static initializers, for loop
Data Flow Analysis

• **Topics**
 – Determining properties of programs with multiple execution paths
 – Control flow graphs
 – Dataflow equations and their solution
 – Dataflow frameworks
 – Sample applications
Analysis of programs

• Determine properties of programs
 – true for all possible executions
 – irrespective of input values
 – of use in code optimization
 – … but an undecidable problem, in general

• Example
 – “dead code” elimination
 • find unused computations
 – introduced by programmer or compiler
 • delete them from program
 – without changing program meaning
 • which statements are “dead” and can be removed?
 – a statement is “dead” if it performs an assignment that can not influence the value of variables on completion

Program

(1) \(x = y + 1; \)
(2) \(y = 2 \times z; \)
(3) \(x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)
Analysis of programs

- Determine properties of programs
 - true for all possible executions
 - irrespective of input values
 - of use in code optimization
 - … but an undecidable problem, in general

- Example
 - “dead code” elimination
 - find unused computations
 - introduced by programmer or compiler
 - delete them from program
 - without changing program meaning
 - which statements are “dead” and can be removed?
 - a statement is “dead” if it performs an assignment that can not influence the value of variables on completion

Program
(1) \(x = y + 1; \)
(2) \(y = 2 \times z; \)
(3) \(x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)
Analysis in presence of control structures

- Add alternative construct to example
 - suppose we don’t know the value of \(d \) (i.e. it is an input)
 - is statement (4) dead?
 - there are no possible executions where this value of \(z \) could be used
 - is statement (1) dead?
 - in some possible execution (where \(d == \) false), its final value of \(x \) may be used later

Program

(1) \(x = y + 1; \)
(2) \(y = 2 * z; \)
(3) \textbf{if} (d) \(x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)

Program

(1) \(x = y + 1; \)
(2) \(y = 2 * z; \)
(3) \textbf{if} (d) \(x = y + z; \)
(4) \(z = 1; \)
(5) \(z = x; \)
Analysis in presence of control structures

• Add iterative control construct to example
 – we don’t know the value of c or d or z
 – is statement (2) dead?
 • No, in some execution, the value of x may be used in line 7
 – is statement (5) dead?
 • No, in some executions, value from z = 1 may be used in the next iteration!

```
Program
(1) while (c) {
(2)    x = y + 1;
(3)    y = 2 * z;
(4)    if (d) x = y + z;
(5)    z = 1;
(6) }  
(7)    z = x;
```

```
Program
(1) while (c) {
(2)    x = y + 1;
(3)    y = 2 * z;
(4)    if (d) x = y + z;
(5)    z = 1;
(6) }  
(7)    z = x;
```
Control flow and optimization

• **Optimization requires analysis**
 – dead code elimination: need to know if values are possibly used in a program

• **Required information**
 – not explicit in the program
 – must be computed statically (i.e. at compile time)
 – must consider all potential run-time executions

• **Control flow complicates analysis**
 – different executions may follow different paths through the program
Control Flow Graphs

• Control Flow Graph (CFG)
 – directed graph representation of computation and control flow in a program
 – framework for static analysis of programs

• Control constructs are reduced to (conditional) jumps
 – like flow charts

• Nodes are *basic blocks* of tuple code operations
 – straight line tuple code
 • no jumps except possibly in the last tuple in the block
 – no tuple in a basic block is the target of any jump program-wide
 • except possibly the first tuple in the block

• Directed edges represent possible flow of control from one block to others
 – there may be multiple incoming/outgoing edges for each block
CFG Example

Program

\[\begin{align*}
 x &= x - 2; \\
 y &= 2 \times z; \\
 \text{if (c) } &\{ \\
 x &= x + 1; \\
 y &= y + 1; \\
 \} \\
 \text{else } &\{ \\
 x &= x - 1; \\
 y &= y - 1; \\
 \} \\
 z &= x + y;
\end{align*} \]

Control Flow Graph

\[\begin{align*}
 B_1: & \ x = x - 2; \\
 \quad \quad & \ y = 2 \times z; \\
 \quad \quad \quad \text{if (c)} \\
 T: & \ x = x + 1; \\
 \quad \quad & \ y = y + 1; \\
 \quad \quad & \ x = x - 1; \\
 \quad \quad & \ y = y - 1; \\
 B_2: & \ z = x + y; \\
 B_3: &
\end{align*} \]
Basic Blocks

