
9/16/2014

Lecture 9:
Sequence Alignments

Study Chapter 6.4-6.8

1COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Outline
• Edit Distances
• Longest Common Subsequence
• Global Sequence Alignment
• Scoring Matrices
• Local Sequence Alignment
• Alignment with Affine Gap Penalties

2COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Review
• Dynamic Programming is a technique for

computing recurrence relations efficiently by
storing partial results

• Three keys:
1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have the

needed partial results

Amt 25 20 10 5 1 Amt 25 20 10 5 1

1¢ 1 42¢ 2 2

2¢ 2 43¢ 2 3

3¢ 3 44¢ 2 4

4¢ 4 45¢ 2 1

5¢ 1 46¢ 2 1 1

6¢ 1 1 47¢ 2 1 2

7¢ 1 2 48¢ 2 1 3

8¢ 1 3 49¢ 2 1 4

9¢ 1 4 50¢ 2

10¢ 1 51¢ 2 1

11¢ 1 1 52¢ 2 2

3COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

A Biological DP Problem
• How to measure the similarity between a pair of

nucleotide or amino acid sequences
• In the Motif-Searching Problem (Chapter 4) we

used Hamming distance as our measure
• Is Hamming distance the best measure?
• How can we distinguish matches that occur by

chance from slightly modified patterns?
• What sorts of modifications should we allow?

4COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Best Sequence Matches
• Depends on how you define “Best”
• Consider the two DNA sequences v and w :

• The Hamming distance: dH(v, w) = 8 is large
but the sequences are very similar

• What if we allowed insertions and deletions?

v : AT AT AT AT
AT AT AT ATw :

5COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Allowing Insertions and Deletions

v : AT AT AT AT
AT AT AT ATw : --
--

By shifting one sequence over one position:

• The edit distance: d (v, w) = 2.

• Hamming distance neglects insertions and
deletions in DNA

6COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Edit Distance

Levenshtein (1966) introduced the notion of
an “edit distance” between two strings as the
minimum number of elementary operations
(insertions, deletions, and substitutions) to
transform one string into the other.

(But, he gave no solution)

d(v,w) = MIN number of elementary operations
to transform v w

7COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance:
dH(v, w)=8 d(v, w)=2

Computing Hamming distance Computing edit distance
is a trivial task is a non-trivial task

W = TATATATA

Just one shift
Lines them up

V = - ATATATAT

Hamming distance
always compares
ith letter of v with
ith letter of w

Edit distance
may compare
ith letter of v with
jth letter of w

8COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Edit Distance: Example
TGCATAT ATCCGAT in 5 steps

TGCATAT (DELETE last T)
TGCATA (DELETE last A)
TGCAT (INSERT A at front)
ATGCAT (SUBSTITUTE C for 3rd G)
ATCCAT (INSERT G before last A)
ATCCGAT (Done)

What is the edit distance? 5?

9COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Edit Distance: Example (cont’d)

TGCATAT ATCCGAT in 4 steps

TGCATAT (INSERT A at front)
ATGCATAT (DELETE 6th T)
ATGCAAT (SUBSTITUTE G for 5th A)
ATGCGAT (SUBSTITUTE C for 3rd G)
ATCCGAT (Done)

Is 4 the minimum edit distance? 3?
A little jargon: Since the effect of insertion in one string can be accomplished via a deletion in
the other string these two operations are quite similar. Often algorithms will consider them
together as a single operation called INDEL

10COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Longest Common Subsequence
• A special case of edit distance where no

substitutions are allowed
• A subsequence need not be contiguous, but

order must be preserved
Ex. If v = ATTGCTA then AGCA and TTTA are
subsequences of v, but TGTT and ACGA are not

• For sequences v and w, the edit distance d(v,w)
and the LCS(v,w) are related by:

d(v,w) = len(v) + len(w) – 2 len(LCS(v,w))

11COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

LCS as a Dynamic Program

• All possible possible alignments can be
represented as a path from
the string’s beginning
(source) to its end
(destination)

