COMP 555 Bioalgorithms

Fall 2014

Lecture 3:
Algorithms and Complexity

Study Chapter 2.1-2.8

. Algorlthms

— Correctness
— Complexity

* Some algorithm design strategies
— Exhaustive

— Greedy
— Recursion

* Asymptotic complexity measures

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 2

What is an algor1thm7

. An algorlthm is a sequence of mstructlons that
one must perform in order to solve a well-
formulated problem.

input

Problem: Complexity

Algorithm: Correctness
Complexity

output

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 3

Problem US Com Change

o Input ¢ Example
— an amount of money 2 cent
0 <M <100 in cents e
* Output: o,

. . -p
— M cents in US coins Two quarters g

using the minimal
number of coins) Two dimes

Two pennies

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 4

Algonthm 1 Greedy strategy

72 cents . Algorithm
l description 9 <= Lr / 25J

r<—r—-25-q
d<«[r/10]
r<-r-10-d
n<«|r/5]

Use large denominations F<r—5.1

as long as possible

Two quarters, 22 cents left pet
:;, :;, Two dimes, 2 cents left Oo, _‘

Two pennies generalize

1t?
8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 5

Algorlthm 2: Exhaustive strategy

. Enumerate all Combmatlons of coins. Record the
combination totaling to M with fewest coins

— All is impossible. Limit the multiplicity of each coin!
— First try (80,000 combinations)

Quarter Dime Nickel Penny
multiplicity 0..3 0..9 0..19 0..99

— Better (200 combinations)

coin Quarter Dime Nickel Penny
mult1p11c1ty 0..3 0..4 0..1 0..4

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 6

Correctness

. An algorlthm is correct only if 1t produces
correct result for all input instances.

— If the algorithm gives an incorrect answer for one or
more input instances, it is an incorrect algorithm.

* US coin change problem

— It is easy to show that the exhaustive algorithm is
correct

— The greedy algorithm is correct but we didn’t really
show it

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 7

Observations

. leen a problem there may be many correct
algorithms.

— They give identical outputs for the same inputs
— They give the expected outputs for any valid input

* The costs to perform different algorithms may
be different.

* US coin change problem
— The exhaustive algorithm checks 200 combinations

— The greedy algorithm performs just a few arithmetic
operations

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 8

Change Problem generahzatmn

o Input

— an amount of money M

To show an algorithm was
incorrect we showed an input
for which it produced the
wrong result. How do
we show that an

algorithm is correct?

— an array of denominations c = (¢, ¢, ...,C,)
in order of decreasing value Yy

* Qutput: the smallest number of coins

Y Incorrect

i I

T algorithm!

M = 40 fork < 1tod
- — i < Lr/c] — 3| The correct answer
c=(25, 20, 10, 5, 1) n<n+i, [should be 2. 7

r<r—ic, C
return n C?O o

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 9

How to Compare Algor1thms7

. Complex1ty — the cost of an algonthm can be
measured in either time and space

— Correct algorithms may have different complexities.

* How do we assign “cost” for time?

— Roughly proportional to number of instructions
performed by computer

— Exact cost is difficult to determine and not very useful
* Varies with computer, particular input, etc.

* How to analyze an algorithm’s complexity

— Depends on algorithm design

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 10

Recurswe Algorlthms

. Recursmn is an algonthm des1gn techmque for
solving problems in terms of simpler

subproblems
— The simplest versions, called base cases, are merely
declared.
Recursive definition: factorial(n) = nxfactorial(n —1)
Base case: factorial(l) =1

— Easy to analyze

* Thinking recursively...

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 11

Towers of Hanoi

. There are three pegs and anumber of dlsks with
decreasing radii (smaller ones on top of larger
ones) stacked on Peg 1.

* Goal: move all disks to Peg 3.

e Rules:

— When a disk is moved from one
peg it must be placed on another
Peg-

— Only one disk may be moved at a

time, and it must be the top disk
on a tower.

— A larger disk may never be placed
upon a smaller disk.

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 12

A smgle dlsk tower

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 13

A smgle dlsk tower

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 14

A two disk tower

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 15

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 16

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 17

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 18

A three dlsk tower

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 19

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 20

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 21

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 22

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 23

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 24

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 25

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 26

S1mp11fymg the algonthm for 3 dlsks

1 2 3

* Step 1. Move the top 2 disks from 1 to 2 using 3 as
intermediate

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 27

Slmphfymg the algorlthm for 3 dlsks

1 2 3

* Step 2. Move the remaining disk from 1 to 3

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 28

S1mp11fymg the algorlthm for 3 dlsks

1 2 3

* Step 3. Move 2 disks from 2 to 3 using 1 as intermediate

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 29

S1mp11fy1ng the algorlthm for 3 dlsks

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 30

The problem for N dlsks becomes

o A base case of a one- d1sl< move.
* A recursive step for moving n-1 disks.

