Lecture 5:
Finding Regulatory Motifs Within DNA Sequences

Study Chapter 4.4-4.9
Initiating Transcription

• To facilitate transcription of a gene, special proteins bind DNA near the gene start and separate the strands.

• How do these proteins know where the coding genes are in order to bind?

• Genes are relatively rare
 – $O(1,000,000,000)$ bases/genome
 – $O(10000)$ genes/genome
 – $O(1000)$ bases/gene

• Approximately 1% of DNA codes for genes ($10^3 10^4 / 10^9$)
Regulatory Regions

- Regulatory or promoting regions are located 100-1000 bp upstream from the coding region.
- Specific proteins called transcription factors bind to matching DNA sequence patterns in the regulatory region known as Transcription Factor Binding Sites (TFBS).
- The binding transcription factors separate the DNA strands, enabling RNA polymerases to start transcription.
- The DNA sequence patterns in the transcription factor binding sites are known as motifs.
Transcription Factor Binding Sites

• A TFBS can be located anywhere within the regulatory region.

• TFBS may vary slightly across different regulatory regions since non-essential bases could mutate.

• Transcription factors are robust (they will still bind) in the presence of small changes in a few bases.

5'-ccatttagg-3'
Motifs and Transcriptional Start Sites

Motif \((n)\) - A repeated structural element in architecture or decoration

- ATCCCG
- TTCCGG
- ATCCCG
- ATGCCG
- ATGCCG
- ATGCCC
- ATGCC
Identifying Motifs: Complications

- We do not know the motif sequence for every TF.
- We do not know where it is located relative to the gene’s start.
- Motifs can differ slightly from one gene to the next.
- We only know that it occurs frequently.
- How to discern a motif’s frequent “similar” pattern from “random” patterns?
An Aside: Solving Cryptograms

• A popular form of word puzzle

N oucgupju dlgw ynouo nwu sbu ynoho ld n jlzu dlw eupuo, xbhjb, snqup hp swhvmuo, zusuwihpuo vwlshhp oucgupjuo.

• Based on letter, multi-letter, and word frequency it is not hard to figure out the most likely answer.

• Try solving it using http://rumkin.com/tools/cipher/cryptogram-solver.php
How’s a Motif Like a Cryptogram?

• Nucleotides in motifs encode a message in a “genetic” language. Symbols in a cryptogram, encode messages in English.

• In order to solve the problem, we analyze the frequencies of patterns in DNA/Cryptogram.

• Knowledge of established regulatory motifs makes the Motif Finding problem simpler. Knowledge of the words in the English dictionary helps to solve cryptograms.
The Motif Finding Problem

• Given a sample of DNA sequences:
 1. cct gat agacgct at ct ggct at ccacgt acgt aggt cct ct gt gcgaat ct at gcgt tt ccaaccat
 2. agt act ggt gt acat tt gat acgt acgt acacctg gcaacct gaaac aaccgct cagaacc cagaagt gc
 3. aacagt acgt gcaccct ct tt ct tgct ggct ct ggc ccacg gagggt gat gt at aagacgaaat ttt
 4. agcct cccgat gt aagt cat agct gt aact at t acct gccacccct att acat ctt acgt acgt at aca
 5. ct gt t at acaacgcgt cat ggc ggggt at gcgt tt t ggt cgt cgt acgct cgat cgatt aacgt acgt c

• Find a pattern that is implanted in each of the individual sequences, namely, the motif

• Additional information:
 – Assume the hidden sequence is of length 8
 – The pattern is not exactly the same in each sequence because random point mutations have been introduced
Motif Finding Complications

• We don’t know the pattern we are looking for
• The pattern isn’t identical from occurrence to occurrence
• Only a small fraction of nucleotide sequences encode for motifs
• The size of the genome sequence is enormous
Motif Finding Example

