Lecture 17:
Suffix Arrays and the
Burrows-Wheeler Transform

Not in Book
Recall Suffix Trees

- A compressed keyword tree of suffixes from a given sequence
- Leaf nodes are labeled by the starting location of the suffix that terminates there
- Note that we now add an end-of-string character ‘$’
Suffix Tree Features

• How many leaves in a sequence of length m? $O(m)$

• How many nodes?
 (assume an alphabet of k characters) $O(m)$

• Given a suffix tree for a sequence. How long to determine if a pattern of length n occurs in the sequence? $O(n)$
Suffix Tree Features

• How much storage?
 – Just for the edge strings $O(m^2)$
 – Trick: Rather than storing an actual string at each edge, we can instead store 2 integer offsets into the original text

• In practice the storage overhead of Suffix Trees is too high, $O(m)$ vertices with data and $O(m)$ edges with associated data
There exists a depth-first traversal that corresponds to lexicographical ordering (alphabetizing) all suffixes:

11. $
10. i$
7. ippi$
4. issippi$
1. ississippi$
0. mississippi$
9. pi$
8. ppi$
6. sippi$
3. sissippi$
5. ssippi$
2. ssissippi$
One could exploit this property to construct a Suffix Tree

- Make a list of all suffixes: $O(m)$
- Sort them: $O(m \log m)$
- Traverse the list from beginning to end while threading each suffix into the tree created so far, when the suffix deviates from a known path in the tree, add a new node with a path to a leaf.

- Slower than the $O(m)$ Ukkonen algorithm given last time
• Sorting however did capture important aspects of the suffix trees structure
• A sorted list of tree-path traversals, our sorted list, can be considered a “compressed” version of a suffix tree.
• Save only the index to the beginning of each suffix: 11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2

• Key: Argsort(text): returns the indices of the sorted elements of a text
Argsort

• One of the smallest Python functions yet:

```python
def argsort(text):
    return sorted(range(len(text)), cmp=lambda i,j: -1 if text[i:] < text[j:] else 1)

print argsort("mississippi$")
```

$ python suffixarray.py
[11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]

• What types of queries can be made from this “compressed” form of a suffix tree
• We call this a “Suffix Array”
Suffix Array Queries

- Has similar capabilities to a Suffix Tree
- Does ‘sip’ occur in “mississippi”?
- How many times does ‘is’ occur?
- How many ‘i’’s?
- What is the longest repeated subsequence?
- Given a suffix array for a sequence. How long to determine if a pattern of length n occurs in the sequence? $O(n \log m)$
Searching Suffix Arrays

• Separate functions for finding the first and last occurrence of a pattern via binary search

```python
def findFirst(pattern, text, sfa):
    # Finds the index of the first occurrence of pattern in the suffix array
    hi = len(text)
    lo = 0
    while (lo < hi):
        mid = (lo+hi)//2
        if (pattern > text[sfa[mid]:]):
            lo = mid + 1
        else:
            hi = mid
    return lo

def findLast(pattern, text, sfa):
    # Finds the index of the last occurrence of pattern in the suffix array
    hi = len(text)
    lo = 0
    m = len(pattern)
    while (lo < hi):
        mid = (lo+hi)//2
        i = sfa[mid]
        if (pattern >= text[i:i+m]):
            lo = mid + 1
        else:
            hi = mid
    return lo-1
```
Augmenting Suffix Arrays

- It is possible to augment a suffix array to facilitate converting it into a suffix tree
- Longest Common Prefix, (lcp)
 - Note than branches, and, hence, interior nodes if needed are introduced immediately following a shared prefix of two adjacent suffix array entries

$$
\begin{align*}
\text{\$} & \quad \text{lcp} = 0 \\
\text{i} & \quad \text{lcp} = 1 \\
\text{ippi} & \quad \text{lcp} = 1 \\
\text{issippi} & \quad \text{lcp} = 4 \\
\text{ississippi} & \quad \text{lcp} = 0 \\
\text{mississippi} & \quad \text{lcp} = 0
\end{align*}
$$

- If we store the lcp along with the suffix array it becomes a trivial matter to reconstruct and traverse the corresponding Suffix Array
Construction of Suffix Array

• Strategy thus far
 – build suffix tree, and enumerate elements of SA via depth first traversal
 – $O(m)$ time to construct suffix tree via Ukkonen’s alg
 – $O(m)$ space, but too large in practice

• Linear time direct construction of SA
 – Kärkkäinen, Sanders, Burkhart algorithm (2005)
 – $O(m)$ time by relatively simple asymmetric divide and conquer algorithm
 – space efficient
Faster search in Suffix Array