• Horizontal edges add gaps
in v. Vertical edges add
gaps in w. Diagonal edges
are a match

• Notice that we’ve only
included valid diagonal
edges in our graph

ε A T C G T A C
A
T
G
T
T
A
T

w

v

12COMP 555 Bioalgorithms (Fall 2014)

• Introduce coordinates for the grid
• All valid paths from the

source to the destination
represent some alignment

ε A T C G T A C

9/16/2014

Various Alignments

A
T
G
T
T
A
T

0 1 2 3 4 5 6 7

v

w

0
1
2
3
4
5
6
7

0 1 2 2 3 4 5 6 7 7
v A T _ G T T A T _
w A T C G T _ A _ C
0 1 2 3 4 5 5 6 6 7

Path:
(0,0), (1,1), (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)

13COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Various Alignments

• Introduce coordinates for the grid
• All valid paths from the

source to the destination
represent some alignment A

T
G
T
T
A
T

w

v 0
1
2
3
4
5
6
7

0 1 2 2 3 4 5 6 6 7
v A T _ G T T A _ T
w A T C G _ T A C _
0 1 2 3 4 4 5 6 7 7

Path:
(0,0), (1,1), (2,2), (2,3),
(3,4), (4,4), (5,5), (6,6),
(6,7), (7,7)

ε A T C G T A C

0 1 2 3 4 5 6 7

14COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Even Bad Alignments

• Introduce coordinates for the grid
• All valid paths from the

source to the destination
represent some alignment A

T
G
T
T
A
T

w

v 0
1
2
3
4
5
6
7

0 0 0 0 0 0 1 2 3 4 5 6 7 7
v _ _ _ _ _ A T G T T A T _
w A T C G T A _ _ _ _ _ _ T
0 1 2 3 4 5 6 6 6 6 6 6 6 7

Path:
(0,0), (0,1), (0,2), (0,3),
(0,4), (0,5), (1,6), (2,6),
(3,6), (4,6), (5,6), (6,6),
(7,6), (7,7)

ε A T C G T A C

0 1 2 3 4 5 6 7

15COMP 555 Bioalgorithms (Fall 2014)

What makes a Good Alignment?
• Using as many diagonal segments (matches) as

possible
• The end of a good alignment from (j...k) begins

with a good alignment from (i..j)
• Same as Manhattan Tourist problem, where the

sites are the diagonal streets!
• Set diagonal street weights = 1, and horizontal

and vertical weights = 0

9/16/2014 16COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Alignment: Dynamic Program

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

w A T C G T A C

v

A

T

G

T

T

A

T

17COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

Initialize 1st row and
1st column to be all
zeroes.

Or, to be more
precise, initialize 0th

row and 0th column to
be all zeroes.

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0

T 0

G 0

T 0

T 0

A 0

T 0

18COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1

G 0 1

T 0 1

T 0 1

A 0 1

T 0 1

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

19COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2

T 0 1 2

T 0 1 2

A 0 1 2

T 0 1 2

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

20COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2

T 0 1 2 2

A 0 1 2 2

T 0 1 2 2

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

21COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3

A 0 1 2 2 3

T 0 1 2 2 3

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

22COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4

T 0 1 2 2 3 4

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

23COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4 5 5

T 0 1 2 2 3 4 5

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

24COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4 5 5

T 0 1 2 2 3 4 5 5

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

25COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Dynamic Programming Example

w A T C G T A C

v 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1

T 0 1 2 2 2 2 2 2

G 0 1 2 2 3 3 3 3

T 0 1 2 2 3 4 4 4

T 0 1 2 2 3 4 4 4

A 0 1 2 2 3 4 5 5

T 0 1 2 2 3 4 5 5

1,

,1

1,1

,

1
max

ji

ji

iiji

ji

s
s

wvifs
s

v = AT-GTTA-T
w = ATCG-TAC-

26COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Alignment: Backtracking
Arrows show where the score came from.

if from the top

if from the left

if vi = wj

Our table only keeps
track of the longest
common subsequence so
far. How do we figure
out what the
subsequence is?

