

Lecture 10: Local Alignments

Study Chapter 6.8-6.10

Outline

-)
 - Edit Distances
 - Longest Common Subsequence
 - Global Sequence Alignment
 - Scoring Matrices
 - Local Sequence Alignment
 - Alignment with Affine Gap Penalties
 - Multiple Alignment problem

Local vs. Global Alignment

PROPRIED TO THE PROPRIED TO TH

• The Global Alignment Problem tries to find the best path between vertices (0,0) and (n,m) in the edit graph.

• The <u>Local Alignment Problem</u> tries to find the best path among paths between **arbitrary vertices** (i,j) and (i',j') in the edit graph.

 In the edit graph with negatively-scored edges, Local Alignment may score higher than Global Alignment

The Local Alignment Recurrence

- The largest value of $s_{i,j}$ over the whole edit graph is the score of the best local alignment.
- Smith-Waterman local alignment
- The recurrence:

$$s_{i,j} = max$$

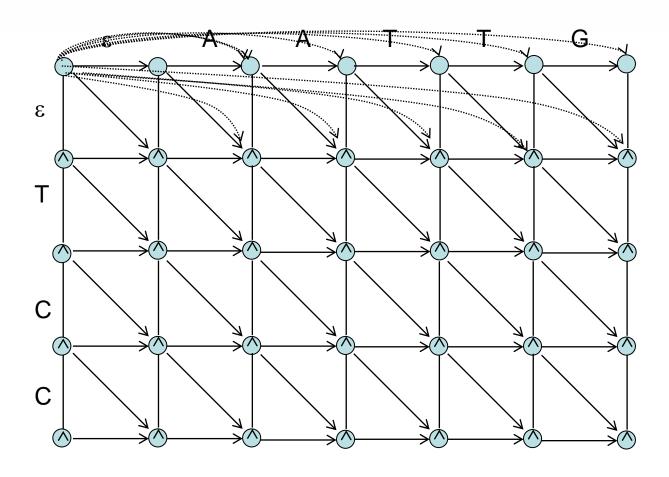
$$s_{i-1,j-1} + \delta(v_i, w_j)$$

$$s_{i-1,j} + \delta(v_i, -)$$

$$s_{i,j-1} + \delta(-, w_j)$$

Power of ZERO: there is only this change from the original recurrence of a Global Alignment - since there is only one "free ride" edge entering into every vertex

Smith-Waterman Local Alignment



An Example

C T G G A A G G

0

```
j=0
i=
   G
   C
3
   Α
   G
5
   Α
   G
   C
       0
8
   Α
       0
9
10 T
```

0

Match = 5, Mismatch = -4, Indel = -7

10

0

11

Α

0

12

0

 P_{0}

6

0

A A

0

10

С

0

0

11

Α

0

12

0

```
j=0
i=
1
    G 0
             \mathbf{S}_{1,1}
    C
3
    Α
        0
5
    Α
    G
7
    C
8
    Α
        0
9
10 T
```

0

0

G G

6

0

Α

Α

0

10

0

С

0

11

Α

0

12

Т

0

```
j=0
i=
                   0
0
1
            5
   G
2
3
   Α
   G
5
   Α
   G
7
   C
8
   Α
9
```

Match = 5, Mismatch = -4, Indel = -7

10 T

T G G

6

0

A A G

```
j=0
i=
                   0
0
                   0
    G
    C
        0
                  S_{2,2}
3
   Α
    G
5
    Α
        0
    G
        0
7
    C
        0
8
    Α
        0
9
```

Match = 5, Mismatch = -4, Indel = -7

10

С

0

11

Α

0

12

Т

0

10 T

$$S_{2,2} = \max \begin{cases} S_{1,1} + S_{C,C} = 5 + 5 = 10 \\ S_{2,1} + w = 0 - 7 = -7 \\ S_{1,2} + w = 0 - 7 = -7 \\ 0 \end{cases} = 10$$