- Reduce complexity to $O(n + \log m)$
 - Idea: augment SA with longest common prefix (LCP)
 - Interleave binary search and matching of query
 - LCP insures no need to recheck prefix of query
Even faster search

• Use hashtable for length h prefixes
 – $h = \log_k m$ (where k is the size of the alphabet)
 – reduces expected length of search interval to $O(1)$

• Time complexity
 – $O(1)$ expected if not present
 – $O(n)$ expected if present
 – $O(n + \lg m)$ worst case

• Space complexity $O(m)$
 – Accelerator: m words
 – Suffix array: m words
Another Approach

• There is another trick for finding patterns in a text, it comes from a rather odd remapping of the original text called a “Burrows-Wheeler Transform” or BWT.

• BWTs have a long history. They were invented back in the 1980s as a technique for improving lossless compression. BWTs have recently been rediscovered and used for DNA sequence alignments. Most notably by the Bowtie and BWA programs for sequence alignments.
String Rotation

Before describing the BWT, we need to define the notion of circular rotation of a string. A rotation of i moves the prefix i, to the string’s end making it a suffix.

\[
\text{Rotate} \left(\text{“tarheel$”}, 3 \right) \rightarrow \text{“heel$tar”}
\]
\[
\text{Rotate} \left(\text{“tarheel$”}, 7 \right) \rightarrow \text{“$tarheel”}
\]
\[
\text{Rotate} \left(\text{“tarheel$”}, 1 \right) \rightarrow \text{“arheel$t”}
\]
BWT Algorithm

BWT (string text)

\[\text{table}_i = \text{Rotate}(\text{text}, i) \] for \(i = 0..\text{len}(\text{text})-1 \)

sort table alphabetically

return (last column of the table)

\[
\begin{array}{c|c}
\text{tarheel}\$ & \$\text{tarheel}\$ \\
\text{arheel}\$t & \text{arheel}\$t \\
r\text{heel}\$ta & \text{eel}\$\text{tarh} \\
\text{heel}\$\text{tar} & \text{el}\$\text{tarhe} \\
\text{eel}\$\text{tarh} & \text{heel}\$\text{tar} \\
\text{el}\$\text{tarhe} & \text{l}\$\text{tarhee} \\
\text{l}\$\text{tarhee} & \text{r}\$\text{heel}\$ta \\
\$\text{tarheel} & \text{tarheel}\$ \\
\end{array}
\]

\[\text{BTW(“tarheels$”)} = \text{“ltherea$”} \]
BWT in Python

• Once again, this is one of the simpler algorithms that we’ve seen

```python
def BWT(s):
    # create a table, with rows of all possible rotations of s
    rotation = [s[i:] + s[:i] for i in xrange(len(s))]
    # sort rows alphabetically
    rotation.sort()
    # return (last column of the table)
    return "".join([r[-1] for r in rotation])
```

• Input string of length m, output a messed up string of length m
A property of a transform is that there is no information loss and they are invertible.

\[
\text{inverseBWT}(\text{string } s) \\
\text{add } s \text{ as the first column of a table strings} \\
\text{repeat length(s)-1 times:} \\
\text{sort rows of the table alphabetically} \\
\text{add } s \text{ as the first column of the table} \\
\text{return (row that ends with the ‘$' character)}
\]

<table>
<thead>
<tr>
<th>l</th>
<th>l$</th>
<th>l$t</th>
<th>l$ta</th>
<th>l$tar</th>
<th>l$tarh</th>
<th>l$tarhe</th>
<th>l$tarhee</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>ta</td>
<td>tar</td>
<td>tarh</td>
<td>tarhe</td>
<td>tarhee</td>
<td>tarheel</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>he</td>
<td>hee</td>
<td>heel</td>
<td>heel$</td>
<td>heel$t</td>
<td>heel$ta</td>
<td>heel$tar</td>
</tr>
<tr>
<td>e</td>
<td>ee</td>
<td>eel</td>
<td>eel$</td>
<td>eel$t</td>
<td>eel$ta</td>
<td>eel$tar</td>
<td>eel$tarh</td>
</tr>
<tr>
<td>r</td>
<td>rh</td>
<td>rhe</td>
<td>rhee</td>
<td>heel</td>
<td>heel$</td>
<td>heel$t</td>
<td>heel$ta</td>
</tr>
<tr>
<td>e</td>
<td>el</td>
<td>el$</td>
<td>el$t</td>
<td>el$ta</td>
<td>el$tar</td>
<td>el$tarh</td>
<td>el$tarhe</td>
</tr>
<tr>
<td>a</td>
<td>ar</td>
<td>arh</td>
<td>arhe</td>
<td>arhee</td>
<td>arheel</td>
<td>arheel$</td>
<td>arheel$t</td>
</tr>
<tr>
<td>$</td>
<td>$t</td>
<td>$ta</td>
<td>$tar</td>
<td>$tarh</td>
<td>$tarhe</td>
<td>$tarhee</td>
<td>$tarheel</td>
</tr>
</tbody>
</table>
def inverseBWT(s):
 # initialize table from s
 table = [c for c in s]
 # repeat length(s) - 1 times
 for j in xrange(len(s)-1):
 # sort rows of the table alphabetically
 table.sort()
 # insert s as the first column
 table = [s[i]+table[i] for i in xrange(len(s))]
 # return (row that ends with the 'EOS' character)
 return table[[r[-1] for r in table].index('$')]}
How to use a BWT?

