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Genome Rearrangements 

Study Chapters 5.3-5.5 
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Recap 

• We developed a SimpleReversalSort algorithm that 
extends the sorted prefix on every iteration. 

• On            π :  6 1 2 3 4 5 
  Flip 1: 1 6 2 3 4 5 
  Flip 2: 1 2 6 3 4 5  
  Flip 3: 1 2 3 6 4 5 
  Flip 4: 1 2 3 4 6 5 
  Flip 5: 1 2 3 4 5 6 

• But it could have been sorted in two flips: 
         π :   6 1 2 3 4 5 
   Flip 1:  5 4 3 2 1 6      
      Flip 2:  1 2 3 4 5 6 
 

We probably don’t want to use 
this algorithm to estimate the 
reversal distance between two 
genomes  
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Approximation Algorithms 

• Today’s algorithms find approximate solutions 
rather than optimal solutions 

• The approximation ratio of an algorithm A on 
input π  is: 
                    A(π) / OPT(π) 
where  
        A(π) - solution produced by algorithm A                 

OPT(π) - optimal solution of the problem 
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Approximation Ratio/Performance Guarantee 

• Approximation ratio (performance guarantee) of 
algorithm A: max approximation ratio over all 
inputs of size n 

 
– For a minimizing algorithm A  (like ours): 

• Approx Ratio = max|π| = n A(π) / OPT(π) ≥ 1.0 
 

– For maximization algorithms: 
• Approx Ratio = min|π| = n A(π) / OPT(π) ≤ 1.0 
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Approximation Ratio 
SimpleReversalSort(π) 
1 for  i  1 to n – 1 
2    j  position of element i in π (i.e., πj = i) 
3    if  j ≠i 
4       π  π  ρ(i, j) 
5       output π 
6    if π is the identity permutation  
7       return 

approximation 
ratio? 

Step 0: 6 1 2 3 4 5 
Step 1: 1 6 2 3 4 5 
Step 2: 1 2 6 3 4 5  
Step 3: 1 2 3 6 4 5 
Step 4: 1 2 3 4 6 5 
Step 5: 1 2 3 4 5 6 

at least  
(n-1)/2  ... 

Step 0: 6 1 2 3 4 5 
Step 1: 5 4 3 2 1 6 
Step 2: 1 2 3 4 5 6 

any better 
greedy 

algorithm? 
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         π = π1π2π3…πn-1πn 
• A pair of neighboring elements π i and π i + 1  

are adjacent if  
                          πi+1 = πi  + 1 
• For example: 
        π = 1  9  3  4  7  8  2  6  5 
 
• (3, 4) or (7, 8) and (6,5) are adjacent pairs 

New Idea: Adjacencies 
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Breakpoints occur between neighboring non-
adjacent elements: 

 
                π = 1  9  3  4  7  8  2  6  5 
 
• Pairs  (1,9), (9,3), (4,7), (8,2) and (2,5) define 5 

breakpoints of permutation π  
 

• b(π) - # breakpoints in permutation π 
    

Breakpoints 
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• One can place two elements π 0 =0 and π n + 1=n+1 at 
the beginning and end of π respectively 

Extending with 0 and 10 

A new breakpoint was created after extending 

Extending Permutations 

π = 1  9  3  4  7  8  2  6  5 

π = 0 1  9  3  4  7  8  2  6  5 10 

An extended permutation of n can have at most  
(n+1) breakpoints, (n-1 between elements plus 2) 
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Reversal Distance and Breakpoints 
 Breakpoints are the bottlenecks for sorting by reversals  

 once they are removed, the permutation is sorted. 

 Each “useful” reversal eliminates at least 1 and at most 2 
breakpoints. 

 Consider the following application of  
  SimpleReversalSort(π): 

π = 2  3  1  4  6  5 
  0  2  3  1  4  6  5  7    
  0  1  3  2  4  6  5  7 
  0  1  2  3  4  6  5  7 
  0  1  2  3  4  5  6  7 

b(π) = 5 
b(π) = 4 
b(π) = 2 
b(π) = 0 

 

required
reversals ≥

b(π)
2
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Sorting By Reversals:  
A Better Greedy Algorithm 

BreakpointReversalSort(π) 
1 while b(π) > 0 
2  Among all possible reversals,    

choose reversal ρ minimizing b(π • ρ) 
3  π  π • ρ(i, j) 
4  output π 
5 return Does it always terminate? 

 
How can we be sure that removing 
some breakpoints does not introduce 
others? 

The “greedy” concept here is to 
reduce as many breakpoints as 
possible 
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New Concept: Strips 
• Strip: an interval between two consecutive 

breakpoints in a permutation  
– Decreasing strip: strip of elements in decreasing 

order (e.g. 6 5 and 3 2 ). 
– Increasing strip: strip of elements in increasing 

order (e.g. 7 8) 
                
                 0  1  9  4  3  7  8  2  5  6 10  
 
– A single-element strip can be declared either 

increasing or decreasing. We will choose to 
declare them as decreasing with exception of  
extension strips (with 0 and n+1) 
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Reducing the Number of Breakpoints 

If permutation π contains at least one 
decreasing strip, then there exists a 
reversal ρ  which decreases the number 
of breakpoints (i.e. b(π • ρ) < b(π) ). 

How can we be sure 
that we don’t 
introduce new 
breakpoints? 

Which 
reversal? 

