Genome Rearrangements

Study Chapters 5.3-5.5

Recap

- We developed a SimpleReversalSort algorithm that extends the sorted prefix on every iteration.
- On

$\pi: \underline{612345}$
Flip 1: 162345
Flip 2: $12 \underline{6345}$
Flip 3: $123 \underline{645}$
Flip 4: $1234 \underline{65}$
Flip 5: 123456

- But it could have been sorted in two flips:

$$
\begin{array}{r}
\pi: \frac{612345}{} \begin{array}{r}
\text { Flip 1: } \\
\text { Flip 2: }: ~
\end{array}=23456
\end{array}
$$

Approximation Algorithms

\therefore NTM

- Today's algorithms find approximate solutions rather than optimal solutions
- The approximation ratio of an algorithm \mathcal{A} on input π is:

$$
\mathcal{A}(\pi) / \mathrm{OPT}(\pi)
$$

where
$\mathcal{A}(\pi)$ - solution produced by algorithm \mathcal{A}
$\mathrm{OPT}(\pi)$ - optimal solution of the problem

Approximation Ratio/Performance Guarantee

- Approximation ratio (performance guarantee) of algorithm \mathcal{A} : max approximation ratio over all inputs of size n
- For a minimizing algorithm \mathcal{A} (like ours):
- Approx Ratio $=\max _{|\pi|=n} \mathcal{A}(\pi) / \mathrm{OPT}(\pi) \geq 1.0$
- For maximization algorithms:
- Approx Ratio $=\min _{|\pi|=n} \mathcal{A}(\pi) / \mathrm{OPT}(\pi) \leq 1.0$

Approximation Ratio

SimpleReversalSort (π)

1 for $i \leftarrow 1$ to $n-1$
$2 j \leftarrow$ position of element i in π (i.e., $\pi_{j}=i$)
3 if $j \neq i$
$4 \quad \pi \leftarrow \pi \rho(i, j)$
5 output π
6 if π is the identity permutation
7 return

Step 0: 612345
Step 1: 162345
Step 2: 126345
Step 3: 123645
Step 4: $1234 \underline{65}$
Step 5: 123456

Step 0: 612345
Step 1: 543216
Step 2: 123456

New Idea: Adjacencies

\therefore 四

$$
\pi=\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n-1} \pi_{n}
$$

- A pair of neighboring elements π_{i} and π_{i+1} are adjacent if

$$
\pi_{i+1}=\pi_{i} \pm 1
$$

- For example:

$$
\pi=19 \underline{3478} 2 \underline{65}
$$

- $(3,4)$ or $(7,8)$ and $(6,5)$ are adjacent pairs

Breakpoints

\therefore NTM

Breakpoints occur between neighboring nonadjacent elements:

$$
\pi=1|9| \underline{34}|\underline{78}| 2 \mid \underline{65}
$$

- Pairs $(1,9),(9,3),(4,7),(8,2)$ and $(2,5)$ define 5 breakpoints of permutation π
- $b(\pi)$ - \# breakpoints in permutation π

Extending Permutations

- One can place two elements $\pi_{0}=0$ and $\pi_{n+1}=n+1$ at the beginning and end of π respectively

$$
\pi=1|9| 34|78| 2 \mid 65
$$

Extending with 0 and 10

$$
\pi=01|9| 34|78| 2|65| 10
$$

A new breakpoint was created after extending
An extended permutation of n can have at most $(n+1)$ breakpoints, ($n-1$ between elements plus 2)

Reversal Distance and Breakpoints

- Breakpoints are the bottlenecks for sorting by reversals
- once they are removed, the permutation is sorted.
- Each "useful" reversal eliminates at least 1 and at most 2 breakpoints.
- Consider the following application of SimpleReversalSort(π):

$$
\left.\begin{array}{rlllllll}
\pi=2 & 3 & 1 & 4 & 6 & 5 & \\
0 & 2 & 3 & 1 & |4| 6 & 5 \mid 7 & b(\pi)=5 \\
0 & 1 & \mid & 3 & 2 & |4| 6 & 5 \mid 7 & b(\pi)=4 \\
0 & 1 & 2 & 3 & 4 & \mid 6 & 5
\end{array}\right] \quad b(\pi)=2
$$

Sorting By Reversals: A Better Greedy Algorithm

BreakpointReversalSort (π)

1 while $b(\pi)>0$
2 Among all possible reversals, choose reversal ρ minimizing $b(\pi \bullet \rho)$
$3 \pi \leftarrow \pi \cdot \rho(i, j)$
4 output π
5 return

The "greedy" concept here is to reduce as many breakpoints as possible

Does it always terminate?
How can we be sure that removing some breakpoints does not introduce others?

New Concept: Strips

- Strip: an interval between two consecutive breakpoints in a permutation
- Decreasing strip: strip of elements in decreasing order (e.g. 65 and 32).
- Increasing strip: strip of elements in increasing order (e.g. 78)

$$
019437825610
$$

- A single-element strip can be declared either increasing or decreasing. We will choose to declare them as decreasing with exception of extension strips (with 0 and $n+1$)

Reducing the Number of Breakpoints

Consider $\pi=14657832$

Theorem:
If permutation π contains at least one decreasing strip, then there exists a reversal ρ which decreases the number of breakpoints (i.e. $b(\pi \bullet \rho)<b(\pi)$).

