
8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 1

Lecture 4:
DNA Restriction Mapping

Study Chapter 4.1-4.3

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 2

EcoRI

EcoRI

Recall Restriction Enzymes
(from Lecture 2)

• Restriction enzymes break DNA whenever they
encounter specific base sequences

• They occur reasonably frequently within long
sequences (a 6-base sequence target appears, on
average, once per 46 = 4096 bases)

• Can be used as molecular scissors

cggtacgtggtggtg
gccatgcaccaccacttaa

aattctgtaagccgattccgcttcggggag
 gacattcggctaaggcgaagcccctcttaa

aattccatgccatcatgggcgttgc
 ggtacggtagtacccgcaacg

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 3

Restriction Enzyme Uses
• Recombinant DNA technology

– make novel DNA constructs
– add fluorophores
– add other probes

• Digesting DNA into pieces that can be efficiently and reliably
replicated through PCR (Polymerase Chain Reaction)

• Cutting DNA for analysis using Microarrays or High-throughput
Sequencers

– genotyping
– phenotyping (RNA converted to stable cDNA)

• Sequence Cloning
– Inserting sequences into a host cell, via vectors

• DNA restriction mapping
– A rough map of a DNA fragment

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 4

DNA Restriction Maps
• A map of the

restriction sites in a
DNA sequence

• If the DNA sequence
is known, then
constructing a
restriction map is
trivial

• Restriction maps are
a cheap alternative
to sequencing for
unknown sequences

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 5

Consider the DNA Mapping Problem
• Begin with (many copies of) a DNA molecule
• Digest it with restriction enzymes

– Breaks molecule into variable
length fragments

• Use gel electrophoresis to sort
fragments according to size
– Can accurately sort DNA

fragments that differ in length
by a single nucleotide, and
estimate their relative abundance

• Use fragment “lengths” to
reassemble a map of the
original DNA

Smaller
fragments

move
farther

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 6

• What can be learned from a single complete
digest?

• Not much. There are many arrangements

Single Enzyme Digestion

0 1 3 7 12

1 2 4 5

0 4 5 10 12

0 2 6 11 12

0 5 6 8 12

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 7

Double Enzyme Digestion
• An alternative approach is to digest with two

different enzymes in three stages
– First, with restriction enzyme A
– Second, with restriction enzyme B
– Third, with both enzymes, A & B

• The inputs are three sets of restriction fragment
lengths [1,2,4,5], [3,3,6], [1,1,1,2,3,4]

0 4 5 10 12

0 3 9 12

0 3 4 5 9 12

 3 1 1 4 1 2

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 8

Double Digest Problem
• Given two sets of intervals on a common line segment

between two disjoint interior point sets, and a third set
of intervals between all points, reconstruct the positions
of the points.

Input:
 dA – fragment lengths from the digest with enzyme A.

 dB – fragment lengths from the digest with enzyme B.
 dAB – fragment lengths from the digest with both A and B.

Output: A – location of the cuts for the enzyme A.
 B – location of the cuts for the enzyme B.

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 9

Class Exercise
• Suppose you are asked to assemble a map from

three digests
– dA = [1,2,3]
– dB = [2,4]
– dAB = [1,1,2,2]

• How do you solve for the map?
• How do you state your strategy as a general

purpose algorithm?

0 1 2 3 4 5 6
dAB

dA =
{1,2,3}

dB =
{2,4}

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 10

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 11

Set Permutations
• Given a set [A,B,C,D] find all permutations

• How many?
– 1st choice = n
– 2nd choice = n-1
– 3rd choice = n-2

[A,B,C,D]
[A,B,D,C]
[A,C,B,D]
[A,C,D,B]
[A,D,B,C]
[A,D,C,B]

[B,A,C,D]
[B,A,D,C]
[B,C,A,D]
[B,C,D,A]
[B,D,A,C]
[B,D,C,A]

[C,A,B,D]
[C,A,D,B]
[C,B,A,D]
[C,B,D,A]
[C,D,A,B]
[C,D,B,A]

[D,A,B,C]
[D,A,C,B]
[D,B,A,C]
[D,B,C,A]
[D,C,A,B]
[D,C,B,A]

N! permutations of N elements

10! = 3628800
24! = 620448401733239439360000

• Test all permutations of AB and for each check a
permutation of A and a permutation of B for
compatibility

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 12

An Exhaustive Search Solution

def doubleDigest(lista, listb, listab):
 ab = permutations(listab)
 while (ab.permutationsRemain()):
 a = permutations(lista)
 while (a.permutationsRemain()):
 if compatible(a.order, ab.order):
 b = permutations(listb)
 while (b.permutationsRemain()):
 if compatible(b.order, ab.order):
 return (a.order, b.order)
 return ([], [])

 What is the time complexity

of doubleDigest??

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 13

How to Improve Performance?
• What strategy can we use to solve the double restriction

map problem faster?
– Must the given code *really* test every permutation?
– How does compatible() help?
– Does the order of the loops help?

