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Lecture 9:
Sequence Alignments

Study Chapter 6.4-6.8
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Outline
• Edit Distances
• Longest Common Subsequence
• Global Sequence Alignment 
• Scoring Matrices
• Local Sequence Alignment
• Alignment with Affine Gap Penalties
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Review
• Dynamic Programming is a technique for 

computing recurrence relations efficiently by 
storing partial results

• Three keys:
1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have the 

needed partial results

Amt 25 20 10 5 1 Amt 25 20 10 5 1

1¢ 1 42¢ 2 2

2¢ 2 43¢ 2 3

3¢ 3 44¢ 2 4

4¢ 4 45¢ 2 1

5¢ 1 46¢ 2 1 1

6¢ 1 1 47¢ 2 1 2

7¢ 1 2 48¢ 2 1 3

8¢ 1 3 49¢ 2 1 4

9¢ 1 4 50¢ 2

10¢ 1 51¢ 2 1

11¢ 1 1 52¢ 2 2
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A Biological DP Problem
• How to measure the similarity between a pair of 

nucleotide or amino acid sequences
• In the Motif-Searching Problem (Chapter 4) we 

used Hamming distance as our measure
• Is Hamming distance the best measure?
• How can we distinguish matches that occur by 

chance from slightly modified patterns?
• What sorts of modifications should we allow?
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Best Sequence Matches
• Depends on how you define “Best”
• Consider the two DNA sequences v and w :

• The Hamming distance: dH(v, w)  =  8 is large 
but the sequences are very similar

• What if we allowed insertions and deletions?

v  : AT AT AT AT
AT AT AT ATw :
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Allowing Insertions and Deletions

v  : AT AT AT AT
AT AT AT ATw : --
--

By shifting one sequence over one position:

• The edit distance: d (v, w)  =  2.

• Hamming distance neglects insertions and 
deletions in DNA
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Edit Distance

Levenshtein (1966) introduced the notion of 
an “edit distance” between two strings as the 
minimum number of elementary operations 
(insertions, deletions, and substitutions) to 
transform one string into the other.

(But, he gave no solution)

d(v,w) = MIN number of elementary operations
to transform v w
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Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance: 
dH(v, w)=8 d(v, w)=2

Computing Hamming distance             Computing edit distance
is a trivial task                             is a non-trivial task

W = TATATATA

Just one shift
Lines them up

V = - ATATATAT

Hamming distance 
always compares
ith letter of v with
ith letter of w

Edit distance 
may compare
ith letter of v with
jth letter of w
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Edit Distance: Example
TGCATAT  ATCCGAT in 5 steps

TGCATAT  (DELETE last T)
TGCATA  (DELETE last A)
TGCAT        (INSERT A at front)
ATGCAT      (SUBSTITUTE C for 3rd G)
ATCCAT      (INSERT G before last A) 
ATCCGAT       (Done)

What is the edit distance?  5?
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Edit Distance: Example (cont’d)

TGCATAT  ATCCGAT in 4 steps

TGCATAT    (INSERT A at front)
ATGCATAT  (DELETE 6th T)
ATGCAAT    (SUBSTITUTE G for 5th A)
ATGCGAT    (SUBSTITUTE C for 3rd G)
ATCCGAT (Done)

Is 4 the minimum edit distance?    3?
A little jargon: Since the effect of insertion in one string can be accomplished via a deletion in 
the other string these two operations are quite similar. Often algorithms will consider them 
together as a single operation called INDEL
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Longest Common Subsequence
• A special case of edit distance where no 

substitutions are allowed
• A subsequence need not be contiguous, but 

order must be preserved
Ex. If v = ATTGCTA then AGCA and TTTA are 
subsequences of v, but TGTT and ACGA are not

• For sequences v and w, the edit distance d(v,w) 
and the LCS(v,w) are related by:

d(v,w) = len(v) + len(w) – 2 len( LCS(v,w) )
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LCS as a Dynamic Program

• All possible possible alignments can be 
represented as a path from 
the string’s beginning 
(source) to its end 
(destination)

