COMP 520: Compilers

Sample Solutions - Written Assignment 2

(Note: the rules applied in these solutions can be found in lecture 4, slides 6-19)

1. For the following grammars, find the Nullable, Starters, and Followers sets for the nonterminals and justify whether or not the grammar meets the $\mathrm{LL}(1)$ condition.

Grammar (a) $\quad S::=A B C$

$$
\begin{aligned}
& \mathrm{A}::=\mathbf{a} \text { B | } \varepsilon \\
& \mathrm{B}::=\mathbf{b} \mid \varepsilon
\end{aligned}
$$

First determine the grammar properties by finding the fixpoint of the relevant equations.

1. Nullable
$N_{0}(S)=N_{0}(A)=N_{0}(B)=$ false

$$
\begin{aligned}
& N_{i+1}(S)=N_{i}(A) \wedge N_{i}(B) \wedge N(c)=N_{i}(A) \wedge N_{i}(B) \wedge \text { false }=\text { false } \\
& N_{i+1}(A)=\left(N(a) \wedge N_{i}(B)\right) \vee N(\varepsilon)=\left(\text { false } \wedge N_{i}(B)\right) \vee \text { true }=\text { true } \\
& N_{i+1}(B)=N(b) \vee N(\varepsilon)=\text { false } \vee \text { true }=\text { true }
\end{aligned}
$$

No iteration is needed since the equations are at the fixpoint solution
2. Starters
$S T_{0}(S)=\{ \}, \quad S T_{0}(A)=S T_{0}(B)=\{\varepsilon\}$
$S T_{i+1}(S)=S T_{i}(A) \oplus S T_{i}(B) \oplus S T(c)=\left(S T_{i}(A)-\{\varepsilon\}\right) \cup\left(S T_{i}(B)-\{\varepsilon\}\right) \cup\{c\}$
$S T_{i+1}(A)=\left(S T(a) \oplus S T_{i}(B)\right) \cup \operatorname{ST}(\varepsilon)=\{\mathrm{a}\} \cup\{\varepsilon\}=\{a, \varepsilon\}$ (fixpoint)
$S T_{i+1}(B)=S T(b) \cup S T(\varepsilon)=\{b\} \cup\{\varepsilon\}=\{b, \varepsilon\}$ (fixpoint)

Iterate: $S T_{1}(S)=\{c\}, S T_{2}(S)=\{a, b, c\}$ (fixpoint)
3. Followers
$F L_{0}(S)=\{ \} \quad$ S not on RHS of any rule
$F L_{0}(A)=S T(B c)-\{\varepsilon\}=(\{b, \varepsilon\} \oplus S T(c))=\{b, c\} \quad$ A on RHS rule 1
$F L_{0}(B)=(S T(c) \cup S T(\varepsilon))-\{\varepsilon\}=\{c\} \quad B$ on RHS rule 1,2
Since A ::= a B in rule 2 is of the form $A::=\mathbf{a} B \gamma$, where γ is nullable, we must add the followers of A into the followers of B :
$F L_{i+1}(B)=F L_{i}(B) \cup F L_{i}(A)=\{c\} \cup\{b, c\}=\{b, c\}$
As $F L_{1}(B)$ is fully defined, no further iteration is needed and $F L(B)=F L_{1}(B)=\{b, c\}$.
Finally we need to add ε to $F L(N)$ for any nonterminal N that can appear as the last symbol in a derivation starting from S. As this is an augmented grammar in which (a) the start symbol S does not appear on the RHS of any rule and (b) the rule for S ends in a terminal (c in this case), we can be sure only $F L(S)$ includes $\{\varepsilon\}$. So $F L(S)=\{\varepsilon\}$.

In summary we have

	Nullable	Starters	Followers
S	F	$\{a, b, c\}$	$\{\varepsilon\}$
A	T	$\{a, \varepsilon\}$	$\{b, c\}$
B	T	$\{b, \varepsilon\}$	$\{b, c\}$

To determine whether the $\operatorname{LL}(1)$ condition is met for this grammar, inspect all choice points to determine if they define the predict function unambiguously. There are only two choice points: the alternatives in the second and third rules.