• A BWT is a “last-first” mapping meaning the i^{th} occurrence of a character in the first column corresponds to the i^{th} occurrence in the last.
• Recall the first column is sorted
• BWT(“mississippi$”) → “ipssm$pissii”
• Compute from BWT a sorted dictionary of the number of occurrences of each letter
 \[C[*][m] = \{ '$':1, 'i':4, 'm':1, 'p':2, 's':4 \} \]
• Using the last entry it is a simple matter to find indices of the first occurrence of a character on the “left” sorted side
 \[O = \{ '$':0, 'i':1, 'm':5, 'p':6, 's':8 \} \]

C[letter][i] = $imps
0 $mississippi 00000
1 i$mississippi 01000
2 ippi$mississ 01010
3 issippi$miss 01011
4 ississpi$im 01012
5 mississippi$ 01112
6 pi$mississip 11112
7 ppi$mississi 11122
8 sip$mississi 12122
9 sippi$missis 12123
10 ssippi$missi 12124
11 ssississippi$mi 13124

0[letter] = 01568
Searching for a Pattern

- Find “iss” in “mississippi”
- Search for patterns take place in reverse order (last character to first)
- Use the O index to find the range of entries starting with the last character

I = \{ ‘$’:0, ‘i’:1, ‘m’:5, ‘p’:6, ‘s’:8 \}

C[letter][i] = $imps
0 $mississippi 00000
1 i$mississipp 01000
2 ippi$mississ 01010
3 issippi$miss 01011
4 ississippi$m 01012
5 mississippi$ 01112
6 pi$mississip 11112
7 ppi$mississi 11122
8 sippi$missis 12122
9 sissippi$mis 12123
10 ssippi$missi 12124
11 ssissippi$mi 13124

O[letter] = 01568
Searching for a Pattern

- Find “sis” in “mississippi”
- Of these, how many BTW entries match the second-to-last character? If none string does not appear
- Use the C-index to find all offsets of occurrences of these second to last characters, which will be contiguous

```
C[letter][i] = $imps
0 $mississippi 00000
1 i$mississipp 01000
2.ippi$mississ 01010
3.issippi$miss 01011
4.ississippi$ m 01012
5.mississippi$ 01112
6.pi$mississippi 11112
7.ppi$mississippi 11122
8.sippi$missis 12122
9.sissippi$mis 12123
10.ssippi$missi 12124
11.ssissippi$mi 13124
   14124
0[letter] = 01568
```
Searching for a Pattern

• This is done using the FMIndex as follows:

```python
def find(pattern, FMindex):
    lo = 0
    hi = len(FMindex)
    for l in reversed(pattern):
        lo = O[l] + C[lo][l]
        hi = O[l] + C[hi][l]
    return lo, hi
```

```
find("iss", FMindex)
```

```
lo0, hi0 = 0, 12
lo1 = O[‘s’] + C[0][‘s’] = 8 + 0 = 8
hi1 = O[‘s’] + C[12][‘s’] = 8 + 4 = 12
lo2 = O[‘s’] + C[8][‘s’] = 8 + 2 = 10
hi2 = O[‘s’] + C[12][‘s’] = 8 + 4 = 12
lo3 = O[‘i’] + C[10][‘i’] = 1 + 2 = 3
hi3 = O[‘i’] + C[12][‘i’] = 1 + 4 = 5
```

```
C[letter][i] = $imps
0 $mississippi 00000
1 i$mississipp 01000
2 ippi$mississ 01010
3 issippi$miss 01011
4 ississippi$m 01012
5 mississippi$ 01112
6 pi$mississippi 11112
7 ppi$mississi 11122
8 sippi$missis 12122
9 sissippi$mis 12123
10 ssippi$missi 12124
11 ssissippi$mi 13124
14124
0[letter] = 01568
```
Recovering the i^{th} Suffix

