
Lecture 3:
Algorithms and Complexity

Study Chapter 2.1-2.8

COMP 555 Bioalgorithms

Fall 2014

Topics
• Algorithms

– Correctness
– Complexity

• Some algorithm design strategies

– Exhaustive
– Greedy
– Recursion

• Asymptotic complexity measures

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 2

8/26/2014 3

What is an algorithm?
• An algorithm is a sequence of instructions that

one must perform in order to solve a well-
formulated problem.

problem

input

output

algorithm Algorithm: Correctness
Complexity

Problem: Complexity

Comp 555 Bioalgorithms (Fall 2014)

Problem: US Coin Change
• Input

– an amount of money
0 ≤ M < 100 in cents

• Output:
– M cents in US coins

using the minimal
number of coins

• Example

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 4

72 cents

Two quarters

Two dimes

Two pennies

Is it
correct?

8/26/2014 5

Algorithm 1: Greedy strategy

Greedy coin alg

72 cents

Two quarters, 22 cents left

Two dimes, 2 cents left

Two pennies

Is it
correct?

rp
nrr

rn
drr

rd
qrr

rq
Mr

←
⋅−←

←
⋅−←

←
⋅−←

←
←

5
5/
10
10/
25
25/

Can we
generalize

it?

Algorithm
description

Comp 555 Bioalgorithms (Fall 2014)

Use large denominations
as long as possible

Algorithm 2: Exhaustive strategy

• Enumerate all combinations of coins. Record the
combination totaling to M with fewest coins
– All is impossible. Limit the multiplicity of each coin!
– First try (80,000 combinations)

– Better (200 combinations)

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 6

coin Quarter Dime Nickel Penny
multiplicity 0..3 0..9 0..19 0..99

coin Quarter Dime Nickel Penny
multiplicity 0 .. 3 0 .. 4 0 .. 1 0 .. 4

Is it
correct?

8/26/2014 7

Correctness
• An algorithm is correct only if it produces

correct result for all input instances.
– If the algorithm gives an incorrect answer for one or

more input instances, it is an incorrect algorithm.

• US coin change problem
– It is easy to show that the exhaustive algorithm is

correct
– The greedy algorithm is correct but we didn’t really

show it

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 8

Observations
• Given a problem, there may be many correct

algorithms.
– They give identical outputs for the same inputs
– They give the expected outputs for any valid input

• The costs to perform different algorithms may
be different.

• US coin change problem
– The exhaustive algorithm checks 200 combinations
– The greedy algorithm performs just a few arithmetic

operations
Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 9

Change Problem: generalization
• Input:

– an amount of money M
– an array of denominations c = (c1, c2, …,cd)

in order of decreasing value
• Output: the smallest number of coins

n M
c = (c1, c2, …,cd)

Is it
correct?

M = 40
c = (25, 20, 10, 5, 1)

? 3 The correct answer
should be 2.

Incorrect
algorithm!

n
cirr

inn
cri
dk

n
Mr

kk

k

kk

return

/
 to1for

0

−←
+←

←
←

←
←

To show an algorithm was
incorrect we showed an input
for which it produced the
wrong result. How do
we show that an
algorithm is correct?

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 10

How to Compare Algorithms?

• Complexity — the cost of an algorithm can be
measured in either time and space
– Correct algorithms may have different complexities.

• How do we assign “cost” for time?
– Roughly proportional to number of instructions

performed by computer
– Exact cost is difficult to determine and not very useful

• Varies with computer, particular input, etc.

• How to analyze an algorithm’s complexity
– Depends on algorithm design

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 11

Recursive Algorithms
• Recursion is an algorithm design technique for

solving problems in terms of simpler
subproblems
– The simplest versions, called base cases, are merely

declared.

– Easy to analyze

• Thinking recursively…

)1factorial()factorial(−×= nnn
1)1factorial(=

Recursive definition:

Base case:

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 12

Towers of Hanoi
• There are three pegs and a number of disks with

decreasing radii (smaller ones on top of larger
ones) stacked on Peg 1.

• Goal: move all disks to Peg 3.
• Rules:

– When a disk is moved from one
peg it must be placed on another
peg.

– Only one disk may be moved at a
time, and it must be the top disk
on a tower.

– A larger disk may never be placed
upon a smaller disk.

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 13

A single disk tower

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 14

A single disk tower

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 15

A two disk tower

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 16

Move 1

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 17

Move 2

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 18

Move 3

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 19

A three disk tower

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 20

Move 1

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 21

Move 2

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 22

Move 3

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 23

Move 4

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 24

Move 5

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 25

Move 6

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 26

Move 7

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 27

Simplifying the algorithm for 3 disks

• Step 1. Move the top 2 disks from 1 to 2 using 3 as
intermediate

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 28

Simplifying the algorithm for 3 disks

• Step 2. Move the remaining disk from 1 to 3

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 29

Simplifying the algorithm for 3 disks

• Step 3. Move 2 disks from 2 to 3 using 1 as intermediate

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 30

Simplifying the algorithm for 3 disks

1 2 3

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 31

The problem for N disks becomes
• A base case of a one-disk move.
• A recursive step for moving n-1 disks.