• Sequence of consecutive statements such that
 – control enters only at the beginning of the sequence
 • control may come from any of the predecessor blocks
 – control leaves only at the end of the sequence
 • control may transfer to any of the successor blocks
 – no branching into or out of the middle of basic blocks!
 • easy to insure in modern “structured” languages

```
x = x - 2;
y = 2 * z;
if (c)
```
CFG models all potential program executions

- Potential execution
 - path in graph
 - from start block (indegree 0)
 - to end block (outdegree 0)
 - possible paths
 - B₁ B₂ B₄
 - B₁ B₃ B₄
 - some executions may be infeasible
 - why?

```
x = x - 2;
y = 2 * z;
if (c)
x = x + 1;
y = y + 1;
x = x - 1;
y = y - 1;
z = x + y;
x = x + 1;
y = y + 1;
```
Program

(1) while (c) {
(2) \(x = y + 1; \)
(3) \(y = 2 \times z; \)
(4) if (d) \(x = y + z; \)
(5) \(z = 1; \)
(6) }
(7) \(z = x; \)
Building the CFG

- Construct CFG by traversal of the AST
 - each statement type generates one or more nodes
 - nodes with straight line control flow can be merged

- Level of the CFG
 - high level, e.g. statements with arbitrary expressions
 - low level
 - tuple code

- Low level view is most useful for many optimizations
 - register allocation
 - common subexpression elimination

- What about functions and procedures?
 - a set of CFGs
 - global dataflow analysis: interprocedural data flow analysis
Dataflow Analysis on CFG

- **Live variable analysis**
 - Variable v is live at a program point i if there is a path from i to a use of v
 - There is a program point at the start and end of every line of the tuple code
 - What are the live variables at each program point?

- **Method**
 - Let L_i be the set of variables live at program point i
 - Define a rule that relates L_i to L_{i+1}
 - L_i may determine L_{i+1} or vice versa
Derive rules

- rule for a statement S
 \[L_i = (L_{i+1} - \text{def}[S]) \cup \text{use}[S] \]
 v is live at i if
 - v is live at i+1 and is not defined by S
 OR
 - v is used in S

- rule for a basic block B
 \[L_{\text{out}(B)} = L_{\text{in}(B')} \]
 \(B' \in \text{succ}(B) \)

- Examples
 - statement “y = 2 * z”
 \[L_4 = (L_5 - \{y\}) \cup \{z\} \]
 - basic block
 \[L_6 = L_7 \cup L_9 \]
Simplify the rules for the given problem

\[
\begin{align*}
L_1 &= L_2 \cup \{c\} \\
L_2 &= L_3 \cup L_{11} \\
L_3 &= (L_4 - \{x\}) \cup \{y\} \\
L_4 &= (L_5 - \{y\}) \cup \{z\} \\
L_5 &= L_6 \cup \{d\} \\
L_6 &= L_7 \cup L_9 \\
L_7 &= (L_8 - \{x\}) \cup \{y, z\} \\
L_8 &= L_9 \\
L_9 &= (L_{10} - \{z\}) \\
L_{10} &= L_1 \\
L_{11} &= (L_{12} - \{z\}) \cup \{x\} \\
L_{12} &=
\end{align*}
\]
Solving dataflow equations

- A set of dataflow equations F has a unique solution if
 - the domain D of the equations has a partial order \subseteq with a least element and greatest element
 - all equations in F are monotonic
 - If $X \subseteq Y$ then $F(X) \subseteq F(Y)$ meaning for each $f \in F$ we have $f(X) \subseteq f(Y)$
 - all chains $X_1 \subseteq X_2 \subseteq \ldots$ in D are finite and have a least upper bound

- For live variables problem
 - domain $D =$ all subsets of $\{t_1, \ldots, t_n\}$ where t_1, \ldots, t_n are the program variables
 - the partial order is the subset relation
 - Least element $= \{\} \subseteq \{t_1\} \subseteq \{t_1, t_2\} \subseteq \ldots \subseteq \{t_1, \ldots, t_n\} =$ greatest element
 - check that the equations are monotonic
 - $L_i = (L_{i+1} - \text{def}[S]) \cup \text{use}[S]$ \hspace{1cm} $F(X) = (X - \text{def}[S]) \cup \text{use}[S]$
 - $L_{\text{out}(B)} = \bigcup_{B' \in \text{succ}(B)} L_{\text{lin}(B')}$ \hspace{1cm} $F(X_1, \ldots, X_k) = X_1 \cup \ldots \cup X_k$
 - D is finite so all chains have a L.U.B.
Solving dataflow equations