Match = 5, Mismatch = -4, Indel = -7

12

0

10 T

0

	0	G	С
0	0	0	0
G	0	5	0
С	0	0	10
Α	0	0	
G	0	5	
Α	0	0	
G	0	5	
С	0	0	
Α	0	0	
С	0	0	

 \mathcal{A}

	0	G	С	T	G	G	Α	A	G	G	С	Α	T
0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	5	0	0	5	5	0	0	5	5	0	0	0
С	0	0	10	3	0	1	1	0	0	1	10	3	0
A	0	0	3	6	0	0	6	6	0	0	3	15	8
G	0	5	0	0	11	5	0	2	11	5	0	8	11
A	0	0	1	0	4	7	10	5	4	7	1	5	4
G	0	5	0	0	5	9	3	6	10	9	3	0	1
С	0	0	10	3	0	2	5	0	3	6	14	7	0
A	0	0	3	6	0	0	7	10	3	0	7	19	12
С	0	0	5	0	2	0	0	3	6	0	5	12	15
Т	0	0	0	10	3	0	0	0	0	2	0	5	17

 \mathcal{A}

٧		w -	\longrightarrow										
\downarrow	0	G	С	Т	G	G	Α	Α	G	G	С	Α	T
0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	5	0	0	5	5 <	0	0	5	5	0	0	0
С	0	0	10	3	0	1	1	0	0	1	10	3	0
Α	0	0	3	6	0	0	6	~ 6	0	0	3	15	8
G	0	5	0	0	11	5	0	2	11	5	0	8	11
Α	0	0	1	0	4	7	10	5	4	7	1	5	4
G	0	5	0	0	5	9	3	6	10	9 -	3	0	1
С	0	0	10	3	0	2	5	0	3	6	14	7	0
Α	0	0	3	6	0	0	7	10	3	0	7	149	12
С	0	0	5	0	2	0	0	3	6	0	5	12	15
T	0	0	0	10	3	0	0	0	0	2	0	5	17

6 matches: $6 \times 5 = 30$

1 mismatch: -4

1 indel: -7

Total: 19

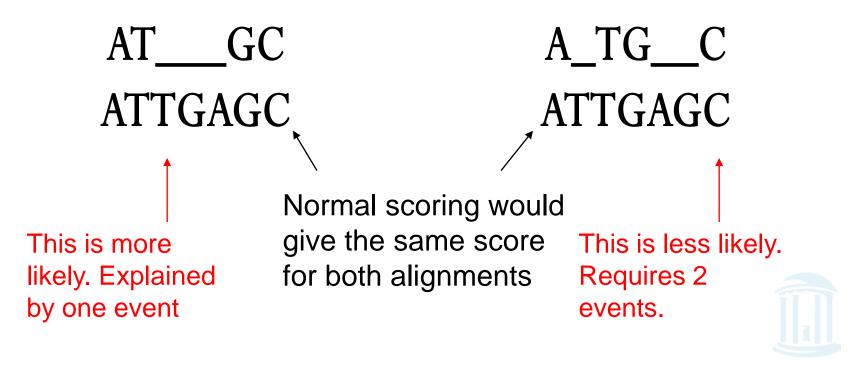
Scoring Indels: Naive Approach

- A fixed penalty σ is given to every indel:
 - - σ for 1 indel,
 - -2σ for 2 consecutive indels
 - -3σ for 3 consecutive indels, etc.

Can be too severe penalty for a series of 100 consecutive indels

Affine Gap Penalties

• In nature, a series of *k* indels often come as a single event rather than a series of *k* single nucleotide events:



Accounting for Gaps

- Gaps- contiguous sequence of indels in one of the rows
- Modify the scoring for a gap of length x to be: $-(\rho + \sigma x)$

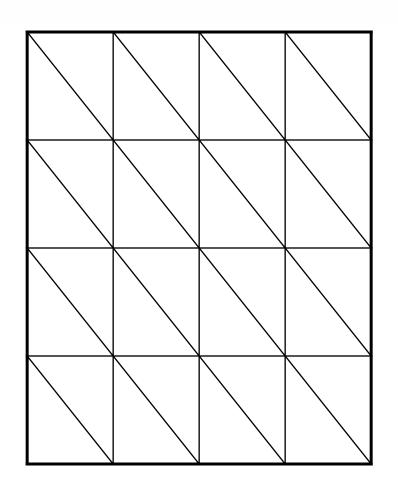
where $\rho+\sigma>0$ is the penalty for introducing a gap: gap opening penalty and σ is the cost of extending it further ($\rho+\sigma>>\sigma$): gap extension penalty

because you do not want to add too much of a penalty for further extending the gap, once it is opened.