How can we be sure that we don't introduce new breakpoints?

Proof by Example

Consider $\pi=14657832$

$$
\left.01|4| \begin{array}{ll}
0 & 5
\end{array}\right]
$$

- Choose the decreasing strip with the smallest element k in π
$-k$ will be rightmost in the strip
- Find $k-1$ in the permutation
- k-1 will be rightmost in an increasing strip
- Reverse the segment following $k-1$ up through k
- making k - 1 and k consecutive

Continuing the Example

 After the first reversal ...
reduced by 1 !

- Repeat until there is no decreasing strip

Continuing the Example

\therefore N(1)

Second application of the theorem

$$
0123|87| \underbrace{66|4| 9} \quad b(\pi)=4
$$

- Choose the decreasing strip with the smallest element k in π
- k will be rightmost in the strip
- Find $k-1$ in the permutation
- $k-1$ will be rightmost in an increasing strip
- Reverse the segment following k-1 up through k
- making $k-1$ and k consecutive

Continuing the Example

 After the reversal
reduced by 2 !
$\begin{array}{lll}01234 & 65 \mid 789\end{array} \quad b(\pi)=2$

- Repeat until there is no decreasing strip

Continuing the Example

\therefore N(1)

Third and final application of the theorem

$$
01234|65| \xrightarrow{789} \quad b(\pi)=2
$$

- Choose the decreasing strip with the smallest element k in π
$-k$ will be rightmost in the strip
- Find $k-1$ in the permutation
- $k-1$ will be rightmost in an increasing strip
- Reverse the segment following k-1 up through k
- making $k-1$ and k consecutive

Continuing the Example

 After the reversal

No breakpoint left!

$$
0123456789 \quad b(\pi)=0
$$

- Sequence is sorted

Things to Consider

 Consider $\pi=14657832$

$$
\begin{aligned}
& 01|4| 65|78| 32 \mid 9 \quad b(\pi)=5 \\
& 0123|87| 56|4| 9 \quad b(\pi)=4 \\
& 01234|65| 789 \quad b(\pi)=2 \\
& 0123456789 \quad b(\pi)=0 \\
& d(\pi)=3
\end{aligned}
$$

Does it work for any permutation?

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following step.

Potential Gotcha

$$
\begin{aligned}
& b(\pi)=3
\end{aligned}
$$

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort (π)
1 while $b(\pi)>0$
2 if π has a decreasing strip
3 Among all possible reversals, choose reversal ρ that minimizes $b(\pi \cdot \rho)$
4 else
$5 \quad$ Choose a reversal ρ that flips an increasing strip in π
$6 \pi \leftarrow \pi \bullet \rho$
7 output π
8 return

In Python


```
def improvedBreakpointReversalSort(seq):
    while hasBreakpoints(seq):
        increasing, decreasing = getStrips(seq)
        if len(decreasing) > 0:
        reversal = pickReversal(seq, decreasing)
        else:
        reversal = increasing[0]
    print seq, "reversal", reversal
    seq = doReversal(seq,reversal)
    print seq, "Sorted"
    return
```


Performance

- ImprovedBreakPointReversalSort is an approximation algorithm with a performance guarantee of no worse than 4
- It eliminates at least one breakpoint in every two steps; at most $2 b(\pi)$ steps
- Optimal algorithm eliminates at most 2 breakpoints in every step: $d(\pi) \geq b(\pi) / 2$
- Approximation ratio:

$$
\frac{2 b(\pi)}{d(\pi)} \leq \frac{2 b(\pi)}{\frac{b(\pi)}{2}}=4
$$

Both are Greedy Algorithms

- SimpleReversalSort • ImprovedBreakPointReversalSort
- Attempts to maximize $\operatorname{prefix}(\pi)$ at each step
- Attempts to reduce the number of breakpoints at each step
- Performance guarantee:
- Performance guarantee: 4

$$
\frac{n-1}{2}
$$

A Better Approximation Ratio?

- If there is a decreasing strip, the next reversal reduces $b(\pi)$ by at least one.
- The only bad case is when there is no decreasing strip, as then we need a reversal that does not reduce $b(\pi)$.
- If we could always choose a reversal reducing $b(\pi)$ and, at the same time, yielding a permutation that again has at least one decreasing strip, the bad case would never occur.
- If all reversals that reduce $b(\pi)$ create a permutation without decreasing strips, then there exists a reversal that reduces $b(\pi)$ by two?!
- When the algorithm creates a permutation without a decreasing strip, the previous reversal must have reduced $b(\pi)$ by two.
- At most $b(\pi)$ reversals are needed.
- Approximation ratio: $\frac{b(\pi)}{d(\pi)} \leq \frac{b(\pi)}{\frac{b(\pi)}{2}}=2$

Try it yourself

$$
0 \text { 1|3|8 } 7 \text { 6|2|4 } 5 \text { |9 } 10
$$

Next Time

- Dynamic Programming Algorithms