• **Algorithm**
 – Initialize value at each program point to the least element of D
 – Iteratively re-evaluate rules (in any order) until a fixpoint for all program points is reached

• **The algorithm must terminate**
 – because every chain has a least upper bound
 • but some evaluation orders terminate faster than others

• **The solution S satisfies F(S) = S for every rule**
 – It is also guaranteed to be the least solution
 • for any other solution S’ we can prove $S \subseteq S'$
Solution: Initialization

\[
\begin{align*}
L_1 &= L_2 \cup \{c\} \\
L_2 &= L_3 \cup L_{11} \\
L_3 &= (L_4 - \{x\}) \cup \{y\} \\
L_4 &= (L_5 - \{y\}) \cup \{z\} \\
L_5 &= L_6 \cup \{d\} \\
L_6 &= L_7 \cup L_9 \\
L_7 &= (L_8 - \{x\}) \cup \{y, z\} \\
L_8 &= L_9 \\
L_9 &= (L_{10} - \{z\}) \\
L_{10} &= L_1 \\
L_{11} &= (L_{12} - \{z\}) \cup \{x\} \\
L_{12} &=
\end{align*}
\]
Iteration 1

\[L_1 = L_2 \cup \{c\} \]
\[L_2 = L_3 \cup L_{11} \]
\[L_3 = (L_4 - \{x\}) \cup \{y\} \]
\[L_4 = (L_5 - \{y\}) \cup \{z\} \]
\[L_5 = L_6 \cup \{d\} \]
\[L_6 = L_7 \cup L_9 \]
\[L_7 = (L_8 - \{x\}) \cup \{y,z\} \]
\[L_8 = L_9 \]
\[L_9 = (L_{10} - \{z\}) \]
\[L_{10} = L_1 \]
\[L_{11} = (L_{12} - \{z\}) \cup \{x\} \]
\[L_{12} = \]

\[L_1 = \{x,y,z,c,d\} \]
\[L_2 = \{x,y,z,d\} \]
\[L_3 = \{y,z,d\} \]
\[L_4 = \{z,d\} \]
\[L_5 = \{y,z,d\} \]
\[L_6 = \{y,z\} \]
\[L_7 = \{y,z\} \]
\[L_8 = \{\} \]
\[L_9 = \{\} \]
\[L_{10} = \{\} \]
\[L_{11} = \{x\} \]
\[L_{12} = \{\} \]
Iteration 2

$\text{L}_1 = \text{L}_2 \cup \{c\}$
$\text{L}_2 = \text{L}_3 \cup \text{L}_{11}$

$\text{L}_3 = (\text{L}_4 - \{x\}) \cup \{y\}$
$\text{L}_4 = (\text{L}_5 - \{y\}) \cup \{z\}$
$\text{L}_5 = \text{L}_6 \cup \{d\}$
$\text{L}_6 = \text{L}_7 \cup \text{L}_9$

$\text{L}_7 = (\text{L}_8 - \{x\}) \cup \{y,z\}$
$\text{L}_8 = \text{L}_9$
$\text{L}_9 = (\text{L}_{10} - \{z\})$
$\text{L}_{10} = \text{L}_1$

$\text{L}_{11} = (\text{L}_{12} - \{z\}) \cup \{x\}$
$\text{L}_{12} =$

$\text{L}_1 = \{x,y,z,c,d\}$
$\text{L}_2 = \{x,y,z,c,d\}$

$\text{L}_3 = \{y,z,c,d\}$
$\text{L}_4 = \{x,z,c,d\}$
$\text{L}_5 = \{x,y,z,c,d\}$
$\text{L}_6 = \{x,y,z,c,d\}$

$\text{L}_7 = \{y,z,c,d\}$
$\text{L}_8 = \{x,y,c,d\}$
$\text{L}_9 = \{x,y,c,d\}$
$\text{L}_{10} = \{x,y,z,c,d\}$

$\text{L}_{11} = \{x\}$
$\text{L}_{12} = \{}$
Iteration 3: Fixpoint!