• Horizontal edges add gaps
in v. Vertical edges add
gaps in w. Diagonal edges
are a match  

• Notice that we’ve only
included valid diagonal
edges in our graph

ε   A  T  C  G  T  A  C
A
T
G
T
T
A
T

w

v
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• Introduce coordinates for the grid
• All valid paths from the

source to the destination
represent some alignment

ε   A  T  C  G  T  A  C

9/16/2014

Various Alignments

A
T
G
T
T
A
T

0 1  2   3  4   5  6  7

v

w

0
1
2
3
4
5
6
7

0 1 2 2 3 4 5 6 7 7
v A T _ G T T A T _
w A T C G T _ A _ C
0 1 2 3 4 5 5 6 6 7  

Path:
(0,0), (1,1), (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)
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Various Alignments

• Introduce coordinates for the grid
• All valid paths from the

source to the destination
represent some alignment A

T
G
T
T
A
T

w

v 0
1
2
3
4
5
6
7

0 1 2 2 3 4 5 6 6 7
v A T _ G T T A _ T
w A T C G _ T A C _
0 1 2 3 4 4 5 6 7 7  

Path:
(0,0), (1,1), (2,2), (2,3),
(3,4), (4,4), (5,5), (6,6),
(6,7), (7,7)

ε   A  T  C  G  T  A  C

0 1  2   3  4   5  6  7
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Even Bad Alignments

• Introduce coordinates for the grid
• All valid paths from the

source to the destination
represent some alignment A

T
G
T
T
A
T

w

v 0
1
2
3
4
5
6
7

0 0 0 0 0 0 1 2 3 4 5 6 7 7
v _ _ _ _ _ A T G T T A T _
w A T C G T A _ _ _ _ _ _ T
0 1 2 3 4 5 6 6 6 6 6 6 6 7 

Path:
(0,0), (0,1), (0,2), (0,3),
(0,4), (0,5), (1,6), (2,6),
(3,6), (4,6), (5,6), (6,6),
(7,6), (7,7)

ε   A  T  C  G  T  A  C

0 1  2   3  4   5  6  7
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What makes a Good Alignment?
• Using as many diagonal segments (matches) as 

possible
• The end of a good alignment from (j...k) begins 

with a good alignment from (i..j)
• Same as Manhattan Tourist problem, where the 

sites are the diagonal streets!
• Set diagonal street weights = 1, and horizontal 

and vertical weights = 0
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Alignment: Dynamic Program
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w A T C G T A C

v

A

T

G

T

T
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Dynamic Programming Example

Initialize 1st row and 
1st column to be all 
zeroes. 

Or, to be more 
precise, initialize 0th

row and 0th column to 
be all zeroes.

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0

T 0

G 0

T 0

T 0

A 0

T 0
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1

G 0 1

T 0 1

T 0 1

A 0 1

T 0 1
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,

1
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s
s

wvifs
s
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2

T 0 1 2

T 0 1 2

A 0 1 2

T 0 1 2





 









1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2

T 0 1 2 2

A 0 1 2 2

T 0 1 2 2





 









1,
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1,1

,

1
max
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ji

iiji

ji
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s

wvifs
s
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3

A 0 1 2 2 3

T 0 1 2 2 3





 









1,

,1

1,1

,

1
max

ji

ji
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ji

s
s

wvifs
s
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4

T 0 1 2 2 3 4
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1,1

,

1
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wvifs
s
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4 5 5

T 0 1 2 2 3 4 5
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,

1
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s
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4 5 5

T 0 1 2 2 3 4 5 5
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Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4 5 5

T 0 1 2 2 3 4 5 5





 









1,

,1

1,1

,

1
max

ji

ji
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ji

s
s

wvifs
s

v = AT-GTTA-T 
w = ATCG-TAC-
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Alignment: Backtracking
Arrows  show where the score came from.   

if from the top

if from the left

if vi = wj

Our table only keeps 
track of the longest 
common subsequence so 
far. How do we figure 
out what the 
subsequence is?