• Finding motifs if there are no mutations
• Probability of a given 8-mer in a random DNA sequence of length n is $n/4^8$ (expect 1 in 65Kb)
• For our five DNA sequences of length 68, there are $5 \cdot (68 - 8 + 1) \approx 300$ possible 8-mers
• Probability of any one 8-mer is $300/4^8 \approx 0.005$
• So any 8-mer repeat is rare

```plaintext
acctagct agacgct atctggct atcc acgt acgt aggt cct ct gt gcgaat ct at gcgt tt t ccaaccat
agtcggt gt acat t t gat acgt acgt acaccggcaacct gaaacaaacgt cagaaccagaaggt gc
acgt acgt gcaccct ct tt ct t cgt ggct ct ggccaacgagggct gat gt at aagacgaaaat t t t
agcct cc gat gt aagt cat acgt gt aact at t acct gccacc c cct at t acat ct t acgt acgt at aca
tct gt t at acaacgcgt cat ggccgggt at gcgt t t t ggt cgt cgt acgt cgt acgt c t t a acgt acgt c
```

acgtacgta
The Problem Becomes Harder

- Introduce 2 point mutations into each pattern:

```
cct gat agacgct at ct ggct at cc aGgt acTt aggt cct ct gt gcgaat ct at gcg t t t ccaacc cat 
agt act ggt gt acat t t gat CcAt acgt acaccggcaacct gaaacaaacgct cagaaccagaagt gc 
aa acgt TAgt gcacccct ct t t ct t cgt ggct ct ggcccaacgagggct gat gt at aagacgaaaaat t t t 
agcct ccgat gt aagt cat agct gt aact at t acct gcacccct at t acat c tt acgt CcAt at aca 
tc t t at acaacgcgt cat ggccggggt at gcgt t t t ggt cgt cgt acgc t cgat cgt t a Ccgt acg Gc 
```

- Our original target pattern no longer appears in any sequence!

Can we still find the motif?
Defining a Motif

- To define a motif, let’s assume that we know where the motif starts in each sequence.
- The start positions can be represented as
 \[s = [s_1, s_2, s_3, \ldots, s_t] \]
Motifs: Profiles and Consensus

• Line up the patterns by their start indexes
 \(s = (s_1, s_2, \ldots, s_t) \)

• Construct a matrix profile with the frequencies of each nucleotide in columns

• Consensus nucleotide in each position has the highest score in column
Consensus

- Think of consensus as an “ancestor” motif, from which mutated motifs emerged
- The distance between an actual motif and the consensus sequence is generally less than that for any two actual motifs
- Hamming distance is number of positions that differ between two strings

```
G A G A C T C A T
X         X      TA G A C G C A T
A Hamming distance of 2
```

G A G A C T C A T
X X TA G A C G C A T
Consensus Properties

- A consensus string has a minimal Hamming distance to all source strings
Defining Some Terms

• **DNA** – array of sequence fragments
• **t** - number of sample DNA sequences
• **n** - length of each DNA sequence

• **ℓ** - length of the motif (ℓ-mer)
• **s_i** - starting position of an ℓ-mer in sequence i
• **$s = (s_1, s_2, \ldots, s_t)$** - array of motif’s starting positions
Illustration of Terms

\[l = 8 \]

\[t = 5 \]

\[s_1 = 26 \]
\[s_2 = 21 \]
\[s_3 = 3 \]
\[s_4 = 56 \]
\[s_5 = 60 \]

\[n = 69 \]
Scoring Motifs

- Given $s = (s_1, \ldots, s_t)$ and DNA:

$$\text{Score}(s, \text{DNA}) = \sum_{i=1}^{l} \max_{k \in \{A,C,G,T\}} \text{count}(k,i)$$

A 3 0 1 0 3 1 1 0
C 2 4 0 0 1 4 0 0
G 0 1 4 0 0 0 0 3 1
T 0 0 0 5 1 0 1 4

Consensus $a
c
g
t
t
c
g
t

Score $3+4+4+5+3+4+3+4=30$
The Motif Finding Problem

Goal: Given a set of DNA sequences, find a set of \(l \)-mers, one from each sequence, that maximizes the consensus score

Input: A \(t \times n \) matrix of DNA, and \(l \), the length of the pattern to find

Output: An array of \(t \) starting positions \(s = (s_1, s_2, \ldots, s_t) \) maximizing \(\text{Score}(s, \text{DNA}) \)
Brute Force Solution

• Compute the scores for all possible combinations of starting positions \(s \)
• The best score determines the best profile and the consensus pattern in \(DNA \)
• The goal is to maximize \(Score(s,DNA) \) by varying the starting positions \(s_i \), where:

\[
\begin{align*}
 s_i &= [1, \ldots, n-l+1] \\
 i &= [1, \ldots, t]
\end{align*}
\]
Brute Force Pseudocode

