COMP 555 Bioalgorithms

Fall 2014

Lecture 3:
 Algorithms and Complexity

Study Chapter 2.1-2.8

Topics

- Algorithms
- Correctness
- Complexity
- Some algorithm design strategies
- Exhaustive
- Greedy
- Recursion
- Asymptotic complexity measures

What is an algorithm?

- An algorithm is a sequence of instructions that one must perform in order to solve a wellformulated problem.

Problem: Complexity
Algorithm: Correctness Complexity

Problem: US Coin Change

- Input
- an amount of money $0 \leq M<100$ in cents
- Output:
- M cents in US coins using the minimal number of coins

Algorithm 1: Greedy strategy

Algorithm 2: Exhaustive strategy

- Enumerate all combinations of coins. Record the combination totaling to M with fewest coins
- All is impossible. Limit the multiplicity of each coin!
- First try (80,000 combinations)

coin	Quarter	Dime	Nickel	Penny
multiplicity	$0 . .3$	$0 . .9$	$0 . .19$	$0 . .99$

- Better (200 combinations)

Correctness

- An algorithm is correct only if it produces correct result for all input instances.
- If the algorithm gives an incorrect answer for one or more input instances, it is an incorrect algorithm.
- US coin change problem
- It is easy to show that the exhaustive algorithm is correct
- The greedy algorithm is correct but we didn't really show it

Observations

- Given a problem, there may be many correct algorithms.
- They give identical outputs for the same inputs
- They give the expected outputs for any valid input
- The costs to perform different algorithms may be different.
- US coin change problem
- The exhaustive algorithm checks 200 combinations
- The greedy algorithm performs just a few arithmetic operations

Change Problem: generalization

- Input:
- an amount of money M
- an array of denominations $c=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$ in order of decreasing value
- Output: the smallest number of coins

How to Compare Algorithms?

- Complexity - the cost of an algorithm can be measured in either time and space
- Correct algorithms may have different complexities.
- How do we assign "cost" for time?
- Roughly proportional to number of instructions performed by computer
- Exact cost is difficult to determine and not very useful
- Varies with computer, particular input, etc.
- How to analyze an algorithm's complexity
- Depends on algorithm design

Recursive Algorithms

- Recursion is an algorithm design technique for solving problems in terms of simpler subproblems
- The simplest versions, called base cases, are merely declared.
Recursive definition: \quad factorial $(n)=n \times$ factorial $(n-1)$
Base case: factorial(1)=1
- Easy to analyze
- Thinking recursively...

Towers of Hanoi

- There are three pegs and a number of disks with decreasing radii (smaller ones on top of larger ones) stacked on Peg 1.
- Goal: move all disks to Peg 3.
- Rules:
- When a disk is moved from one peg it must be placed on another peg.
- Only one disk may be moved at a time, and it must be the top disk on a tower.
- A larger disk may never be placed upon a smaller disk.

A single disk tower

A single disk tower

A two disk tower

Move 1

Move 2

Move 3

A three disk tower

Move 1

Move 2

Move 3

Move 4

Move 5

Move 6

Move 7

Simplifying the algorithm for 3 disks

- Step 1. Move the top 2 disks from 1 to 2 using 3 as intermediate

Simplifying the algorithm for 3 disks

\therefore NTM

- Step 2. Move the remaining disk from 1 to 3

Simplifying the algorithm for 3 disks

- Step 3. Move 2 disks from 2 to 3 using 1 as intermediate

Simplifying the algorithm for 3 disks

The problem for N disks becomes

- A base case of a one-disk move.
- A recursive step for moving n-1 disks.
- To move n disks from Peg 1 to Peg 3, we need to
- Move ($n-1$) disks from Peg 1 to Peg 2
- Move the $n^{\text {th }}$ disk from Peg 1 to Peg 3
- Move ($n-1$) disks from Peg 2 to Peg 3
- The number of disk moves is

$$
T(1)=1
$$

$$
T(n)=2 T(n-1)+1=2^{n}-1 \quad \text { Exponential algorithm }
$$

Towers of Hanoi

\therefore NTM

- If you play HanoiTowers with . . . it takes . . .
- 1 disk ... 1 move
- 2 disks ... 3 moves
- 3 disks ... 7 moves
- 4 disks ... 15 moves
- 5 disks ... 31 moves
-.
—.
—.
- 20 disks . . 1,048,575 moves
- 32 disks . . 4,294,967,295 moves

Sorting

- A very common problem is to arrange data into either ascending or descending order
- Viewing, printing
- Faster to search, find min/max, compute median/mode, etc.
- Lots of sorting algorithms
- From the simple to very complex
- Some optimized for certain situations (lots of duplicates, almost sorted, etc.)

Selection Sort

Find the smallest element and swap it with the first:

Find the next smallest element and swap it with the second:

Do the same for the third element:

And the fourth:

Finally, the fifth:

Completely sorted:

3	7	11	12	27	18

3	7	11	12	18	27

Selection sort


```
def selectionSortRecursive(a,first,last):
    if (first < last):
            index = indexOfMin(a,first,last)
            temp = a[index]
            a[index] = a[first]
            a[first] = temp
            a = selectionSortRecursive(a,first+1,last)
    return a
```

 (\(n-1\)) swaps
 Quadratic in time
def indexOfMin(arr,first,last):
index = first
for k in xrange(index+1,last): if ($\operatorname{arr}[\mathrm{k}]<\operatorname{arr}[i n d e x]$): index $=k$
return index

Year 1202: Leonardo Fibonacci

- He asked the following question:
- How many pairs of rabbits are produced from a single pair in n months if every month each pair of rabbits more than 1 month old produces a new pair?
- Here we assume that each pair born has one male and one female and breeds indefinitely
- The initial pair at month 0 are newborns
- Let $f(n)$ be the number of rabbit pairs present at the beginning of month n

