
9/11/2014

Lecture 8:
Dynamic Programming

Preliminaries

Study Chapter 6.1-6.3

1COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Dynamic Programming
• Dynamic Programming is a technique for

computing recurrence relations efficiently by
storing partial or intermediate results

• Three keys to constructing a dynamic
programming solution:
1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have

precomputed the needed partial results

2COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Manhattan Tourist Problem (MTP)
Imagine seeking a path
from source to destination
in a Manhattan-like city grid
that maximizes the number
of attractions (*) passed.
With the following caveat–
at every step you must make
progress towards the goal.

We treat the city map as a
graph, with “vertices” at
each corner, and weighted edges along each block. The
weights are the number of attractions along each block.

Destination
*

*

*

*
*

**

* *

*

*

Source

*

3COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Manhattan Tourist Problem: Formulation

Goal: Find the maximum-weight path in a
grid.

Input: A weighted grid G with two distinct
vertices, one labeled “source” and the other
labeled “destination”

Output: The best path (= greatest total
weight) in G from “source” to “destination”

4COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Greedy Algorithm Is Not Optimal

1 2 5

2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2promising start,
but leads to
bad choices!

source

dest
18

Greedy Algorithm:
At each step select
the maximum
weight direction.

Greed has a short
horizon

21 22

5COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP as a Dynamic Program

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i c

oo
rd

in
at

e

13

source

dest

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4 19

95

15

23

0

20

3

4

6COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP Strategy
• Instead of solving the Manhattan Tourist

problem directly, (i.e. the path from (0,0) to
(n,m)) we will solve a more general problem:
find the best path from (0,0) to any arbitrary
vertex (i,j).

• If the best path from (0,0) to (n,m) passes
through some vertex (i,j), then the path from
(0,0) to (i,j) must be the best. Otherwise, you
could increase your path weight by changing it.

7COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Simple Recursive Program

MT(n,m)
if n = 0 and m = 0

return 0
if n = 0

return MT(0,m-1) + weight of edge from (0,m-1) to (0,m)
if m = 0

return MT(n-1, 0) + weight of edge from (n-1,0) to (n,0)
x MT(n-1,m) + weight of edge from (n-1, m) to (n,m)
y MT(n,m-1) + weight of edge from (n, m-1) to (n,m)
return max(x,y)

It evaluates the same

recurrence repeatedly

What’s wrong with this approach?

8COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

1

5

0 1

0

1

i

source

1

5
S1,0 = 5

S0,1 = 1

• Calculate optimal path score for each vertex in the graph

• Each vertex’s score is the maximum of the prior vertices
score plus the weight of the connecting edge in between

MTP: Ordering Evaluations
j

First, fill in the easy ones!
Those 1 block
from the source

9COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 33

-5

j

Then grow the solution a
block at a time while tabulating
the results for each intersection

Note: We’ll use our table to keep
track of two things. The value of
the best path to the given
intersection, and the direction
from where it came

First, fill in the easy ones!

10COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5

8
103

5

-5
9

13
1-5

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

j

Keep growing…
(3 blocks)

11COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j

And growing…
(4 blocks)

12COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

And growing…
(5 blocks)

13COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

Once the
“destination” node
(intersection) is
reached, we’re done.

Our table will have
the answer of the
maximum number of
attractions stored
in the entry
associated with the
destination.

We use the “links”
back in the table to
recover the path.

(Backtracking)
dest

14COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

MTP: Recurrence

Computing the score for a point (i,j) by the
recurrence relation:

si, j = max si-1, j + weight of the edge between (i-1, j) and (i, j)

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is O(nm) for a n by m grid
(You visit all intersections once, and perform 2 tests)

(n = # of rows, m = # of columns)

Path to the intersection from the left

Path to the intersection from above

15COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Manhattan Is Not A Perfect Grid

What about diagonals?
Broadway, Greenwich, etc.

• Easy to fix. Just adds more recursion cases.
• The score at point B is given by:

sB = max
sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

B

A3

A1

A2

16COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Generalizing Manhattan to a Directed Graph

Computing the score for point x is given by the
recurrence relation:

sx = max

of

sy + weight of vertex (y, x) where

y є Predecessors(x)

• Predecessors (x) – set of vertices having edges
leading to x

• In a graph G(V, E)
(V is the set of all vertices and E is the set of all edges)
each edge and each vertex is considered once

17COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Traveling in the Grid

• The only hitch is that one must decide on an
order to visit the vertices

• We must assure that by the time the vertex x is
analyzed, the values, sy, for all its predecessors, y,
should be computed – otherwise we are in
trouble.

• We need to traverse the vertices in some order

• How to find such order for any directed graph?

???
18COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

DAG: Directed Acyclic Graph
• Since most cities are not perfect regular grids,

we represent paths in them as a DAGs
• DAG for Dressing in the morning problem

19COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Topological Ordering

• A numbering of vertices of the graph is called
topological ordering of the DAG if every edge of
the DAG connects a vertex with a smaller label to
a vertex with a larger label

• In other words, if vertices are positioned on a
line in an increasing order of labels then all edges
go from left to right.

20COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Topological Ordering

• 2 different topological orderings of the DAG

21COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Best Path in DAG Problem

• Goal: Find highest weight path between two
vertices in a weighted DAG

• Input: A weighted DAG G with source and
destination vertices

• Output: A highest weight path in G from source
to destination

22COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Longest Path in DAG: Dynamic Programming

• Suppose vertex v has indegree 3 and
predecessors {u1, u2, u3}

• Longest path to v from source is:

In General:
sv = maxu (su + weight of edge from u to v)

sv = max
of

su1 + weight of edge from u1 to v
su2 + weight of edge from u2 to v
su3 + weight of edge from u3 to v

23COMP 555 Bioalgorithms (Fall 2014)

9/11/2014

Evaluation order

• Any topological ordering of vertices will work!

24COMP 555 Bioalgorithms (Fall 2014)

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i c

oo
rd

in
at

e
source

dest

4

3

0

3

1

3

1 0 2 4 3

3

1

1

4

2

7

3

3

2

4

3

0

2

4

2

4

2

2

01 2 4 7 11

3 5 8 12 16

6 9 13 17 20

10 14 18 21 23

15 19 22 24 25

9/11/2014

Traversing the Manhattan Grid

• We chose to evaluate our
table in a particular order.
Uniform distances from the
source (all points one block
away, then 2 blocks, etc.)

• Other strategies:
– a) Column by column
– b) Row by row
– c) Along diagonals

• This choice can have
performance implications

a) b)

c)

25COMP 555 Bioalgorithms (Fall 2014)

Next Time
• Return to biology
• Solving sequence alignments using

Dynamic Programming

9/11/2014 26COMP 555 Bioalgorithms (Fall 2014)