* To move n disks from Peg 1 to Peg 3, we need to
— Move (n-1) disks from Peg 1 to Peg 2
— Move the ntt disk from Peg 1 to Peg 3 \‘.

— Move (n-1) disks from Peg 2 to Peg 3 ™ }’Kz move
— The number of disk moves is stack twice
T() =1
T(n)=2T(n-1)+1= 2" -1 Exponential algorithm

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 31

Towers of Hanoi

. If you play Han01Towers W1th 1t takes

— 1disk ... 1 move

— 2 disks ... 3 moves

— 3 disks ... 7 moves

— 4 disks ... 15 moves

— 5 disks ... 31 moves

— 20 disks ... 1,048,575 moves

— 32 disks ... 4,294,967,295 moves

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 32

Sortmg

. A Very common problem is to arrange data mto
either ascending or descending order
— Viewing, printing

— Faster to search, find min/max
compute median/mode, etc.

 Lots of sorting algorithms

— From the simple to very complex
— Some optimized for certain

situations (lots of duplicates,
almost sorted, etc.)

Lyt ———

NS

i
\

|
\

'.-l'
)

L

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 33

Find the smallest element and
swap it with the first:

Find the next smallest element
and swap it with the second:

Do the same for the third element:

And the fourth:

Finally, the fifth:

Completely sorted:

3 [12]27 18|11} 7

\///\

3|7 |27]18f 1112
7

3|7]u]18]27]12

7

3|7]1u]12]27]18

%

3|7 |1a]|12]18]27

8/26/2014 Comp 555 Bioalgorithms (Fall 2014)

“In-place” sort

34

Selectlon sort

def selectionSortRecursive(a,first,last):

if (first < last):
index = indexOfMin(a,first,last)
temp = afindex] (n -1) swaps
a[index] = a[first]
a[first] = temp
a = selectionSortRecursive(a,first+1,last)

return a Quadratic in time

def indexOfMin(arr,first,last):

n(n-1) index = first
—1 comparisons for k in xrange(index+1,last):
2 if (arr[k] < arr[index]):

iIndex = k
return index

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 35

Year 1202: Leonardo Fibonacci

. I—Ie asked the followmg question:
— How many pairs of rabbits are
produced from a single pair in n
months if every month each pair of

rabbits more than 1 month old
produces a new pair?

— Here we assume that each pair born has one male and
one female and breeds indefinitely

— The initial pair at month 0 are newborns

— Let f(n) be the number of rabbit pairs present at the
beginning of month n

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 36

8/26/2014

Comp 555 Bioalgorithms (Fall 2014)

rabbit pairs
1

-

37

F1bonacc1 Number

. Clearly, we have

— f(0) =1 (the original pair, as newborns)

— f(1) =1 (still the original pair because newborns need
to mature a month before they reproduce)

— f(n) = f(n-1) + f(n-2) in month n we have
* the f(n-1) rabbit pairs present in the previous month, and

* newborns from the f(n-2) rabbit pairs present 2 months
earlier

-£1,1,2,3,5,8,13,21, 34,55, ...
— The solution for this recurrence is (1 > 0):

f (n):jg[(lzﬁj _(yfj]

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 38

Recursive
Algorithm

Exponential time!

. 8

def fibonacciRecursive(n):

if (n <= 1):
return 1
else:

a = fibonacciRecursive(n-1)
b = fibonacciRecursive(n-2)
return a+b

8/26/2014

Comp 555 Bioalgorithms (Fall 2014) 39

Linear time! def fibonaccilterative(n):

fo, f1 =1, 1

for i in xrange(@,n):
fo, f1 = f1, fo + f1

return {0

lterative | ™~__
Algorithm .—.

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 40

Orders of magmtude

10"
* 1072 Number of students in computer science department

* 1073 Number of students in the college of art and science
* 10”4 Number of students enrolled at UNC

* 10710 Number of stars in the galaxy
* 10720 Total number of all stars in the universe
e 10780 Total number of particles in the universe

e 10"MO00 << Number of moves needed for 400 disks in the Towers
of Hanoi puzzle

* Towers of Hanoi puzzle is computable but it is NOT feasible.

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 41

Is there a “real” difference?

. Growth of functlons

on*3} ont2) Q(nlogn})
200 | | £
0(2*n})
n 1 Fia n nlgn n? 15 o
180 +
1 1 | 0.00 1 0 1 1 2
160 1
10 1 | 332 10 33 100 1,000 1024
140 ¢ 100 1 | 6.64 100 664 10,000 | 1,000,000 | 1.2 x 10%0
9 301
120 1 1,000,000 107 [1.1xX 10
100 1 O(n)
a0 +
B0 +
40 4
20 1
O{logn)
l:l rTrrrrrrrrrrrrrrorrrd D{1}

0 3 6 9 121515 21 2427 3033 3633 42 4545 51 54 57 60 63 66 6972 7578 81 84 87 90 93 95 99
8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 42

Asymptotlc Nota‘uon

Order of growth is the mterestmg measure:

— Highest-order term is what counts

* As the input size grows larger it is the high order term that
dominates

* O notation: ®(n?) = “this function grows
similarly to n?”.