BruteForceMotifSearch(DNA, t, n, l)
bestScore ← 0
for each s = (s₁, s₂, ..., sₜ) from (1, 1, ..., 1)
 to (n- l+1, n- l+1, ..., n- l+1)
 if score(s, DNA, l) > bestScore
 bestScore ← score(s, DNA, l)
 bestMotif ← (s₁, s₂, ..., sₜ)
return bestMotif
Running Time of BruteForceMotifSearch

- Search \((n - \ell + 1)\) positions in each of \(t\) sequences, by examining \((n - \ell + 1)^t\) sets of starting positions.
- For each set of starting positions, the scoring function makes \(\ell t\) operations, so complexity is \(\ell (n - \ell + 1)^t = O(\ell tn^t)\).
- That means that for \(t = 8, n = 1000, \ell = 10\) we must perform approximately \(10^{25}\) computations.
- Generously assuming \(10^9\) comps/sec it will require only \(10^{16}\) secs.
- \(10^{16}/(60 \times 60 \times 24 \times 365) \rightarrow\) millions of years.
The Median String Problem

• Given a set of \(t \) DNA sequences find a pattern that appears in all \(t \) sequences with the minimum number of mutations

• This pattern will be the motif

• Rather than finding the maximal consensus string, this approach attempts to find the minimal distance string
 – The former enumerates possible starting positions
 – The latter enumerates possible strings
Total Distance: An Example

- Given $v = \text{"acgtacgt"}$ and s

 \[d_H(v, x) = 0 \]
 \[d_H(v, x) = 0 \]
 \[d_H(v, x) = 0 \]
 \[d_H(v, x) = 0 \]

 v is the sequence in red, x is the sequence in blue

- $\text{TotalDistance}(v, \text{DNA}) = 0$
Total Distance: An Example

- **Given** $v = \text{"acgtacgt"}$ and s

 - $d_H(v, x) = 1$
 - $d_H(v, y) = 0$
 - $d_H(v, z) = 2$
 - $d_H(v, w) = 0$
 - $d_H(v, t) = 0$

 v is the sequence in red, x is the sequence in blue

- **TotalDistance**$(_v, \text{DNA}) = 1 + 0 + 2 + 0 + 1 = 4$
Total Distance: Definition

- For each DNA sequence i, compute all $d_H(v, x)$, where x is an ℓ-mer with starting position s_i

 $$(1 \leq s_i \leq n - \ell + 1)$$

- Find minimum of $d_H(v, x)$ among all ℓ-mers in sequence i

- $\text{TotalDistance}(v, \text{DNA})$ is the sum of the minimum Hamming distances for each DNA sequence i

- $\text{TotalDistance}(v, \text{DNA}) = \min_s d_H(v, s)$, where s is the set of starting positions s_1, s_2, \ldots, s_t
The Median String Problem

• **Goal**: Given a set of DNA sequences, find a median string

• **Input**: A $t \times n$ matrix DNA, and ℓ, the length of the pattern to find

• **Output**: A string v of ℓ nucleotides that minimizes $\text{TotalDistance}(v, DNA)$ over all strings of that length
Median String Search Algorithm

MedianStringSearch(DNA, t, n, l)
bestMotif ← ""
bestDistance ← t × l
for each l-mer, s, from “aaa…a” to “ttt…t”
 if TotalDistance(s, DNA) < bestDistance
 bestDistance ← TotalDistance(s, DNA)
 bestMotif ← s
return bestMotif
Equivalent Problems!

• Motif Finding Problem \equiv Median String Problem
• The Motif Finding is a maximization problem while Median String is a minimization problem
• However, the Motif Finding problem and Median String problem are computationally equivalent (they give the same output for a common input)
• Need to show that minimizing TotalDistance is equivalent to maximizing Score
We’re looking for the same thing

At any column i

$$Score_i + TotalDistance_i = t$$

Because there are l columns

$$Score + TotalDistance = l * t$$

Rearranging:

$$Score = l * t - TotalDistance$$

$l * t$ is constant the minimization of the right side is equivalent to the maximization of the left side
Why Bother?

• What is the point of reformulating the Motif Finding problem as the Median String problem?

 – The Motif Finding Problem needs to examine all the combinations for s. That is \((n - l + 1)^t\) combinations!!!