• To move n disks from Peg 1 to Peg 3, we need to

– Move (n-1) disks from Peg 1 to Peg 2
– Move the nth disk from Peg 1 to Peg 3
– Move (n-1) disks from Peg 2 to Peg 3
– The number of disk moves is

121)1(2)(
1)1(

−=+−=

=
nnTnT

T

Exponential algorithm

We move
the n-1
stack twice

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 32

Towers of Hanoi
• If you play HanoiTowers with . . . it takes . . .

– 1 disk … 1 move
– 2 disks … 3 moves
– 3 disks … 7 moves
– 4 disks … 15 moves
– 5 disks … 31 moves
– .
– .
– .
– 20 disks . . . 1,048,575 moves
– 32 disks . . . 4,294,967,295 moves

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 33

Sorting
• A very common problem is to arrange data into

either ascending or descending order
– Viewing, printing
– Faster to search, find min/max,

compute median/mode, etc.
• Lots of sorting algorithms

– From the simple to very complex
– Some optimized for certain

situations (lots of duplicates,
almost sorted, etc.)

Comp 555 Bioalgorithms (Fall 2014)

27 12 3 18 11 7

8/26/2014 34

Selection Sort

Find the smallest element and
swap it with the first:

3 7 11 12 18 27 Completely sorted:

“In-place” sort

3 12 27 18 11 7
Find the next smallest element
and swap it with the second:

3 7 27 18 11 12 Do the same for the third element:

11 3 7 18 27 12 And the fourth:

3 7 11 12 27 18 Finally, the fifth:

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 35

Selection sort

def selectionSortRecursive(a,first,last):
 if (first < last):
 index = indexOfMin(a,first,last)
 temp = a[index]
 a[index] = a[first]
 a[first] = temp
 a = selectionSortRecursive(a,first+1,last)
 return a

def indexOfMin(arr,first,last):
 index = first
 for k in xrange(index+1,last):
 if (arr[k] < arr[index]):
 index = k
 return index

1
2

)1(
−

−nn
comparisons

(n -1) swaps

Quadratic in time

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 36

Year 1202: Leonardo Fibonacci
• He asked the following question:

– How many pairs of rabbits are
produced from a single pair in n
months if every month each pair of
rabbits more than 1 month old
produces a new pair?

– Here we assume that each pair born has one male and
one female and breeds indefinitely

– The initial pair at month 0 are newborns
– Let f(n) be the number of rabbit pairs present at the

beginning of month n

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 Comp 555 Bioalgorithms (Fall 2014) 37

Fibonacci Number

0

1

2

3

4

month

1

1

2

3

5

rabbit pairs
(newborn)

8/26/2014 38

Fibonacci Number
• Clearly, we have:

– f(0) = 1 (the original pair, as newborns)
– f(1) = 1 (still the original pair because newborns need

to mature a month before they reproduce)
– f(n) = f(n-1) + f(n-2) in month n we have

• the f(n-1) rabbit pairs present in the previous month, and
• newborns from the f(n-2) rabbit pairs present 2 months

earlier
– f: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
– The solution for this recurrence is (n > 0):

 −
−

 +
=

nn
nf

2
51

2
51)(

5
1

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 39

Fibonacci Number

Recursive
Algorithm

Exponential time!

n

n - 1 n - 2

n - 3

n - 4 n - 5

n - 2

n - 3 n - 4 n - 5 n - 4 n - 5 n - 6

n - 3 n - 4

Comp 555 Bioalgorithms (Fall 2014)

def fibonacciRecursive(n):
 if (n <= 1):

 return 1
else:
 a = fibonacciRecursive(n-1)
 b = fibonacciRecursive(n-2)
return a+b

8/26/2014 40

Fibonacci Number
def fibonacciIterative(n):
 f0, f1 = 1, 1
 for i in xrange(0,n):
 f0, f1 = f1, f0 + f1
 return f0

Iterative
Algorithm

Linear time!

n

n - 1 n - 2

n - 3

n - 4 n - 5

n - 2

n - 3 n - 4 n - 5 n - 4 n - 5 n - 6

n - 3 n - 4

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 41

Orders of magnitude

• 10^1
• 10^2 Number of students in computer science department
• 10^3 Number of students in the college of art and science
• 10^4 Number of students enrolled at UNC
• …
• …
• 10^10 Number of stars in the galaxy
• 10^20 Total number of all stars in the universe
• 10^80 Total number of particles in the universe
• 10^100 << Number of moves needed for 400 disks in the Towers

of Hanoi puzzle

• Towers of Hanoi puzzle is computable but it is NOT feasible.

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 42

Is there a “real” difference?

• Growth of functions

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 43

Asymptotic Notation
• Order of growth is the interesting measure:

– Highest-order term is what counts
• As the input size grows larger it is the high order term that

dominates

• Θ notation: Θ(n2) = “this function grows
similarly to n2”.

• Big-O notation: O (n2) = “this function grows no
faster than n2”.
– Describes an upper bound.