Affine Gap Penalties

- Gap penalties:
 - $-\rho$ - σ when there is 1 indel
 - $-\rho$ -2 σ when there are 2 indels
 - $-\rho$ -3 σ when there are 3 indels, etc.
 - $-\rho$ $x \sigma$ (-gap opening x gap extensions)
- Somehow reduced penalties (as compared to naïve scoring) are given to runs of horizontal and vertical edges

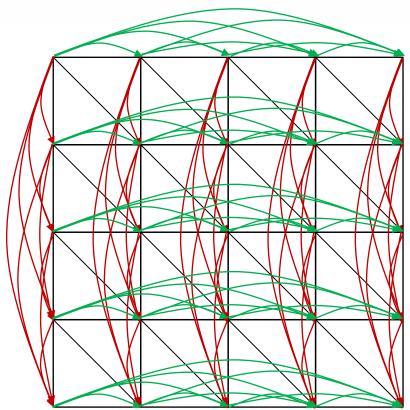
Affine Gap Penalties and Edit Graph



To reflect affine gap penalties we have to add "long" horizontal and vertical edges to the edit graph. Each such edge of length *x* should have weight

$$-\rho - x * \sigma$$

Adding "Affine Penalty" Edges to the Edit Graph



There are many such edges!

Adding them to the graph increases the running time of the alignment algorithm by a factor of *n* (where *n* is the number of vertices)

So the complexity increases from $O(n^2)$ to $O(n^3)$

Affine Gap Penalty Recurrences

Keep track of these intermediate values in two new tables

$$|s_{i,j}| = \int_{s_{i-1,j}} |s_{i,j}| - \sigma$$

$$|s_{i-1,j}| - (\rho + \sigma)$$

$$\overrightarrow{s_{i,j}} = \begin{cases} \overrightarrow{s}_{i,j-1} - \sigma \\ s_{i,j-1} - (\rho + \sigma) \end{cases}$$

$$s_{i,j} = \begin{cases} s_{i-1,j-1} + \delta(v_i, w_j) \\ \downarrow s_{i,j} \\ \overline{s}_{i,j} \end{cases}$$

Continue Gap in *w* (deletion)
Start Gap in *w* (deletion): from middle

Continue Gap in v (insertion)

Start Gap in *v* (insertion):from middle

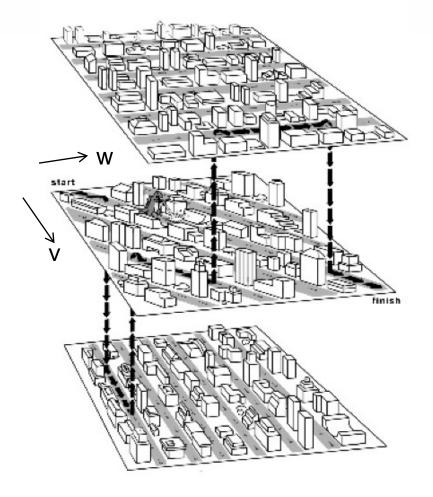
Match or Mismatch

End deletion: from top

End insertion: from left

Complexity O(nm)