 – The Median String Problem needs to examine all \(4^l\) combinations for \(v\). This number is relatively smaller

\[
8(1000-10+1)4^{10} \approx 8.3 \times 10^9
\]

\[
(1000-10+1)^8 \approx 9.3 \times 10^{23}
\]

n=1000, l=10, t=8
Improving both algorithms

- ... using branch and bound
Improving Motif Finding

BruteForceMotifSearch(DNA, t, n, l)
bestScore ← 0
for each s = (s_1, s_2, ..., s_t) from (1, 1, ..., 1) to (n- l+1, n- l+1, ..., n- l+1)
 if score(s, DNA, l) > bestScore
 bestScore ← score(s, DNA, l)
 bestMotif ← (s_1, s_2, ..., s_t)
return bestMotif
How to Structure the Search?

• How can we perform the line

\[
\text{for each } s = (s_1, s_2, \ldots, s_t) \text{ from } (1, 1 \ldots 1) \text{ to } (n-\ell+1, \ldots, n-\ell+1) \ ?
\]

• We need a method to more efficiently examine
 the many possible motifs locations

• This is not very different than exploring all
 “\(t \)-digit base \((n-l+1) \)” numbers
Improving Median String

\[\text{MedianStringSearch(DNA, t, n, l)} \]
\[
\text{bestMotif} \leftarrow "" \\
\text{bestDistance} \leftarrow t \times l \\
\text{for each } l \text{-mer, } s, \text{ from "aaa...a" to "ttt...t"} \\
\quad \text{if } \text{TotalDistance}(s, \text{DNA}) < \text{bestDistance} \\
\quad \quad \text{bestDistance} \leftarrow \text{TotalDistance}(s, \text{DNA}) \\
\quad \quad \text{bestMotif} \leftarrow s \\
\text{return bestMotif} \]
How to Enumerate the Candidates

• For the Median String Problem we need to consider all 4^ℓ possible ℓ-mers:

 aa... aa
 aa... ac
 aa... ag
 aa... at
 aa... ca
 .
 .
 tt... tt

How to organize this search?
Search Tree

- Our standard method for enumerating candidates just traverses the leaf nodes.
- Suppose after checking the first or second letter we already know the solution could not be the one we are looking for?
NextLeaf Usage

• This is the basic loop structure that we have used to explore the search tree thus far

```python
def AllLeaves(L, k):
a = [1 for i in xrange(L)]
while True:
    print a
    a = NextLeaf(a, L, k)
    if (sum(a) == L)
        return
```

• Enumerates values in L-digit “odometer” order (each digit cycles 1..k instead of 0..k-1).
How does nextLeaf work?

• Code for NextLeaf is the same logic as counting

```python
def NextLeaf(a, L, k):
    # generates all k^L candidates
    for i in reversed(xrange(L)):
        if (a[i] < k):
            a[i] += 1
            break
        else:
            a[i] = 1
    return a
```

• “a” is the current candidate list ([2,1,3])
• “k” is the largest value (k = 4 for {A,C,T,G})
• “L” is the # of variables (L = 3 for 3-mers)
Analyzing Search Trees

- Characteristics of the search trees:
 - The unique candidates reside at leaves
 - A parent node is a common prefix of its children

- How can we traverse the tree?

- Things we’d like to do:
 - Visit all the nodes (interior and leaves)
 - Visit the next leaf (in an ordered way)
 - Bypass the children of a node
Depth First Search

- Start from the root and visit nodes in preorder
 - First parent, then visit subtrees in left to right order

Initial Location

Location after 10 moves
Visiting the Next Vertex

- Uses 0s to encode unspecified part of interior nodes (the dashes in our figure)

```python
def NextVertex(a, i, L, k):
    if (i < L):
        # not at leaf, go down a level
        a[i] = 1
        return (a, i+1)
    else:
        # at leaf, go to next leaf
        for j in reversed(xrange(L)):
            if (a[j] < k):
                a[j] += 1
                return (a, j+1)
        a[j] = 0
        return (a, 0)
```
Bypass Subtrees

• Given an internal node find next node after skipping all of the current vertex’s children

```python
def Bypass(a, i, L, k):
    for j in reversed(xrange(i)):
        if (a[j] < k):
            a[j] += 1
            return (a, j+1)
    a[j] = 0
    return (a, 0)
```
Bypass Example

• Bypassing descendents of nodes “12—” and “211-”
Revisiting Brute Force Search

- Now that we have method for navigating the tree, let's convert our pseudocode version of BruteForceMotifSearch to real code

```python
def BruteForceMotifSearchAgain(DNA, t, n, l):
    s = [1 for _ in xrange(t)]
    bestScore = Score(s, DNA)
    while (True):
        s = NextLeaf(s, t, n-l+1)
        if (Score(s, DNA) > bestScore):
            bestScore = Score(s, DNA)
            bestMotif = [x for x in s]
        if (sum(s) == t):
            break
    return bestMotif
```
Can We Do Better?