• Could you do all permutations of A and B, then compute
the intervals and compare to AB?

• The double digest problem is truly a hard problem (NP-
complete). No one knows an algorithm whose execution
time does not grow slower than some exponent in the
size of the inputs. If one is found, then an entire set of
problems will suddenly also be solvable in less than
exponential time.

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 14

Partial Digestion Problem
• Another way to construct a restriction map
• Expose DNA to the restriction enzyme for a

limited amount of time to prevent it from cutting
at all restriction sites (partial digestion)

• Generates the set of all possible restriction
fragments between every pair of (not necessarily
consecutive) points

• The set of fragment sizes is used to determine the
positions of the restriction sites

• We assume that the multiplicity of a repeated
fragment can be determined, i.e., multiple
restriction fragments of the same length can be
determined (e.g., by observing twice as much
fluorescence for a double fragment than for a
single fragment)

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 15

Partial Digestion Illustration
• A complete set of pairwise distances between

points. In the following example a set of 10
fragments is generated.

 L = {3, 5, 5, 8, 9, 14, 14, 17, 19, 22}

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 16

Pairwise Distance Matrix
• Often useful to consider

partial digests in a
distance matrix form

• Each entry is the distance
between a pair of point
positions labeled on the
rows and columns

• The distance matrix for n
points has n(n-1)/2 entries, therefore we expect
that many digest values as inputs

• Largest value in L establishes the segment length
• Actual non-zero point values are a subset of L

0 5 14 19 22
0 - 5 14 19 22
5 - 9 14 17
14 - 5 8
19 - 3
22 -

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 17

Partial Digest Problem
• Given all pairwise distances between points on a

line, reconstruct the positions of those points.

 Input: A multiset of pairwise distances L,

containing elements

 Output: A set X, of n integers, such that the set of

pairwise distances ∆X = L

2
)1(−nn

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 18

Homometric Solutions

• The solution of a PDP is not always unique
• Two distinct point sets, A and B, can lead to

indistinguishable distance multisets, ∆A = ∆B

0 1 3 4 5 7 12 13 15
0 1 3 4 5 7 12 13 15
1 2 3 4 6 11 12 14
3 1 2 4 9 10 12
4 1 3 8 9 11
5 2 7 8 10
7 5 6 8
12 1 3
13 2
15

0 1 3 8 9 11 12 13 15
0 1 3 8 9 11 12 13 15
1 2 7 8 10 11 12 14
3 5 6 8 9 10 12
8 1 3 4 5 7
9 2 3 4 6
11 1 2 4
12 1 3
13 2
15

• Basic idea: Construct all combinations of n - 2
integers between 0 and max(L), and check to see
if the pairwise distances match.

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 19

Exhaustive search PDP Algorithm

def bruteForcePDP(L, n):
 L.sort()
 M = max(L)
 X = intsBetween(0,M,n-2)
 while (X.combinationsRemain()):
 dX = allPairsDist(X.intSet())
 dX.sort()
 if (dX == L):
 print "X =", X.intSet()

Compare this
Python code to
the pseudocode
on page 88 in
the book

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 20

Set Combinations
• Combinations of n things taken k at a time
• Order is unimportant

[A,B,C] ≡ [A,C,B] ≡ [B,A,C] ≡ [B,C,A] ≡ [C,A,B] ≡ [C,B,A]

• All ways to select k positions among n positions
– let 1 represent selected, 0 represent not selected

e.g. n=4, k=2: [1,1,0,0], [1,0,1,0],[1,0,0,1],[0,1,1,0],[0,1,0,1],[0,0,1,1]

• Smaller than a factorial

• Interesting relation

)!(!
!

knk
n

k
n

−
=

n
n

k k
n

2
0

=

∑
=

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 21

BruteForcePDP Performance
• BruteForcePDP takes O(max(L) n-2) time since it

must examine all possible sets of positions.
• The problem scales with the size of the largest

pairwise distance
• Suppose we multiply each element in L by a

constant factor?
• Should we consider every possible combination

of n - 2 points?

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 22

Another Brute Force PDP Approach
• Recall that the actual point values are a subset of L’s

values. Thus, rather than consider all combinations of
possible points, we need only consider
n – 2 combinations of values from L.

def anotherBruteForcePDP(L, n):
 L.sort()
 M = max(L)
 X = intsFromL(L,n-2)
 while (X.combinationsRemain()):
 dX = allPairsDist(X.intSet())
 dX.sort()
 if (dX == L):
 print "X = ", X.intSet()

Compare this
Python code to
the pseudocode
on page 88 in
the book

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 23

Efficiency of AnotherBruteForcePDP
• It’s more efficient, but still slow
• If L = {2, 998, 1000} (n = 3, M = 1000),

BruteForcePDP will be extremely slow, but
AnotherBruteForcePDP will be quite fast

• Fewer sets are examined, but runtime is still
exponential: O(n2n-4)

• Is there a better way?