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 44

Big-O Notation

• What does it mean?
– If f(n) = O(n2), then:

• f(n) can be larger than n2 sometimes, but…
• We can choose some constant c and some value n0 such that

for every value of n larger than n0 : f(n) < cn2

• That is, for values larger than n0, f(n) is never more than a
constant multiplier greater than n2

• Or, in other words, f(n) does not grow more than a constant
factor faster than n2.

() ()()
() () 0

0

 allfor 0
such that and constants positiveexist there :

nnncgnf
ncngOnf

≥≤≤
=

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 45

Visualization of O(g(n))

n0

cg(n)

f(n)

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 46

Big-O Notation

Comp 555 Bioalgorithms (Fall 2014)

)(

)(22

)(43

)(20000,000,1

)(000,150000,000,1

)(2

21.2

23

2

22

22

22

nOn

nOn

nOn

nOnn

nOn

nOn

≠

≠+

=+

=++

=+

=

8/26/2014 47

Big-O Notation

• Prove that:
• Let c = 21 and n0 = 4
• 21n2 > 20n2 + 2n + 5 for all n > 4
 n2 > 2n + 5 for all n > 4
 TRUE

()22 5220 nOnn =++

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 48

Θ-Notation

• Big-O is not a tight upper bound. In other
words n = O(n2)

• Θ provides a tight bound
() ()()

() () () 021

021

 allfor 0
such that and , , constants positiveexist there :

nnngcnfngc
nccngnf

≥≤≤≤
Θ=

• n = O(n2) ≠ Θ(n2)
• 200n2 = O(n2) = Θ(n2)
• n2.5 ≠ O(n2) ≠ Θ(n2)

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 49

Visualization of Θ(g(n))

n0

c2g(n)

f(n)

c1g(n)

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 50

Some Other Asymptotic Functions

• Little o – A non-tight asymptotic upper bound
– n = o(n2), n = O(n2)
– 3n2 ≠ o(n2), 3n2 = O(n2)

• Ω – A lower bound

– n2 = Ω(n)
• ω – A non-tight asymptotic lower bound

• f(n) = Θ(n) ⇔ f(n) = O(n) and f(n) = Ω(n)

() ()()
() () 0

0

 allfor
such that and constants positiveexist there :

nnncgnf
ncngnf

≥≥
Ω=

The difference between “big-O” and “little-o” is
subtle. For f(n) = O(g(n)) the bound 0 ≤ f(n) ≤ c g(n),
n > n0 holds for any c. For f(n) = o(g(n)) the bound
0 ≤ f(n) < c g(n), n > n0 holds for all c.

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 51

Visualization of Asymptotic Growth

n0

O(f(n))

f(n)

Ω(f(n))

ω(f(n))

o(f(n))

Θ(f(n))

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 52

Analogy to Arithmetic Operators

f n()= O g n()() ≈ f ≤ g

f n()= Ω g n()() ≈ f ≥ g

f n()= Θ g n()() ≈ f = g

f n()= o g n()() ≈ f < g

f n()= ω g n()() ≈ f > g

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 53

Measures of complexity
• Best case

– Super-fast in some limited situation is not very valuable
information

• Worst case
– Good upper-bound on behavior
– Never gets worse than this

• Average case
– Averaged over all possible inputs
– Most useful information about overall performance
– Can be hard to compute precisely

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 54

Complexity
• Space Complexity Sp(n) : how much memory an

algorithm needs (as a function of n)
• Space complexity Sp(n) is not necessarily the

same as the time complexity T(n)
– T(n) ≥ Sp(n)

Comp 555 Bioalgorithms (Fall 2014)

8/26/2014 55

Next Time
• Our first “bio” algorithm
• Read book 4.1 – 4.3

Comp 555 Bioalgorithms (Fall 2014)

	Lecture 3:�Algorithms and Complexity�
	Topics
	What is an algorithm?
	Problem: US Coin Change
	Algorithm 1: Greedy strategy
	Algorithm 2: Exhaustive strategy
	Correctness
	Observations
	Change Problem: generalization
	How to Compare Algorithms?
	Recursive Algorithms
	Towers of Hanoi
	A single disk tower
	A single disk tower
	A two disk tower
	Move 1
	Move 2
	Move 3
	A three disk tower
	Move 1
	Move 2
	Move 3
	Move 4
	Move 5
	Move 6
	Move 7
	Simplifying the algorithm for 3 disks
	Simplifying the algorithm for 3 disks
	Simplifying the algorithm for 3 disks
	Simplifying the algorithm for 3 disks
	The problem for N disks becomes
	Towers of Hanoi
	Sorting
	Selection Sort
	Selection sort
	Year 1202: Leonardo Fibonacci
	Fibonacci Number
	Fibonacci Number
	Fibonacci Number
	Fibonacci Number
	Orders of magnitude
	Is there a “real” difference?
	Asymptotic Notation
	Big-O Notation
	Visualization of O(g(n))
	Big-O Notation
	Big-O Notation
	-Notation
	Visualization of (g(n))
	Some Other Asymptotic Functions
	Visualization of Asymptotic Growth
	Analogy to Arithmetic Operators
	Measures of complexity
	Complexity
	Next Time