* Big-O notation: O (n?) = “this function grows no
faster than n?”.

— Describes an upper bound.

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 43

B1g-O Notat10n

f(n)=0(g(n)): there exist posmve constants ¢ and n, such that
0< f(n)<cg(n)foralln=>n,
* What does it mean?
— If f(n) = O(n?), then:

* f(n) can be larger than n? sometimes, but...

* We can choose some constant c and some value 7, such that
for every value of n larger than n,, : f(n) < cn?

* That is, for values larger than n,, f(n) is never more than a
constant multiplier greater than n?

* Or, in other words, f(n) does not grow more than a constant
factor faster than n2.

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 44

Visualization of O(g(n))

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 45

B1g-O Notatmn

2n? =O(n2)

1,000,000n +150,000 = O(n?)
n° +1,000,000n + 20 = O(n?)
3n+4 = O(nz)

2n3 +2 2 0(n?)

n%1 « O(nz)

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 46

Blg-O Notatmn

» Prove that: 20n? +2n+5 = O(nz)
* Letc=2land n,=4
 21n?>>20n*+2n+>5 foralln >4
n*>2n+5 foralln >4
TRUE

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 47

@—Notation

. Blg-O is not a tlght upper bound In other
words n = O(n?)

* O provides a tight bound

f (n)=0(g(n)): there exist positive constants c,, ¢,, and n, such that
0<cg(n)< f(n)<c,g(n)foralln=>n,

* n=0(n?) #0(n?
e 200n%= O(n?) = B(n?)
e n%° # O(n?) # O(n?)

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 48

Vlsuahzatmn of @(g())

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 49

Some Other Asymptotic Functions

. L1tt1e 0 - A non-tlght asymptotlc upper bound

— 711 = O(le), n = O(nz) The difference between “big-O” and “little-0” is
subtle. For f(n) = O(g(n)) the bound 0 < f(n) < c g(n),

— 3n2 £ O(le) 312 = O(le) n > n, holds for any c. For f(n) = o(g(n)) the bound
! 0 <f(n) <cg(n), n > ny holds for all c.
e Q- Alower bound

f (n)=Q(g(n)): there exist positive constants ¢ and n, such that
f(n)>cg(n)foralln>n,

— n?=Q(n)
* ® - A non-tight asymptotic lower bound

* f(n) = 0(n) < f(n) = O(n) and f(n) = Q(n)

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 50

Visualization of Asympto’uc Growth

O(f(n))

O(f(n))
f(n)

Q(t(n))

o(f(n))

8/26/2014 0 Comp 555 Bioalgorithms (Fall 2014) 51

Analogy to Ar1thmet1c Operators

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 52

Measures of complexﬂy

° Best case

— Super-fast in some limited situation is not very valuable
Information

e Worst case
— Good upper-bound on behavior
— Never gets worse than this
* Average case
— Averaged over all possible inputs
— Most useful information about overall performance
— Can be hard to compute precisely

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 53

Complex1ty

. Space Complex1ty Sp() how much memory an
algorithm needs (as a function of n)

* Space complexity Sp(n) is not necessarily the
same as the time complexity T(n)

— T(n) 2 Sp(n)

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 54

Next Time

. Our 1rst b10 algonthm
* Read book 4.1 -4.3

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 55

	Lecture 3:�Algorithms and Complexity�
	Topics
	What is an algorithm?
	Problem: US Coin Change
	Algorithm 1: Greedy strategy
	Algorithm 2: Exhaustive strategy
	Correctness
	Observations
	Change Problem: generalization
	How to Compare Algorithms?
	Recursive Algorithms
	Towers of Hanoi
	A single disk tower
	A single disk tower
	A two disk tower
	Move 1
	Move 2
	Move 3
	A three disk tower
	Move 1
	Move 2
	Move 3
	Move 4
	Move 5
	Move 6
	Move 7
	Simplifying the algorithm for 3 disks
	Simplifying the algorithm for 3 disks
	Simplifying the algorithm for 3 disks
	Simplifying the algorithm for 3 disks
	The problem for N disks becomes
	Towers of Hanoi
	Sorting
	Selection Sort
	Selection sort
	Year 1202: Leonardo Fibonacci
	Fibonacci Number
	Fibonacci Number
	Fibonacci Number
	Fibonacci Number
	Orders of magnitude
	Is there a “real” difference?
	Asymptotic Notation
	Big-O Notation
	Visualization of O(g(n))
	Big-O Notation
	Big-O Notation
	-Notation
	Visualization of (g(n))
	Some Other Asymptotic Functions
	Visualization of Asymptotic Growth
	Analogy to Arithmetic Operators
	Measures of complexity
	Complexity
	Next Time