- $\mathrm{A}::=\mathrm{aB} \mid \varepsilon$

Predict $(a B)=$ Starters $(a B) \oplus$ Followers $(A)=\{a\}$
Predict $(\varepsilon)=\operatorname{Starters}(\varepsilon) \oplus$ Followers $(A)=\{b, c\}$
The predict sets are disjoint, so the $\operatorname{LL}(1)$ condition is met.

- $B::=b \mid \varepsilon$

Predict $(b)=$ Starters $(b) \oplus$ Followers $(B)=\{b\}$
Predict $(\varepsilon)=\operatorname{Starters}(\varepsilon) \oplus$ Followers $(B)=\{b, c\}$
The predict sets are not disjoint, so the $\operatorname{LL}(1)$ condition is not met.
Since the $\operatorname{LL}(1)$ condition is not met by at least one choice point in the grammar, this grammar is not $\operatorname{LL}(1)$.

Grammar (b) $\quad S::=A \$$
$A::=\mathbf{a} A x \mid B$
$B::=\mathbf{b} B \times D$
$D::=d D x \mid f$

First determine the grammar properties by finding the fixpoint of the relevant equations.

1. Nullable
$N_{0}(S)=N_{0}(A)=N_{0}(B)=N_{0}(D)=$ false
$N_{i+1}(S)=N_{i}(A) \wedge \mathrm{N}(\$)=$ false
$N_{i+1}(A)=N(\mathbf{a} A \mathbf{x}) \vee N_{i}(B)=N_{i}(B)$
$N_{i+1}(B)=N(\mathbf{b} B \mathbf{x}) \vee N_{i}(D)=N_{i}(D)$
$N_{i+1}(D)=N(\mathbf{d} D \mathbf{x}) \vee N(\mathbf{f})=$ false
After two iterations we have a fixpoint $N(S)=N(A)=N(B)=N(D)=$ false
2. Starters
$S T_{0}(S)=S T_{0}(A)=S T_{0}(B)=S T_{0}(D)=\{ \}$ since no nullable NTs in this grammar
$S T_{i+1}(S)=S T_{i}(A) \oplus S T(\$)=S T_{i}(A)$
$S T_{i+1}(A)=S T(\mathbf{a} A \mathbf{x}) \cup S T_{i}(B)=\{\mathbf{a}\} \cup S T_{i}(B)$
$S T_{i+1}(B)=S T(\mathbf{b} B \mathbf{x}) \cup S T_{i}(D)=\{\mathbf{b}\} \cup S T_{i}(D)$
$S T_{i+1}(D)=S T(\mathbf{d} D \mathbf{x}) \cup S T(\mathbf{f})=\{\mathbf{d}, \mathbf{f}\}$

Iterate to fixpoint:
$S T(S)=\{a, b, d, f\}, \quad S T(A)=\{a, b, d, f\}, \quad S T(B)=\{b, d, f\}, \quad S T(D)=\{d, f\}$
3. Followers
$F L_{0}(S)=\{ \} \quad$ S not on RHS of any rule
$F L_{0}(A)=\{\mathbf{x}, \$\} \quad$ A on RHS rule 2 and rule 1
$F L_{0}(B)=\{\mathbf{x}\} \quad$ B on RHS rule 3, and at end of rule 2 RHS
$F L_{0}(D)=\{\mathbf{x}\} \quad D$ on RHS rule4 and at end of rule 3 RHS
In this grammar B and D occur at the RHS of a rules 2 and 3, respectively. Thus we have to add the follow of their respective LHS, i.e.
$F L_{i+1}(B)=F L_{i}(B) \cup F L_{i}(A)$
$F L_{i+1}(D)=F L_{i}(D) \cup F L_{i}(B)$
and iterate to fixpoint. This yields $F L(B)=F L(D)=\{\mathbf{x}, \$\}$.
Finally we need to add ε to $F L(N)$ for any nonterminal N that can appear as the last symbol in a derivation starting from S. As this is an augmented grammar, we can be sure only $F L(S)$ includes $\{\varepsilon\}$. So $F L(S)=\{\varepsilon\}$.