- The Search algorithm returns the indices of matches within a suffix array that is implicitly represented by the BWT.
- We can recover any suffix array entry again using the FM-index.
- Recall at this point we only have access to the BWT (shown in black) and the FM-index (shown in red and green).

```
C[letter][i] = $imps
0 $mississippi 00000
1 i$mississipp 01000
2 ippi$mississ 01010
3 issippi$miss 01011
4 ississippi$m 01012
5 mississippi$ 01112
6 pi$mississip 11112
7 ppi$mississi 11122
8 sippi$missis 12122
9 sissippi$mis 12123
10 ssippi$missi 12124
11 ssissippi$mi 13124
  14124
O[letter] = 01568
```
Recovering the i^{th} Suffix

- The i^{th} entry of the “hidden” Suffix Array can be found as follows:

```python
def suffix(i, Fmindex, bwt):
    result = ''
    j = i
    while True:
        j = O[bwt[j]] + C[j][bwt[j]]
        result = bwt[j] + result
        if (i == j):
            break
    return result

suffix(3, Fmindex, bwt)
```

```
j = O[‘s’] + C[3][‘s’] = 8 + 1; result = ‘s’
j = O[‘s’] + C[9][‘s’] = 8 + 3; result = ‘ss’
j = O[‘i’] + C[11][‘i’] = 1 + 3; result = ‘iss’
j = O[‘m’] + C[4][‘m’] = 5 + 0; result = ‘miss’
j = O[‘$’] + C[5][‘$’] = 0 + 0; result = ‘$miss’
j = O[‘i’] + C[0][‘i’] = 1 + 0; result = ‘i$miss’
j = O[‘p’] + C[1][‘p’] = 6 + 0; result = ‘pi$miss’
```

```
C[letter][i] = $imps
0 $mississippi 00000
1 i$mississippi 01000
2 ippi$mississippi 01010
3 issippi$miss 01011
4 ississippi$m 01012
5 mississippi$ 01112
6 pi$mississippi 11112
7 ppi$mississippi 11122
8 sippi$miss 12122
9 sissippi$mis 12123
10 ssippi$missi 12124
11 ssissippi$mi 13124
0[letter] = 01568
```
Recovering the i^{th} Suffix

- The i^{th} entry of the “hidden” Suffix Array can be found as follows:

```python
def suffix(i, Fmindex, bwt):
    result = ''
    j = i
    while True:
        j = 0[bwt[j]] + C[j][bwt[j]]
        result = bwt[j] + result
        if (i == j):
            break
    return result

suffix(3, Fmindex, bwt)  # (continued)
```

<table>
<thead>
<tr>
<th>C[letter][i]</th>
<th>imps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>mississippi 00000</td>
</tr>
<tr>
<td>1</td>
<td>i$mississipp 01000</td>
</tr>
<tr>
<td>2</td>
<td>ippi$mississ 01010</td>
</tr>
<tr>
<td>3</td>
<td>issippi$miss 01011</td>
</tr>
<tr>
<td>4</td>
<td>ississippi$m 01012</td>
</tr>
<tr>
<td>5</td>
<td>mississippi$ 01112</td>
</tr>
<tr>
<td>6</td>
<td>pi$mississipp 11112</td>
</tr>
<tr>
<td>7</td>
<td>ppi$mississi 11122</td>
</tr>
<tr>
<td>8</td>
<td>sippi$missis 12122</td>
</tr>
<tr>
<td>9</td>
<td>sissippi$mis 12123</td>
</tr>
<tr>
<td>10</td>
<td>ssippi$missi 12124</td>
</tr>
<tr>
<td>11</td>
<td>sississippi$mi 13124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0[letter]</th>
<th>01568</th>
</tr>
</thead>
</table>
BWT Search Details

- Searching for a pattern, p, in a BWT requires $O(|p|)$ steps (same as Suffix Tree!)
- Recovering any entry from the implicit suffix tree requires $O(|n|)$ steps, where n is the length of the BWT encoded string
- There is actually yet another index that allows one to find prefixes, r, of suffixes in $O(|r|)$
- The largest cost associated with the BWT is constructing and storing the FMIndex. It can be built in $O(|n|)$ steps, and stored in $O(|\Sigma| |n|)$ memory, where Σ is the alphabet size
Summary

• Query Power (Big is good)
 – BWTs support the fewest query types of these data structs
 – Suffix Trees perform a variety of queries in $O(m)$
Summary

- Memory Footprint (Small is good)
 - BWTs compress very well on real data
 - Difficult to store the full suffix tree for an entire genome