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COMP 520:  Compilers 
Sample Solutions – Written Assignment 3 

 
(a) Show a stratified LL(1) grammar for arithmetic expressions over the three terminals {num, +, -} so that  “–” can 
be used both as a binary subtraction operator and as a unary arithmetic negation operator.  The grammar should 
yield a concrete syntax tree reflecting that unary negation is right-associative and has higher precedence than 
addition and subtraction.  Addition and subtraction have the same precedence and are left-associative.  For 
example, the expression 2 – 3 + -4 - - -5 should have a concrete syntax tree that reflects the ordering 
(((2-3)+(-4))-(-(-5))). 

 
Soln (a):  A stratified grammar reflecting the desired precedence and associativity 
 
 S ::= E $   augment the grammar for parseability 

E ::= E ( + | - ) U | U +,- binary opns:  left associative, lower precedence 
U ::= - U | T  - unary opn: right associative, higher precedence 
T ::=  num    leaves of the expression trees – numbers, highest precedence 

 
Place the grammar into LL(1) form by removing the left recursion in the second rule. 
 

 S ::= E $   (1) 
E ::= U  ( ( + | - ) U )* (2) 
U ::= - U | T  (3) 
T ::=  num   (4) 

 
Rules (2) and (3) are the only rules with choices.  Rule (3) trivially meets the LL(1) condition.  In rule (2) the Kleene 
star choice point can be resolved with a single terminal lookahead.  Since  

Predict( ( + | - ) U ) = {+,-}   

is disjoint from  

Predict(ε) = Follow(E) = {$} 

So our grammar satisfies the LL(1) condition and is suitable for recursive descent parsing. 
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(b) Describe how you would modify the simpleAST example on the class website to build Expr ASTs using BinExpr, 
UnaryExpr and NumExpr nodes?  Describe your extensions to the scanner, parser, AbstractSyntaxTrees, and 
visitors.  It’s not necessary to write out complete code, but if you are interested you can extend the simpleAST 
example to try it out. 

 
Soln (b):  (refer to simpleAST example (#2 on web page) to understand the additions)   

To scan the “-“  terminal we need to: 
• Add a MINUS token to the TokenKind enum in the scanner. 
• Extend the scanner to return a MINUS token when encountered. 

To build an AST with unary expressions, we need to add to AbstractSyntaxTrees package:  
public class UnaryExpr extends Expr { 
   public Token oper; 
   public Expr right; 
} 
Also add a constructor for this class. 

To traverse ASTs we need to add to interface Visitor<Inh,Syn> the method 
public Syn visitUnaryExpr(UnaryExpr expr, Inh arg); 
and add a corresponding visit method in the UnaryExpr class. 

To build the AST we need to modify the Parser class  
• Extend the parseE() method to use whichever token (+ or -) is encountered in constructing a BinExpr 
• Add a parseU() method  

Expr parseU() {  
   if (currentToken.kind == TokenKind.MINUS) { 
      Token negation = currentToken; 
      acceptIt(); 
      return new UnaryExpr(negation, parseU()); 
   } 
   else 
      return parseT(); 
} 

To evaluate the AST 
• Extend the DisplayAST visitor in the TraverseAST package to include. 

public String visitUnaryExpr(UnaryExpr e, Object arg){ 
   return "(" + "-" + e.right.visit(this, null) + ")"; 
} 
(display of”-“in a BinaryExpr is automatically correct as it uses the operator spelling) 

• Extend the Eval visitor in the TraverseAST package to include unary negation 
public Integer visitUnaryExpr(UnaryExpr e, Object arg){ 
    // evaluate right subtree 
    Integer rval = e.right.visit(this, null); 
    return –rval; 
} 

• Also add the subtraction case in evaluation of a BinaryExpr 
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(c)  Draw the AST for  2 – 3 + -4 - - -5 using BinExpr, UnaryExpr and NumExpr nodes and show the 
spelling of the tokens in the AST. 
 
Soln (c).  The AST is shown below.   It corresponds to (((2 - 3) + (-4)) - (-(-5))) 
 

 
 

BinExpr

BinExpr

Binexpr

NumExpr

num "2"

oper "-" NumExpr

num"3"

oper "+" UnaryExpr

oper "-" NumExpr

num "4"

oper "-" UnaryExpr

oper "-" UnaryExpr

oper "-" NumExpr

num "5"
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