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 24

A Practical PDP Algorithm
1. Begin with X = {0}
2. Remove the largest element in L and

place it in X
3. See if the element fits on the right or

left side of the restriction map
4. When it fits, find the other lengths it creates

and remove those from L
5. Go back to step 3 until L is empty

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 25

Defining delta(y, X)
• Before describing PartialDigest, we first define a

helper function:

 delta(y, X)

as the multiset of all distances between point y
and the points in the set X

 delta(y, X) = {|y – x1|, |y – x2|, …, |y – xn|}

 ex. [3,6,11] = delta(8,[5,14,19])

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0 }

8/28/2014 26 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0 }

Remove 10 from L and insert it into X. We know this must be
the total length of the DNA sequence because it is the largest
fragment.

8/28/2014 27 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 10 }

8/28/2014 28 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 10 }

Remove 8 from L and make y = 2 or 8. But since the two cases
are symmetric, we can assume y = 2.

8/28/2014 29 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 10 }

Find the distances from y = 2 to other elements in X.
delta(y, X) = {8, 2}, so we remove {8, 2} from L and add 2 to X.

8/28/2014 30 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }

8/28/2014 31 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }

Next, remove 7 from L and make y = 7 or y = 10 – 7 = 3.
We explore y = 7 first, so delta(y, X) = {7, 5, 3}.

8/28/2014 32 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }

For y = 7 first, delta(y, X) = {7, 5, 3}. Therefore, we
remove {7, 5 ,3} from L and add 7 to X.

D(y, X) = {7, 5, 3} = {|7 – 0|, |7 – 2|, |7 – 10|}

8/28/2014 33 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }

8/28/2014 34 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }

Next, take 6 from L and make y = 6. Unfortunately,
delta(y, X) = {6, 4, 1 ,4}, which is not a subset of L.
Therefore, we won’t explore this branch.

6

8/28/2014 35 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }

This time make y = 4. delta(y, X) = {4, 2, 3 ,6}, which is a
subset of L, so we explore this branch. We remove
{4, 2, 3 ,6} from L and add 4 to X.

8/28/2014 36 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 4, 7, 10 }

8/28/2014 37 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 4, 7, 10 }

L is now empty, so we have a solution, which is X.

8/28/2014 38 COMP 555 Bioalgorithms (Fall 2014)

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }

To find other solutions, we backtrack (remove old insertions
and try different ones).

8/28/2014 39 COMP 555 Bioalgorithms (Fall 2014)

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 40

Implementation
def partialDigest(L):
 width = max(L)
 L.remove(width)
 X = [0, width]
 Place(L, X)

def Place(L, X):
 if (len(L) == 0):
 print X
 return
 y = max(L)
 dyX = delta(y, X)
 if (dyX.subset(L)):
 X.append(y); map(L.remove, dyX.items)
 Place(L, X)
 X.remove(y); map(L.append, dyX.items)
 w = max(X) - y
 dwX = delta(w, X)
 if (dwX.subset(L)):
 X.append(w); map(L.remove, dwX.items)
 Place(L,X)
 X.remove(w); map(L.append, dwX.items)
 return

Checks distances from the “0” end

Checks distances from the “width” end

This PDP algorithm
outputs all solutions.
In fact, it might even
repeat solutions

Analysis
• Let T(n) be the maximum time that partialDigest

takes to solve an n-point instance of PDP
• If, at every step, there is only one viable solution,

then partialDigest reduces the size of the
problem by one on each recursive call
 T(n) = T(n-1) + O(n) O(n2)

• However, if there are two alternatives then
 T(n) = 2T(n-1) + O(n) O(2n)

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 41

8/28/2014 COMP 555 Bioalgorithms (Fall 2014) 42

Comments & Next Time
• In the book there is a reference to a polynomial

algorithm for solving PDP (pg. 115). The authors
of this paper have since posted a clarification
that their solution does not suggest a polynomial
algorithm. Therefore, the complexity of the PDP
is still unknown.

• Next Time:
– More Exhaustive Search problems
– The Motif Finding Problem

	Lecture 4:�DNA Restriction Mapping
	Recall Restriction Enzymes
	Restriction Enzyme Uses
	DNA Restriction Maps
	Consider the DNA Mapping Problem
	Single Enzyme Digestion
	Double Enzyme Digestion
	Double Digest Problem
	Class Exercise
	Slide Number 10
	Set Permutations
	An Exhaustive Search Solution
	How to Improve Performance?
	Partial Digestion Problem
	Partial Digestion Illustration
	Pairwise Distance Matrix
	Partial Digest Problem
	Homometric Solutions
	Exhaustive search PDP Algorithm
	Set Combinations
	BruteForcePDP Performance
	Another Brute Force PDP Approach
	Efficiency of AnotherBruteForcePDP
	A Practical PDP Algorithm
	Defining delta(y, X)
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	Implementation
	Analysis
	Comments & Next Time