The 3-leveled Manhattan Grid



Gaps in v

Matches/Mismatches

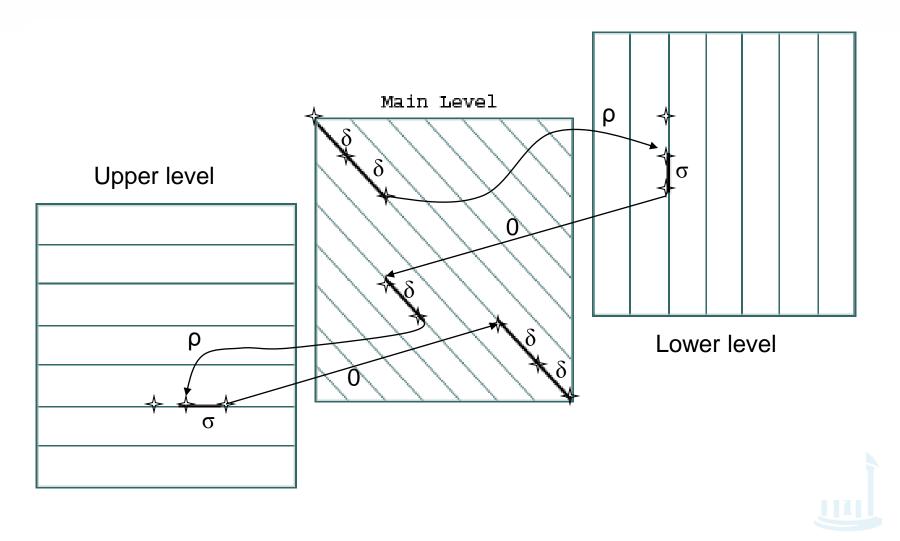
Gaps in w

Affine Gap Penalties and 3 Layer Manhattan Grid

PROPRIED TO THE PROPRIED TO TH

- The three recurrences for the scoring algorithm creates a 3-layered graph.
- The top level creates/extends gaps in the sequence *v*.
- The bottom level creates/extends gaps in sequence *w*.
- The middle level extends matches and mismatches.

Manhattan in 3 Layers



Switching between 3 Layers

- Levels:
 - The main level is for diagonal edges
 - The lower level is for vertical edges
 - The upper level is for horizontal edges
- A jumping penalty is assigned to moving from the main level to either the upper level or the lower level $(-\rho \sigma)$
- There is a gap extension penalty for each continuation on a level other than the main level $(-\sigma)$

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

• Score: more conserved columns, better alignment

Alignment Paths

Align 3 sequences: ATGC, AATC, ATGC

0	1	1	2	3	4
	A		Т	G	С
0	1	2	3	3	4
	A	A	Т		С
0	A 0	A 1	T 2	3	C 4

x coordinate

y coordinate

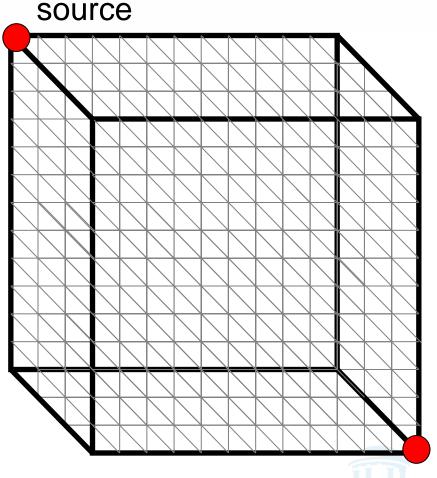
z coordinate

• Resulting path in (x,y,z) space:

$$(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

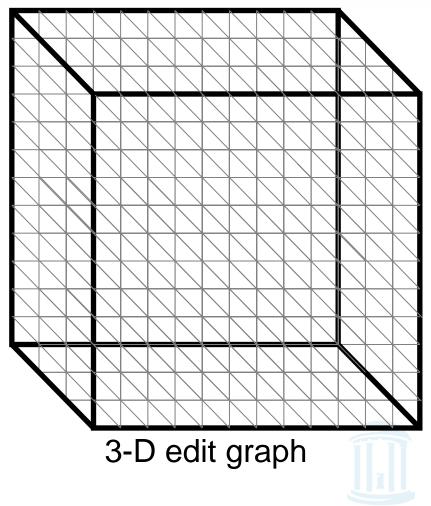


2-D vs 3-D Alignment Grid

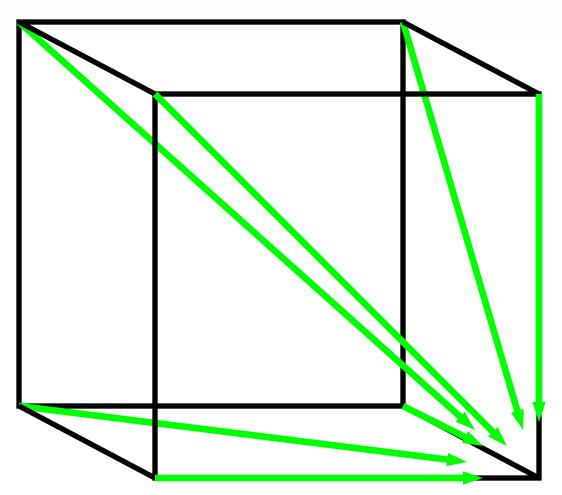
PROPRED TO THE PROPRE

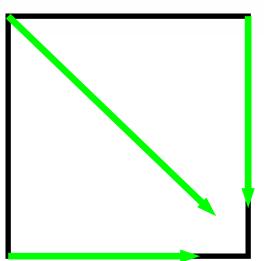


2-D edit graph



2-D cell versus 2-D Alignment Cell

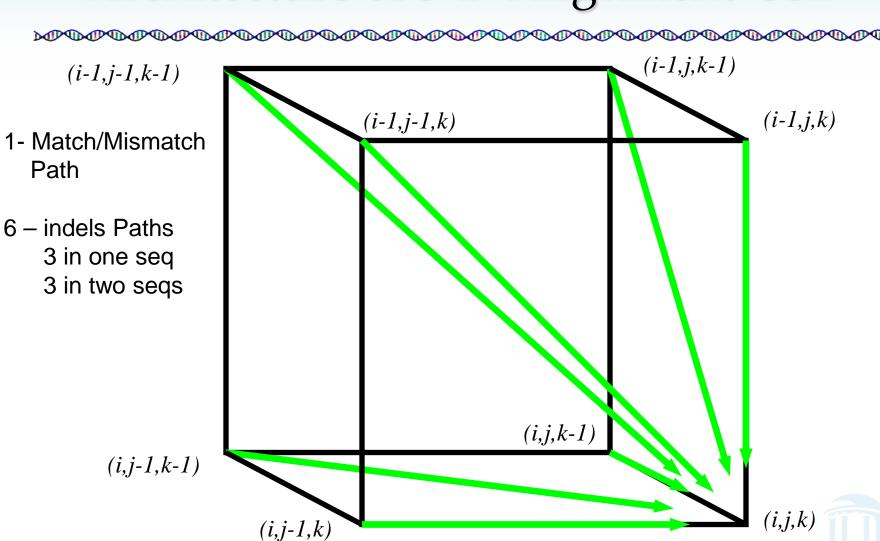




In **2-D**, 3 edges lead to each interior vertex

In 3-D, 7 edges lead to each interior vertex

Architecture of 3-D Alignment Cell



Multiple Alignment: Dynamic Programming

 $s_{i,j,k} = \max \left\{ \begin{array}{l} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_{j^*, -}) \\ s_{i-1,j,k-1} + \delta(v_i, w_j, u_k) \\ s_{i,j-1,k-1} + \delta(_, w_j, u_k) \\ s_{i-1,j,k} + \delta(v_{i^*, -}, _) \\ s_{i,j-1,k} + \delta(_, w_{j^*, -}) \\ s_{i,j-1,k} + \delta(_, w_{j^*, -}) \\ s_{i,j,k-1} + \delta(_, _, u_k) \end{array} \right. \text{ cube diagonal: no indels}$

• $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length n, the run time is $7n^3$; $O(n^3)$
- For k sequences, build a k-dimensional Manhattan, with run time $(2^k-1)(n^k) = O(2^k n^k)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-Cy: AC-GC-GAGz: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```


Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC-GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

Can we construct a multiple alignment that induces them?

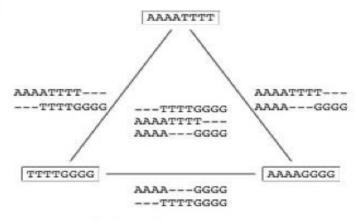
NOT ALWAYS

Why? Because pairwise alignments may be arbitrarily inconsistent

Combining Optimal Pairwise Alignments into Multiple Alignment

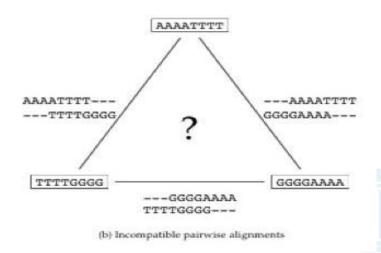
 \mathcal{A}

Can combine pairwise alignments into multiple alignment



(a) Compatible pairwise alignments

Can *not* combine pairwise alignments into multiple alignment



Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences
- Are we stuck, or is there some other trick?