We’ll need a second
table to keep track of 
the decisions we made… 
and we’ll use it to 
backtrack to our 
answer.
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LCS Code

def LCS(v, w):
s = zeros((len(v)+1,len(w)+1), Int)
b = zeros((len(v)+1,len(w)+1), Int)
for i in xrange(1,len(v)+1):

for j in xrange(1,len(w)+1):
if (v[i-1] == w[j-1]):

s[i,j] = max(s[i-1,j], s[i,j-1], s[i-1,j-1] + 1)
else:

s[i,j] = max(s[i-1,j], s[i,j-1])
if (s[i,j] == s[i,j-1]):

b[i,j] = 1
elif (s[i,j] == s[i-1,j]):

b[i,j] = 2
else:

b[i,j] = 3
return (s[len(v),len(w)], b)
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Backtracking Code
def PrintLCS(b,v,i,j):

if ((i == 0) or (j == 0)):
return

if (b[i,j] == 3):
PrintLCS(b,v,i-1,j-1)
print v[i-1],

else:
if (b[i,j] == 2):

PrintLCS(b,v,i-1,j)
else:

PrintLCS(b,v,i,j-1)
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Changing the Scoring
• Longest Common Subsequence (LCS) problem

– the simplest form of sequence alignment
– allows only insertions and deletions (no mismatches). 

• In the LCS Problem, we scored 1 for matches 
and 0 for indels

• Consider penalizing indels and mismatches with 
negative scores

• Simplest scoring schema: 
+1 : match premium
-μ : mismatch penalty
-σ : indel penalty
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Simple Scoring
• When mismatches are penalized by –μ
• indels are penalized by –σ
• matches are rewarded with +1

the resulting score is:

score = #matches – μ(#mismatches) – σ (#indels)
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The Global Alignment Problem
Find the best alignment between two strings under a given scoring schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score

↑ or → = -б
= 1 if match
= -µ if mismatch

si-1,j-1 +1 if vi = wj
si,j =  max       s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ
s i,j-1 - σ

 : mismatch penalty
σ : indel penalty
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Scoring Matrices 
To generalize scoring, consider a (4+1) x(4+1) scoring 

matrix δ for nucleotides {A,C,T,G}.
In the case of an amino acid sequence alignment, the 

scoring matrix would be a (20+1)x(20+1) size.  
The addition of 1 is to include the score for comparison of a 

gap character “-”.
This will simplify the algorithm as follows:

si-1,j-1 + δ (vi, wj)
si,j =    max      s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)
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Making a Scoring Matrix
• Scoring matrices are created based on biological 

evidence. 
• Alignments can be thought of as two sequences 

that differ due to mutations.  
• Some of these mutations have little effect on the 

protein’s function, therefore some penalties, 
δ(vi , wj), are less harsh than others.
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Scoring Matrix: Example
A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although R 
(arginine) and K (lysine) are 
different amino acids, they 
have a positive score.

• Why? They are both 
positively charged amino 
acids and hydrophillic 
may not greatly change 
function of protein.
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Conservation
• Amino acid changes that tend to preserve the 

electro-chemical properties of the original 
residue
– Polar to polar

•aspartate  glutamate
– Nonpolar to nonpolar

•alanine  valine
– Similarly behaving residues

•leucine to isoleucine
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Scoring matrices
• Amino acid substitution matrices

– PAM
– BLOSUM

• DNA substitution matrices
– DNA is less conserved than protein sequences
– Less effective to compare coding regions at 

nucleotide level
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PAM
• Point Accepted Mutation (Dayhoff et al.)

– based on observed differences in closely related proteins
• 1 PAM = PAM1 = 1% average change of all amino acid 

positions
– Unit of time
– After 100 PAMs of evolution, not every residue will 

have changed
•some residues may have mutated several times
•some residues may have returned to their 

original state
•some residues may not changed at all
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PAMX

• PAMx = PAM1
x

– PAM250 = PAM1
250

• PAM250 is a widely used scoring matrix:

Ala  Arg  Asn  Asp  Cys  Gln  Glu  Gly  His  Ile  Leu  Lys ...
A    R    N    D    C    Q    E    G    H    I    L    K  ...