We’ll need a second
table to keep track of
the decisions we made…
and we’ll use it to
backtrack to our
answer.

27COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

LCS Code

def LCS(v, w):
s = zeros((len(v)+1,len(w)+1), Int)
b = zeros((len(v)+1,len(w)+1), Int)
for i in xrange(1,len(v)+1):

for j in xrange(1,len(w)+1):
if (v[i-1] == w[j-1]):

s[i,j] = max(s[i-1,j], s[i,j-1], s[i-1,j-1] + 1)
else:

s[i,j] = max(s[i-1,j], s[i,j-1])
if (s[i,j] == s[i,j-1]):

b[i,j] = 1
elif (s[i,j] == s[i-1,j]):

b[i,j] = 2
else:

b[i,j] = 3
return (s[len(v),len(w)], b)

28COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Backtracking Code
def PrintLCS(b,v,i,j):

if ((i == 0) or (j == 0)):
return

if (b[i,j] == 3):
PrintLCS(b,v,i-1,j-1)
print v[i-1],

else:
if (b[i,j] == 2):

PrintLCS(b,v,i-1,j)
else:

PrintLCS(b,v,i,j-1)

29COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Changing the Scoring
• Longest Common Subsequence (LCS) problem

– the simplest form of sequence alignment
– allows only insertions and deletions (no mismatches).

• In the LCS Problem, we scored 1 for matches
and 0 for indels

• Consider penalizing indels and mismatches with
negative scores

• Simplest scoring schema:
+1 : match premium
-μ : mismatch penalty
-σ : indel penalty

30COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Simple Scoring
• When mismatches are penalized by –μ
• indels are penalized by –σ
• matches are rewarded with +1

the resulting score is:

score = #matches – μ(#mismatches) – σ (#indels)

31COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

The Global Alignment Problem
Find the best alignment between two strings under a given scoring schema

Input : Strings v and w and a scoring schema
Output : Alignment of maximum score

↑ or → = -б
= 1 if match
= -µ if mismatch

si-1,j-1 +1 if vi = wj
si,j = max s i-1,j-1 -µ if vi ≠ wj

s i-1,j - σ
s i,j-1 - σ

 : mismatch penalty
σ : indel penalty

32COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Scoring Matrices
To generalize scoring, consider a (4+1) x(4+1) scoring

matrix δ for nucleotides {A,C,T,G}.
In the case of an amino acid sequence alignment, the

scoring matrix would be a (20+1)x(20+1) size.
The addition of 1 is to include the score for comparison of a

gap character “-”.
This will simplify the algorithm as follows:

si-1,j-1 + δ (vi, wj)
si,j = max s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)

33COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Making a Scoring Matrix
• Scoring matrices are created based on biological

evidence.
• Alignments can be thought of as two sequences

that differ due to mutations.
• Some of these mutations have little effect on the

protein’s function, therefore some penalties,
δ(vi , wj), are less harsh than others.

34COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Scoring Matrix: Example
A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although R
(arginine) and K (lysine) are
different amino acids, they
have a positive score.

• Why? They are both
positively charged amino
acids and hydrophillic
may not greatly change
function of protein.

35COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Conservation
• Amino acid changes that tend to preserve the

electro-chemical properties of the original
residue
– Polar to polar

•aspartate glutamate
– Nonpolar to nonpolar

•alanine valine
– Similarly behaving residues

•leucine to isoleucine

36COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Scoring matrices
• Amino acid substitution matrices

– PAM
– BLOSUM

• DNA substitution matrices
– DNA is less conserved than protein sequences
– Less effective to compare coding regions at

nucleotide level

37COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

PAM
• Point Accepted Mutation (Dayhoff et al.)

– based on observed differences in closely related proteins
• 1 PAM = PAM1 = 1% average change of all amino acid

positions
– Unit of time
– After 100 PAMs of evolution, not every residue will

have changed
•some residues may have mutated several times
•some residues may have returned to their

original state
•some residues may not changed at all

38COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

PAMX

• PAMx = PAM1
x

– PAM250 = PAM1
250

• PAM250 is a widely used scoring matrix:

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys ...
A R N D C Q E G H I L K ...