Consider π = 1 4 6 5 7 8 3 2 

0  1  4  6  5  7  8  3  2  9  b(π) = 5 
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Proof by Example 

• Choose the decreasing strip with the smallest 
element k in π  
– k will be rightmost in the strip  

• Find k – 1 in the permutation  
– k-1 will be rightmost in an increasing strip 

• Reverse the segment following k-1 up through k 
– making k-1 and k consecutive 

Consider π = 1 4 6 5 7 8 3 2 

0  1  4  6  5  7  8  3  2  9 b(π) = 5 2 1 4  6  5  7  8  3  2 
Thus, removing 
the breakpoint 
flanking k-1  
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Continuing the Example 

• Repeat until there is no decreasing strip 

After the first reversal … 

0  1  2  3  8  7  5  6  4  9 b(π) = 4 1 

reduced by 1! 
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Continuing the Example 

Second application of the theorem 

0  1  2  3  8  7  5  6  4  9 b(π) = 4 4 3 8  7  5  6  4 
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• Choose the decreasing strip with the smallest 
element k in π  
– k will be rightmost in the strip  

• Find k – 1 in the permutation  
– k-1 will be rightmost in an increasing strip 

• Reverse the segment following k-1 up through k 
– making k-1 and k consecutive 
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Continuing the Example 

• Repeat until there is no decreasing strip 

After the reversal 

0  1  2  3  4  6  5  7  8  9 b(π) = 2 4 3 
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Continuing the Example 

Third and final application of the theorem 

0  1  2  3  4  6  5  7  8  9 b(π) = 2 5 4 6  5 
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• Choose the decreasing strip with the smallest 
element k in π  
– k will be rightmost in the strip  

• Find k – 1 in the permutation  
– k-1 will be rightmost in an increasing strip 

• Reverse the segment following k-1 up through k 
– making k-1 and k consecutive 
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Continuing the Example 

• Sequence is sorted 

After the reversal 

0  1  2  3  4  5  6  7  8  9 b(π) = 0 

No breakpoint left! 
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Things to Consider 

0  1  4  6  5  7  8  3  2  9  b(π) = 5 

Consider π = 1 4 6 5 7 8 3 2 

0  1  2  3  8  7  5  6  4  9 b(π) = 4 
0  1  2  3  4  6  5  7  8  9 b(π) = 2 

0  1  2  3  4  5  6  7  8  9 b(π) = 0 

d(π) = 3 

Does it work 
for any 

permutation? 
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Potential Gotcha 

• If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

• Then the number of breakpoints will be reduced in the 
following step. 

0  1  2  5  6  7  3  4  8  9 

no  
decreasing  

strips! 
b(π) = 3 

Create one! 

5  6  7 
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Potential Gotcha 

• If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

• Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  7  6  5  3  4  8  9 

one 
decreasing  

strip! 

b(π) = 3 5 

k k-1 

4 3  4 
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Potential Gotcha 

• If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

• Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  7  6  5  4  3  8  9 

one 
decreasing  

strip! 

b(π) = 2 5 

k k-1 

4 
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Potential Gotcha 

• If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

• Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  7  6  5  4  3  8  9 

one 
decreasing  

strip! 

b(π) = 2 3 

k k-1 

2 7  6  5  4  3 
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Potential Gotcha 

• If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

• However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

• Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  3  4  5  6  7  8  9 
DONE! 

b(π) = 0 

k k-1 

2 
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ImprovedBreakpointReversalSort 

ImprovedBreakpointReversalSort(π) 
1 while b(π) > 0 
2     if π has a decreasing strip 
3    Among all possible reversals, choose reversal ρ  
                              that   minimizes b(π • ρ) 
4     else 
5        Choose a reversal ρ that flips an increasing strip in π 
6   π  π • ρ 
7      output π 
8  return 

25 COMP 555  Bioalgorithms  (Fall 2014) 



In Python 
 
def improvedBreakpointReversalSort(seq): 
    while hasBreakpoints(seq): 
        increasing, decreasing = getStrips(seq) 
        if len(decreasing) > 0: 
           reversal = pickReversal(seq, decreasing) 
        else: 
           reversal = increasing[0] 
        print seq, "reversal", reversal 
        seq = doReversal(seq,reversal) 
    print seq, "Sorted” 
    return 
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Performance 

• ImprovedBreakPointReversalSort is an approximation 
algorithm with a performance guarantee of no worse 
than 4 
– It eliminates at least one breakpoint in every two 

steps;  at most 2b(π) steps 
– Optimal algorithm eliminates at most 2 breakpoints in 

every step: d(π) ≥ b(π) / 2 
– Approximation ratio: 

4

2
)(
)(2

)(
)(2

=≤ π
π

π
π

b
b

d
b

Can we obtain a 
better 

performance 
guarantee? 
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Both are Greedy Algorithms 
• SimpleReversalSort 

– Attempts to maximize 
prefix(π) at each step 

– Performance guarantee: 

• ImprovedBreakPointReversalSort 
– Attempts to reduce the number of 

breakpoints at each step 
– Performance guarantee: 4 

2
1−n

Mouse (X chrom.) 

Human (X chrom.) 
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A Better Approximation Ratio? 
• If there is a decreasing strip, the next reversal reduces 

b(π) by at least one. 
• The only bad case is when there is no decreasing strip, 

as then we need a reversal that does not reduce b(π). 
– If we could always choose a reversal reducing b(π) and, at the 

same time, yielding a permutation that again has at least one 
decreasing strip, the bad case would never occur. 

– If all reversals that reduce b(π) create a permutation without 
decreasing strips, then there exists a reversal that reduces b(π) 
by two?!  

– When the algorithm creates a permutation without a decreasing strip, 
the previous reversal must have reduced b(π) by two. 

• At most b(π) reversals are needed. 
• Approximation ratio:  2

2
)(
)(

)(
)(

=≤ π
π

π
π

b
b

d
b correct? 
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Try it yourself 

0  1  3  8  7  6  2  4  5  9  10 
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Next Time 
• Dynamic Programming Algorithms 
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