Ala A    13    6    9    9    5    8    9   12    6    8    6    7  ...
Arg R     3   17    4    3    2    5    3    2    6    3    2    9
Asn N     4    4    6    7    2    5    6    4    6    3    2    5
Asp D     5    4    8   11    1    7   10    5    6    3    2    5
Cys C     2    1    1    1   52    1    1    2    2    2    1    1
Gln Q     3    5    5    6    1   10    7    3    7    2    3    5
...
Trp W     0    2    0    0    0    0    0    0    1    0    1    0
Tyr Y     1    1    2    1    3    1    1    1    3    2    2    1
Val V     7    4    4    4    4    4    4    4    5    4   15   10
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BLOSUM
• Blocks Substitution Matrix 
• Scores derived from observations of the 

frequencies of substitutions in blocks of local 
alignments in related proteins

• Matrix name indicates evolutionary distance
– BLOSUM62 was created using sequences 

sharing no more than 62% identity

40COMP 555  Bioalgorithms (Fall 2014)



9/16/2014

The Blosum50 Scoring Matrix
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Local vs. Global Alignment
• The Global Alignment Problem tries to find the 

longest path between vertices (0,0) and (n,m) in 
the edit graph.

• The Local Alignment Problem tries to find the 
longest path among paths between arbitrary 
vertices (i,j) and (i’, j’) in the edit graph.
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Local vs. Global Alignment
• The Global Alignment Problem tries to find the longest 

path between vertices (0,0) and (n,m) in the edit graph.

• The Local Alignment Problem tries to find the longest 
path among paths between arbitrary vertices
(i,j) and (i’, j’) in the edit graph.

• In the edit graph with negatively-scored edges, Local 
Alignment may score higher than Global Alignment
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Local vs. Global Alignment (cont’d)

• Global Alignment

• Local Alignment—better alignment to find 
conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
|  || |  ||  | | | |||    || | | |  | ||||   |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc
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Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” 
Global Alignment to 
get Local
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Local Alignments: Why?
• Two genes in different species may be similar 

over short conserved regions and dissimilar over 
remaining regions.

• Example:
– Homeobox genes have a short region called 

the homeodomain that is highly conserved 
between species. 

– A global alignment would not find the 
homeodomain because it would try to align 
the ENTIRE sequence
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The Local Alignment Problem
• Goal: Find the best local alignment between two 

strings
• Input : Strings v, w and scoring matrix δ
• Output : Alignment of substrings of v and w 

whose alignment score is maximum among all 
possible alignment of all possible substrings
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Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” 
Global Alignment to 
get Local

48COMP 555  Bioalgorithms (Fall 2014)



9/16/2014

Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Example
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Local Alignment: Running Time
• Long run time O(n4):

- In the grid of size n x n
there are ~n2 vertices (i,j) 
that may serve as a source.
- For each such vertex 
computing alignments from 
(i,j) to (i’,j’) takes O(n2) time

• We can do better by building 
“free rides” into the score
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Local Alignment: Free Rides

Vertex (0,0)

The dashed edges represent the free rides from 
(0,0) to every other node.

Yeah, a free ride!
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The Local Alignment Recurrence

• The largest value of si,j over the whole edit graph is 
the score of the best local alignment.

• The recurrence:

0     
si,j = max si-1,j-1 + δ (vi, wj)

s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

Notice there is only 
this change from the 
original recurrence of 
a Global Alignment
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The Local Alignment Recurrence

• The largest value of si,j over the whole edit graph is 
the score of the best local alignment.

• The recurrence:

0     
si,j = max     si-1,j-1 + δ (vi, wj)

s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

Power of ZERO: there is 
only this change from the 
original recurrence of a 
Global Alignment - since 
there is only one “free ride” 
edge entering into every 
vertex
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Next Time
• We finish Dynamic programming
• Alignment with Gap Penalities
• Multiple Alignment problem
• Gene Prediction

– Statistical Approaches
– Similarity Approaches

• Splice Alignments
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