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of k-1 sequences. Repeat
- This is a heuristic greedy method

Greedy Approach: Example

Consider these 4 sequences

```
s1 GATTCAs2 GTCTGAs3 GATATTs4 GTCAGC
```

w/Scoring Matrix: Match = 1 Mismatch = -1 Indel = -1

Greedy Approach: Example

• There are $\binom{4}{2}$ = 6 possible alignments

```
s2 GTCTGA
s4 GTCAGC (score = 2)

s1 GAT-TCA
s2 G-TCTGA (score = 1)

s1 GAT-TCA
s2 G-TCTGA (score = 1)

s1 GAT-TCA
s3 GAT-TCA
s3 GAT-ATT
s4 G-TCAGC (score = -1)
```

Greedy Approach: Example

 s_2 and s_4 are closest; combine:

$$egin{array}{c} s2 & ext{GTCTGA} \ s4 & ext{GTCAGC} \end{array}
ightarrow egin{array}{c} s_{2,\,4} \ ext{(profile)} \end{array} ext{GTCt/aGa/c} \end{array}$$

new set of 3 sequences:

$$egin{array}{lll} oldsymbol{S}_1 & \operatorname{GATTCA} \ oldsymbol{S}_3 & \operatorname{GATATT} & \operatorname{Repeat} \ oldsymbol{S}_{2,\ 4} & \operatorname{GTCt/aGa/c} \ \end{array}$$

Progressive Alignment

- *Progressive alignment* is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences
- CLUSTAL

ClustalW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

PROPRED TO THE PROPRE

- Aligns each sequence against others giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

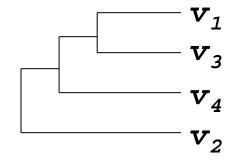
	_	\mathbf{v}_{2}	_	_	
$oldsymbol{v}_{1}$	_				
\mathbf{v}_{2}	.17	_			
\mathbf{v}_{3}	.87	.28	_		(17 magna 17 0/ identical)
${\bf v}_4$	- .17 .87 .59	.33	.62	_	(.17 means 17 % identical)

Step 2: Guide Tree

- Create Guide Tree using the similarity matrix
 - ClustalW uses the neighbor-joining method (we will discuss this later in the course, in the section on clustering)
 - Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

	$oldsymbol{v}_{ exttt{1}}$	\mathbf{v}_{2}	\mathbf{v}_3	\mathbf{v}_4
$oldsymbol{v}_{1}$	_			
\mathbf{v}_{2}	.17	_		
\mathbf{v}_3	.87	.28	_	
\mathbf{v}_4	.59	.33	.62	_



Cal cul ate:

$$v_{1, 3}$$
 = alignment (v_1, v_3)
 $v_{1, 3, 4}$ = alignment $((v_{1, 3}), v_4)$
 $v_{1, 2, 3, 4}$ = alignment $((v_{1, 3, 4}), v_2)$

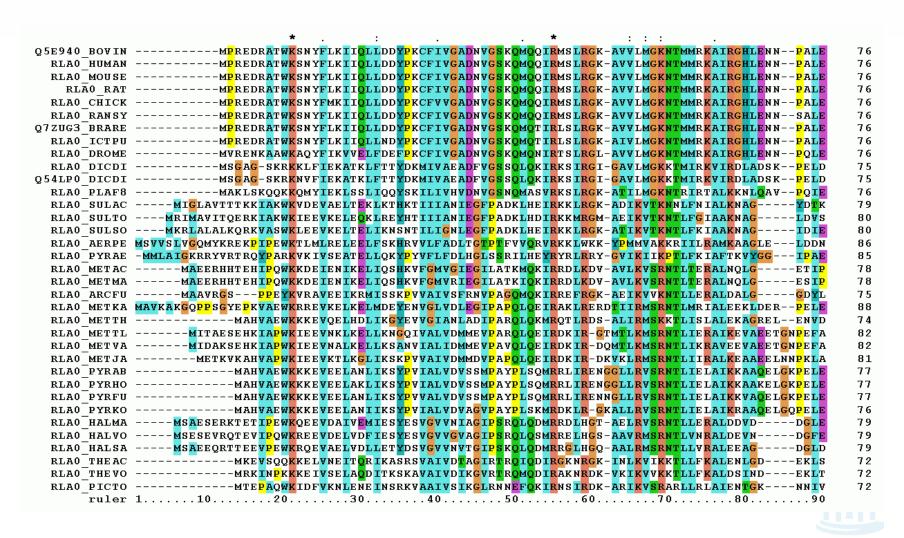
Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

Dots and stars show how well-conserved a column is.