\[L_1 = L_2 \cup \{c\} \]
\[L_2 = L_3 \cup L_{11} \]
\[L_3 = (L_4 - \{x\}) \cup \{y\} \]
\[L_4 = (L_5 - \{y\}) \cup \{z\} \]
\[L_5 = L_6 \cup \{d\} \]
\[L_6 = L_7 \cup L_9 \]
\[L_7 = (L_8 - \{x\}) \cup \{y,z\} \]
\[L_8 = L_9 \]
\[L_9 = (L_{10} - \{z\}) \]
\[L_{10} = L_1 \]
\[L_{11} = (L_{12} - \{z\}) \cup \{x\} \]
\[L_{12} = \]

\[L_1 = \{x, y, z, c, d\} \]
\[L_2 = \{x, y, z, c, d\} \]
\[L_3 = \{y, z, c, d\} \]
\[L_4 = \{x, y, z, c, d\} \]
\[L_5 = \{x, y, z, c, d\} \]
\[L_6 = \{x, y, z, c, d\} \]
\[L_7 = \{y, z, c, d\} \]
\[L_8 = \{x, y, c, d\} \]
\[L_9 = \{x, y, c, d\} \]
\[L_{10} = \{x, y, z, c, d\} \]
\[L_{11} = \{x\} \]
\[L_{12} = \{\} \]
Generalization

• Live variable analysis and detection of dead code are related
 – An assignment statement \(x = \ldots \) is dead if \(x \) is not live at the completion of the statement

• Other examples
 – Uninitialized variables
 – Common subexpressions (available expressions)
 – Dynamic type determination

• Data flow analysis framework
 – a common framework for many compiler analyses
 – forward and backward equations (information flow)
 – any path vs all path equations
 • may happen on some execution, must happen on all executions
Applications of dataflow Analysis

1. Global register allocation
 - Solve live variables at all points in a method body
 • Variable t_i is live at program point j if $t_i \in L_j$

 - Construct interference graph $G=(V,E)$
 • $V = \{t_1, \ldots, t_n\}$
 • $(t_i, t_j) \in E$ if $\exists 1 \leq k \leq n$ ($t_i \in L_k$ and $t_j \in L_k$)

 - Use graph coloring heuristic algorithm to color graph and assign registers

 - This optimization is performed by most all optimizing compilers and is particularly effective when combined with method inlining
2. Dynamic class type inference for instance variables
 - What is the domain of values
 - Sequence of program variables with a declared class type
 - \([c_1, \ldots, c_n]\)
 - Possible values for \(c_i\)
 - Suppose \(c_i\) is declared to be of type \(A\) and \(A\) has subclasses \(A_1, \ldots, A_k\)
 - Ordering of values for \(c_i\)
 - Rules
 - The functions are defined in the forward direction to track the dynamic type of program variables with a declared class type
 - \([c_1, \ldots, c_n]\) "\(c_i = \text{new } A_j()\)" => \([c_1, \ldots, c_{i-1}, A_j, c_{i+1}, \ldots, c_n]\)
 - \([c_1, \ldots, c_n]\) "\(c_i = c_j\)" => \([c_1, \ldots, c_{i-1}, c_j, c_{i+1}, \ldots, c_n]\)
 - We need to know the dynamic type along all paths reaching a program point so
 - \(\text{In}_B = \bigcap_{B' \in \text{pred}(B)} \text{out}_{B'}\)
 - \(\bot \cap c = \bot, \quad c \cap d = \text{if } (c == d) \text{ then } c \text{ else } T, \quad c \cap T = T\)
Example: dynamic type inference in Java

- **Types**
 - A, B with B subclass of A
 - foo() is redefined in B

- **Instance variables**
 - a, b

- **Dataflow values**
 - \([\text{dynT}(a), \text{dynT}(b)]\)

- **All path calculation**
 - \(L_7 = L_4 \cap L_6\)
 - \(= [A, B] \cap [B, B]\)
 - \(= [T, B]\)

Code Example

```java
A a = new A();
A b = new B();
if (e)
a.foo();
b.foo();
```

Labels

- \(L_1 = [\bot, \bot]\)
- \(L_2 = [A, \bot]\)
- \(L_3 = [A, B]\)
- \(L_4 = [A, B]\)
- \(L_5 = [A, B]\)
- \(L_6 = [B, B]\)
- \(L_7 = [T, B]\)
- \(L_8 = [T, B]\)
- \(L_9 = [T, B]\)

Annotations

- Dynamic call since dynamic type of "a" can vary
- Monomorphic call of foo() in class B