Ala A 13 6 9 9 5 8 9 12 6 8 6 7 ...
Arg R 3 17 4 3 2 5 3 2 6 3 2 9
Asn N 4 4 6 7 2 5 6 4 6 3 2 5
Asp D 5 4 8 11 1 7 10 5 6 3 2 5
Cys C 2 1 1 1 52 1 1 2 2 2 1 1
Gln Q 3 5 5 6 1 10 7 3 7 2 3 5
...
Trp W 0 2 0 0 0 0 0 0 1 0 1 0
Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1
Val V 7 4 4 4 4 4 4 4 5 4 15 10

39COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

BLOSUM
• Blocks Substitution Matrix
• Scores derived from observations of the

frequencies of substitutions in blocks of local
alignments in related proteins

• Matrix name indicates evolutionary distance
– BLOSUM62 was created using sequences

sharing no more than 62% identity

40COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

The Blosum50 Scoring Matrix

41COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local vs. Global Alignment
• The Global Alignment Problem tries to find the

longest path between vertices (0,0) and (n,m) in
the edit graph.

• The Local Alignment Problem tries to find the
longest path among paths between arbitrary
vertices (i,j) and (i’, j’) in the edit graph.

42COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local vs. Global Alignment
• The Global Alignment Problem tries to find the longest

path between vertices (0,0) and (n,m) in the edit graph.

• The Local Alignment Problem tries to find the longest
path among paths between arbitrary vertices
(i,j) and (i’, j’) in the edit graph.

• In the edit graph with negatively-scored edges, Local
Alignment may score higher than Global Alignment

43COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local vs. Global Alignment (cont’d)

• Global Alignment

• Local Alignment—better alignment to find
conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

44COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”
Global Alignment to
get Local

45COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignments: Why?
• Two genes in different species may be similar

over short conserved regions and dissimilar over
remaining regions.

• Example:
– Homeobox genes have a short region called

the homeodomain that is highly conserved
between species.

– A global alignment would not find the
homeodomain because it would try to align
the ENTIRE sequence

46COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

The Local Alignment Problem
• Goal: Find the best local alignment between two

strings
• Input : Strings v, w and scoring matrix δ
• Output : Alignment of substrings of v and w

whose alignment score is maximum among all
possible alignment of all possible substrings

47COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”
Global Alignment to
get Local

48COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Example

49COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Example

50COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Example

51COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Example

52COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Example

53COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Running Time
• Long run time O(n4):

- In the grid of size n x n
there are ~n2 vertices (i,j)
that may serve as a source.
- For each such vertex
computing alignments from
(i,j) to (i’,j’) takes O(n2) time

• We can do better by building
“free rides” into the score

54COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Local Alignment: Free Rides

Vertex (0,0)

The dashed edges represent the free rides from
(0,0) to every other node.

Yeah, a free ride!

55COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

The Local Alignment Recurrence

• The largest value of si,j over the whole edit graph is
the score of the best local alignment.

• The recurrence:

0
si,j = max si-1,j-1 + δ (vi, wj)

s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

Notice there is only
this change from the
original recurrence of
a Global Alignment

56COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

The Local Alignment Recurrence

• The largest value of si,j over the whole edit graph is
the score of the best local alignment.

• The recurrence:

0
si,j = max si-1,j-1 + δ (vi, wj)

s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

Power of ZERO: there is
only this change from the
original recurrence of a
Global Alignment - since
there is only one “free ride”
edge entering into every
vertex

57COMP 555 Bioalgorithms (Fall 2014)

9/16/2014

Next Time
• We finish Dynamic programming
• Alignment with Gap Penalities
• Multiple Alignment problem
• Gene Prediction

– Statistical Approaches
– Similarity Approaches

• Splice Alignments

58COMP 555 Bioalgorithms (Fall 2014)