ClustalW Alignment

DODODODODODODODODODODODODODODODODODODODODO



Multiple Alignments: Scoring

PROPRIED TO THE PROPRIED TO TH

 Number of matches (multiple longest common subsequence score)

- Entropy score
- Sum of pairs (SP-Score)

Multiple LCS Score

particle of the particle of th

 A column is a "match" if all the letters in the column are the same

> AAA AAA AAT ATC

Only good for very similar sequences

Profile Representation of Multiple Alignment

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment
 - $p_A = 1$, $p_T = p_G = p_C = 0$ (1st column)
 - $p_A = 0.75$, $p_T = 0.25$, $p_G = p_C = 0$ (2nd column)
 - $p_A = 0.50$, $p_T = 0.25$, $p_C = 0.25$ $p_G = 0$ (3rd column)
- Compute entropy of each column

$$-\sum_{X=A,T,G,C} p_X \log p_X$$

Entropy: Example

$$entropy \begin{pmatrix} A \\ A \\ A \\ A \end{pmatrix} = 0$$
 Best case

Worst case
$$entropy \begin{pmatrix} A \\ T \\ G \end{pmatrix} = -\sum \frac{1}{4} \log \frac{1}{4} = -4(\frac{1}{4} * -2) = 2$$

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

$$\Sigma_{\text{over all columns}} \Sigma_{X=A,T,G,C} p_X \log p_X$$

Entropy of an Alignment: Example

column entropy:

$$-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)$$

•Column 2 =
$$-[(1/4)*log(1/4) + (3/4)*log(3/4) + 0*log0 + 0*log0]$$

= $-[(1/4)*(-2) + (3/4)*(-.415)] = 0.811$

•Column 3 =
$$-[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)]$$

= $4*-[(1/4)*(-2)] = +2.0$

•Alignment Entropy = 0 + 0.811 + 2.0 = 2.811

Sum of Pairs Score(SP-Score)

Consider pairwise alignment of sequences

$$a_i$$
 and a_j

imposed by a multiple alignment of k sequences

Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

$$s^*(a_i, a_j)$$

• Sum up the pairwise scores for a multiple alignment:

$$s(a_1,\ldots,a_k) = \sum_{i,j} s^*(a_i, a_j)$$

Computing SP-Score

TO THE TOTAL TO THE TOTAL TOTA

Aligning 4 sequences: 6 pairwise alignments

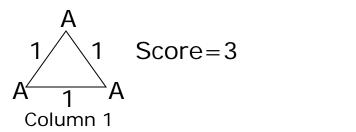
Given a_1, a_2, a_3, a_4 :

$$s(a_1...a_4) = \Sigma s^*(a_1,a_j) = s^*(a_1,a_2) + s^*(a_1,a_3) + s^*(a_1,a_4) + s^*(a_2,a_3) + s^*(a_2,a_4) + s^*(a_3,a_4)$$

SP-Score: Example

To calculate each column:

$$s'(a_1...a_k) = \sum_{i,j} s^*(a_i,a_j) \leftarrow {k \choose 2}$$
 Pairs of Sequences



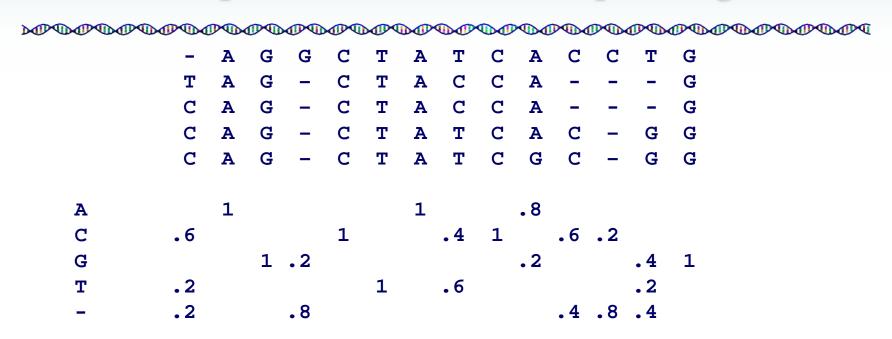
$$G - \mu$$

$$C - \mu G$$

$$Column 3$$
Score = 1 - 2\mu

Score =
$$1 - 2\mu$$

Profile Representation of Multiple Alignment



Thus far we have aligned a sequence against a sequence

Can we align a **sequence against a profile?**

Can we align a profile against a profile?

Next Time

• Gene Prediction