- Sets of $s = (s_1, s_2, \ldots, s_t)$ may have a weak profile for the first i positions (s_1, s_2, \ldots, s_i)
- Every row of alignment may add at most ℓ to Score
- Best possible outcome: all subsequent $(t-i)$ positions (s_{i+1}, \ldots, s_t) add

$$ (t - i) \times \ell \text{ to Score}(s, i, DNA) $$

- If $\text{Score}(s, i, DNA) + (t - i) \times \ell < \text{BestScore}$, it makes no sense to search subtrees of the current vertex
 - Use ByPass()
Rewrite Using Tree Traversal

Before we apply a branch-and-bound strategy let’s rewrite the brute-force algorithm using a search tree

```python
def SimpleMotifSearch(DNA,t,n,l):
    s = [0 for i in xrange(t)]
    bestScore = 0
    i = 0
    while (True):
        if (i < t):
            s, i = NextVertex(s,i,t,n-l+1)
        else:
            if (Score(s, DNA, l) > bestScore):
                bestScore = Score(s, DNA, l)
                bestMotif = [x for x in s]
            s, i = NextVertex(s,i,t,n-l+1)
        if (sum(s) == 0):
            break
    return bestMotif
```
Branch and Bound Motif Search

- Since each level of the tree goes deeper into search, discarding a prefix discards all following branches.

- This saves us from looking at \((n - \ell + 1)^{t-i}\) leaves.
 - Use `NextVertex()` and `ByPass()` to navigate the tree.
Branch-and-Bound Motif Code

```python
def BranchAndBoundMotifSearch(DNA, t, n, l):
    s = [0 for i in xrange(t)]
    bestScore = 0
    i = 0
    while (True):
        if (i < t):
            optimisticScore = Score(s, DNA, l) + (t-i)*l
            if (optimisticScore < bestScore):
                s, i = Bypass(s, i, t, n-l+1)
            else:
                s, i = NextVertex(s, i, t, n-l+1)
        else:
            score = Score(s, DNA, l)
            if (score > bestScore):
                bestScore = score
                bestMotif = [x for x in s]
                s, i = NextVertex(s, i, t, n-l+1)
            if (sum(s) == 0):
                break
    return bestMotif
```
Improving Median Search

• Recall the computational differences between motif search and median string search

 – The Motif Finding Problem needs to examine all \((n-\ell+1)^t\) combinations for \(s\).

 – The Median String Problem needs to examine \(4^\ell\) combinations of \(v\). This number is relatively small

• We want to use median string algorithm with the Branch and Bound trick!
Insight for Improving Median Search

• Note that if, at any point, the total distance for a prefix is greater than that for the best word so far:

\[
\text{TotalDistance (prefix, DNA)} > \text{BestDistance}
\]

there is no use exploring the remaining part of the word

• We can eliminate that branch and BYPASS exploring that branch further
def BranchAndBoundMedianSearch(DNA, t, n, l):
 s = [1 for i in xrange(t)]
 bestDistance, bestWord = l*t, ''
 i = 1
 while (i > 0):
 if (i < l):
 prefix = NucleotideString(s, i)
 atLeastDistance = TotalDistance(prefix, DNA)
 if (atLeastDistance > bestDistance):
 s, i = Bypass(s, i, l, t)
 else:
 s, i = NextVertex(s, i, l, t)
 else:
 word = NucleotideString(s, l)
 if (TotalDistance(word, DNA) < bestDistance):
 bestDistance = TotalDistance(word, DNA)
 bestWord = word
 s, i = NextVertex(s, i, l, t)
 return bestWord
Final remarks

• Motif Search
 – What if there are multiple consensus strings (or median strings) with similar score/distance?
 • It can easily happen, how to define significance?
 • Many k-mers nearby as hamming distance increases
 – Is substitution the correct error model?
 • insertions or deletions are possible/likely as well
 • The algorithms will need to change very substantially

• How do you really find a TFBS?
 – Motifs are just a starting point

• Next Time
 – We revisit greedy algorithms