In summary we have

	Nullable	Starters	Followers
S	F	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{f}\}$	$\{\varepsilon\}$
A	F	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{f}\}$	$\{\mathbf{x}, \$\}$
B	F	$\{\mathbf{b}, \mathbf{d}, \mathbf{f}\}$	$\{\mathbf{x}, \$\}$
D	F	$\{\mathbf{d}, \mathbf{f}\}$	$\{\mathbf{x}, \$\}$

To determine whether the $\operatorname{LL}(1)$ condition is met for this grammar, inspect all choice points to determine if they define the predict function unambiguously. There are three choice points: the

- $A::=\mathbf{a} A x \mid B$

Predict $(\mathbf{a} A \mathbf{x})=\{\mathrm{a}\}$
$\operatorname{Predict}(B)=\operatorname{ST}(B)=\{\mathbf{b}, \mathbf{d}, \mathbf{f}\}$
The predict sets are disjoint, so the $\operatorname{LL}(1)$ condition is met.

- $B::=\mathbf{b} \mathbf{B} \mid D$
$\operatorname{Predict}(\mathbf{b} B \mathbf{x})=\{\mathbf{b}\}$
$\operatorname{Predict}(D)=\operatorname{Starters}(D)=\{\mathbf{d}, \mathbf{f}\}$
The predict sets are disjoint, so the $\operatorname{LL}(1)$ condition is met.
- $D::=\mathbf{d} \mathbf{D} \mid \mathbf{f}$
$\operatorname{Predict}(\mathbf{d} \mathbf{x})=\{\mathbf{d}\}$
$\operatorname{Predict}(\mathbf{f})=\{\mathbf{f}\}$
The predict sets are disjoint, so the $\operatorname{LL}(1)$ condition is met.

Since the $\operatorname{LL}(1)$ condition is met at all choice points in the grammar, this grammar is $\operatorname{LL}(1)$.

Grammar (c) $\quad S::=A$ c
 $A::=\mathbf{a} A^{*} \mathbf{b} \mid \mathbf{b}$

The Nullable and Starters functions are straightforward to compute. In this grammar A appears on the RHS in rule 1 where it is followed by c, and it appears on the RHS in rule 2 where it is either followed by b or by $S T(A)$ (since A* can yield consecutive occurrences of A). So we have
$F L_{0}(S)=\{ \}$
$F L_{0}(A)=\left(\{c\} \cup S T\left(A^{*} b\right)\right)-\{\varepsilon\}=\{c\} \cup\{a, b\} \cup\{b\}=\{a, b, c\}$
Since every occurrence of A in a rule is followed by a terminal, there are no other followers to include. Since this grammar is in augmented form, $F L(S)=\{\varepsilon\}$. In summary:

	Nullable	Starters	Followers
S	F	$\{a, b\}$	$\{\varepsilon\}$
A	F	$\{a, b\}$	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

LL(1) Condition: The first rule has no choice points. There are two choice points in the second rule:

- $\quad \mathbf{a} A^{*} \mathbf{b} \mid \mathbf{b}$
$\operatorname{Predict}\left(\mathbf{a} \mathrm{A}^{*} \mathbf{b}\right)=\{\mathbf{a}\}$ and $\operatorname{Predict}(\mathbf{b})=\{\mathbf{b}\}$
The predict sets are disjoint, so the $\operatorname{LL}(1)$ condition is met at this choice point.
- $A^{*} \mathbf{b}$

First we need to check that A is not nullable - this is the case from the table above. Second we need to be able to predict repetition or termination of the Kleene star. For repetition: $\operatorname{Predict}(A)=\operatorname{Starters}(A)=\{a, b\}$. To predict end of the repetition: Predict $(b)=\{b\}$. The predict sets are not disjoint, so the $\mathrm{LL}(1)$ condition is not met at this choice point.

Since the $\operatorname{LL}(1)$ condition is not met by at least one choice point in the grammar, this grammar is not LL(1).

