
 COMP 520 SP 22 WA3 Sample Solutions

COMP 520 Feb 22, 2022

COMP 520: Compilers
Sample Solutions – Written Assignment 3

(a) Show a stratified LL(1) grammar for arithmetic expressions over the three terminals {num, +, -} so that “–” can
be used both as a binary subtraction operator and as a unary arithmetic negation operator. The grammar should
yield a concrete syntax tree reflecting that unary negation is right-associative and has higher precedence than
addition and subtraction. Addition and subtraction have the same precedence and are left-associative. For
example, the expression 2 – 3 + -4 - - -5 should have a concrete syntax tree that reflects the ordering
(((2-3)+(-4))-(-(-5))).

Soln (a): A stratified grammar reflecting the desired precedence and associativity

 S ::= E $ augment the grammar for parseability

E ::= E (+ | -) U | U +,- binary opns: left associative, lower precedence
U ::= - U | T - unary opn: right associative, higher precedence
T ::= num leaves of the expression trees – numbers, highest precedence

Place the grammar into LL(1) form by removing the left recursion in the second rule.

 S ::= E $ (1)
E ::= U ((+ | -) U)* (2)
U ::= - U | T (3)
T ::= num (4)

Rules (2) and (3) are the only rules with choices. Rule (3) trivially meets the LL(1) condition. In rule (2) the Kleene
star choice point can be resolved with a single terminal lookahead. Since

Predict((+ | -) U) = {+,-}

is disjoint from

Predict(ε) = Follow(E) = {$}

So our grammar satisfies the LL(1) condition and is suitable for recursive descent parsing.

 COMP 520 SP 22 WA3 Sample Solutions

COMP 520 Feb 22, 2022

(b) Describe how you would modify the simpleAST example on the class website to build Expr ASTs using BinExpr,
UnaryExpr and NumExpr nodes? Describe your extensions to the scanner, parser, AbstractSyntaxTrees, and
visitors. It’s not necessary to write out complete code, but if you are interested you can extend the simpleAST
example to try it out.

Soln (b): (refer to simpleAST example (#2 on web page) to understand the additions)

To scan the “-“ terminal we need to:
• Add a MINUS token to the TokenKind enum in the scanner.
• Extend the scanner to return a MINUS token when encountered.

To build an AST with unary expressions, we need to add to AbstractSyntaxTrees package:
public class UnaryExpr extends Expr {
 public Token oper;
 public Expr right;
}
Also add a constructor for this class.

To traverse ASTs we need to add to interface Visitor<Inh,Syn> the method
public Syn visitUnaryExpr(UnaryExpr expr, Inh arg);
and add a corresponding visit method in the UnaryExpr class.

To build the AST we need to modify the Parser class
• Extend the parseE() method to use whichever token (+ or -) is encountered in constructing a BinExpr
• Add a parseU() method

Expr parseU() {
 if (currentToken.kind == TokenKind.MINUS) {
 Token negation = currentToken;
 acceptIt();
 return new UnaryExpr(negation, parseU());
 }
 else
 return parseT();
}

To evaluate the AST
• Extend the DisplayAST visitor in the TraverseAST package to include.

public String visitUnaryExpr(UnaryExpr e, Object arg){
 return "(" + "-" + e.right.visit(this, null) + ")";
}
(display of”-“in a BinaryExpr is automatically correct as it uses the operator spelling)

• Extend the Eval visitor in the TraverseAST package to include unary negation
public Integer visitUnaryExpr(UnaryExpr e, Object arg){
 // evaluate right subtree
 Integer rval = e.right.visit(this, null);
 return –rval;
}

• Also add the subtraction case in evaluation of a BinaryExpr

 COMP 520 SP 22 WA3 Sample Solutions

COMP 520 Feb 22, 2022

(c) Draw the AST for 2 – 3 + -4 - - -5 using BinExpr, UnaryExpr and NumExpr nodes and show the
spelling of the tokens in the AST.

Soln (c). The AST is shown below. It corresponds to (((2 - 3) + (-4)) - (-(-5)))

BinExpr

BinExpr

Binexpr

NumExpr

num "2"

oper "-" NumExpr

num"3"

oper "+" UnaryExpr

oper "-" NumExpr

num "4"

oper "-" UnaryExpr

oper "-" UnaryExpr

oper "-" NumExpr

num "5"

	COMP 520: Compilers
	Sample Solutions – Written Assignment 3