Fibonacci Number

Fibonacci Number

- Clearly, we have:
$-f(0)=1$ (the original pair, as newborns)
$-f(1)=1$ (still the original pair because newborns need to mature a month before they reproduce)
$-f(n)=f(n-1)+f(n-2)$ in month n we have
- the $f(n-1)$ rabbit pairs present in the previous month, and
- newborns from the $f(n-2)$ rabbit pairs present 2 months earlier
- f: $1,1,2,3,5,8,13,21,34,55, \ldots$
- The solution for this recurrence is ($n>0$):

$$
f(n)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Fibonacci Number

\therefore 四

Fibonacci Number

\therefore N(1)

Orders of magnitude

- $10^{\wedge} 1$
- $10^{\wedge} 2$ Number of students in computer science department
- $10^{\wedge} 3$ Number of students in the college of art and science
- $10^{\wedge} 4$ Number of students enrolled at UNC
- $10^{\wedge} 10$ Number of stars in the galaxy
- $10^{\wedge} 20$ Total number of all stars in the universe
- $10^{\wedge} 80$ Total number of particles in the universe
- $10^{\wedge} 100 \ll$ Number of moves needed for 400 disks in the Towers of Hanoi puzzle
- Towers of Hanoi puzzle is computable but it is NOT feasible.

Is there a "real" difference?

- Growth of functions

Asymptotic Notation

\therefore 四

- Order of growth is the interesting measure:
- Highest-order term is what counts
- As the input size grows larger it is the high order term that dominates
- Θ notation: $\Theta\left(n^{2}\right)=$ " this function grows similarly to $n^{2 \prime}$.
- Big-O notation: $\mathrm{O}\left(n^{2}\right)=$ "this function grows no faster than $n^{2 \prime \prime}$.
- Describes an upper bound.

Big-O Notation

 $f(n)=O(g(n))$: there exist positive constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

- What does it mean?
- If $f(n)=O\left(n^{2}\right)$, then:
- $f(n)$ can be larger than n^{2} sometimes, but...
- We can choose some constant c and some value n_{0} such that for every value of n larger than $n_{0}: f(n)<c n^{2}$
- That is, for values larger than $n_{0,} f(n)$ is never more than a constant multiplier greater than n^{2}
- Or, in other words, $f(n)$ does not grow more than a constant factor faster than n^{2}.

Visualization of $O(g(n))$

Big-O Notation

$$
\begin{aligned}
& 2 n^{2}=O\left(n^{2}\right) \\
& 1,000,000 n^{2}+150,000=O\left(n^{2}\right) \\
& n^{2}+1,000,000 n+20=O\left(n^{2}\right) \\
& 3 n+4=O\left(n^{2}\right) \\
& 2 n^{3}+2 \neq O\left(n^{2}\right) \\
& n^{2.1} \neq O\left(n^{2}\right)
\end{aligned}
$$

Big-O Notation

- Prove that: $20 n^{2}+2 n+5=O\left(n^{2}\right)$
- Let $c=21$ and $n_{0}=4$
- $21 n^{2}>20 n^{2}+2 n+5$ for all $n>4$ $n^{2}>2 n+5$ for all $n>4$ TRUE

Θ-Notation

- Big-O is not a tight upper bound. In other words $n=O\left(n^{2}\right)$
- Θ provides a tight bound
$f(n)=\Theta(g(n))$: there exist positive constants c_{1}, c_{2}, and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

- $n=O\left(n^{2}\right) \neq \Theta\left(n^{2}\right)$
- $200 n^{2}=\mathrm{O}\left(n^{2}\right)=\Theta\left(n^{2}\right)$
- $n^{2.5} \neq \mathrm{O}\left(n^{2}\right) \neq \Theta\left(n^{2}\right)$

Visualization of $\Theta(g(n))$

Some Other Asymptotic Functions

- Little o - A non-tight asymptotic upper bound

$$
\begin{aligned}
& -n=o\left(n^{2}\right), n=O\left(n^{2}\right) \\
& -3 n^{2} \neq o\left(n^{2}\right), 3 n^{2}=O\left(n^{2}\right)
\end{aligned}
$$

- Ω - A lower bound

$$
f(n) \geq c g(n) \text { for all } n \geq n_{0}
$$

$$
-n^{2}=\Omega(n)
$$

- ω - A non-tight asymptotic lower bound
- $f(n)=\Theta(n) \Leftrightarrow f(n)=O(n)$ and $f(n)=\Omega(n)$

Visualization of Asymptotic Growth

\therefore 四 10

Analogy to Arithmetic Operators

$$
\begin{aligned}
f(n)=O(g(n)) & \approx f \leq g \\
f(n)=\Omega(g(n)) & \approx f \geq g \\
f(n)=\Theta(g(n)) & \approx f=g \\
f(n)=o(g(n)) & \approx f<g \\
f(n)=\omega(g(n)) & \approx f>g
\end{aligned}
$$

Measures of complexity

- Best case
- Super-fast in some limited situation is not very valuable information
- Worst case
- Good upper-bound on behavior
- Never gets worse than this
- Average case
- Averaged over all possible inputs
- Most useful information about overall performance
- Can be hard to compute precisely

Complexity

- Space Complexity $\operatorname{Sp}(\mathrm{n})$: how much memory an algorithm needs (as a function of n)
- Space complexity $\operatorname{Sp}(\mathrm{n})$ is not necessarily the same as the time complexity $T(n)$
$-T(n) \geq S p(n)$

Next Time

- Our first "bio" algorithm
- Read book 4.1 - 4.3

