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Lecture 20:
Clustering and Evolution

Study Chapter 10.4 – 10.8
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Clique Graphs
• A clique is a graph where every vertex is connected 

via an edge to every other vertex
• A clique graph is a graph where each connected 

component is a clique
• The concept of clustering is closely related to clique 

graphs. Every partition of n elements into k clusters 
can be represented as a clique graph 
on n vertices with k cliques.



• Clusters are maximal cliques (cliques not contained 
in any other complete subgraph)
• 1,6,7 is a non-maximal clique.

• An arbitrary graph can be transformed into a clique 
graph by adding or removing edges
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Transforming Graphs into a Clique Graphs



11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 4

Corrupted Cliques Problem
Determine the smallest number of edges that need be 
added or removed to transform a graph to a clique 
graph

Input: A graph G

Output: The smallest number of edge additions 
and/or removals that transforms G into a clique 
graph
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Distance Graphs 

• One can turn a distance matrix into a distance graph
– Genes are represented as vertices in the graph
– Choose a distance threshold θ
– If the distance between two vertices is below θ, draw 

an edge between them
– The resulting graph may contain cliques
– These cliques represent clusters of closely  located 

data points!
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Transforming Distance Graph into Clique Graph

The distance  graph     
(threshold θ=7) is 
transformed into a 
clique graph after  
removing the two 
highlighted edges

After transforming 
the distance  graph 
into the  clique 
graph, the dataset is 
partitioned into three 
clusters
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Heuristics for Corrupted Clique Problem

• Corrupted Cliques problem is NP-Hard, some 
heuristics exist to approximately solve it:

• CAST (Cluster Affinity Search Technique):  a 
practical and fast algorithm:
– CAST is based on the notion of genes close to 

cluster C or distant from cluster C
– Distance between gene i and cluster C: 

d(i,C) = average distance between gene i and all genes in C

Gene i is close to cluster C if d(i,C)< θ and distant otherwise
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CAST Algorithm
1. CAST(S, G, θ)
2. P  Ø
3. while S ≠ Ø
4. v  vertex of maximal degree in the distance graph G
5. C  {v}
6. while a close gene i not in C or distant gene i in C exists
7. Find the nearest close gene i not in C and add it to C
8. Remove the farthest distant gene i in C
9. Add cluster C to partition P
10. S  S \ C
11. Remove vertices of cluster C from the distance graph G
12. return P

S – set of elements, G – distance graph, θ - distance threshold
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Evolution and DNA Analysis: 
the Giant Panda Riddle

• For roughly 100 years scientists were unable to figure 
out which family the giant panda belongs to

• Giant pandas look like bears but have features that are 
unusual for bears and typical for raccoons, e.g., they do 
not hibernate

• In 1985, Steven O’Brien and colleagues solved the giant 
panda classification problem using DNA sequences and 
algorithms
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Evolutionary Tree of Bears and Raccoons



11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 11

Evolutionary Trees: DNA-based Approach

• 1965: Emile Zuckerkandl and Linus Pauling 
brought reconstructing evolutionary 
relationships with DNA into the spotlight 

• In the first few years after Zuckerkandl and 
Pauling proposed using DNA for evolutionary 
studies, the possibility of reconstructing 
evolutionary trees by DNA analysis was hotly 
debated

• Now it is a dominant approach to study 
evolution. 
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Out of Africa Hypothesis
• Around the time the giant panda riddle was 

solved, a DNA-based reconstruction of the 
human evolutionary tree led to the Out of 
Africa Hypothesis that claims our most ancient 
ancestor lived in Africa roughly 200,000 years 
ago

• Largely based on mitochondrial DNA
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Human Evolutionary Tree (cont’d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm



11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 14

The Origin of Humans:
”Out of Africa” vs Multiregional Hypothesis

Out of Africa:
– Humans evolved in 

Africa ~150,000 years 
ago

– Humans migrated out 
of Africa, replacing 
other humanoids 
around the globe

– There is no direct 
descendence from 
Neanderthals

Multiregional:
– Humans evolved in the last two 

million years as a single species. 
Independent appearance of 
modern traits in different areas

– Humans migrated out of Africa 
mixing with other humanoids on 
the way

– There is a genetic continuity from 
Neanderthals to humans
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mtDNA analysis supports 
“Out of Africa” Hypothesis

• African origin of humans inferred from:
– African population was the most diverse        

(sub-populations had more time to diverge)
– The evolutionary tree separated one group of 

Africans from a group containing all five 
populations.

– Tree was rooted on branch between groups of 
greatest difference.
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Evolutionary Tree of Humans (mtDNA)

The evolutionary  
tree separates one 
group of Africans 
from a group 
containing all five 
populations.

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)
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Evolutionary Tree of Humans:  (microsatellites)

• Neighbor joining 
tree for 14 human 
populations 
genotyped with 30 
microsatellite loci.
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Human Migration Out of Africa

http://www.becominghuman.org

1. Yorubans
2. Western Pygmies
3. Eastern Pygmies
4. Hadza
5. !Kung

1
2 3 4

5
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Evolutionary Trees

How are these trees built from DNA sequences?
– leaves represent existing species
– internal vertices represent ancestors

• Binary weighted tree:  all internal vertices have degree 3 

– root represents the oldest evolutionary ancestor
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Rooted and Unrooted Trees

In the unrooted tree the position of 
the root (“oldest ancestor”) is 
unknown. Otherwise, they are like 
rooted trees
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Distances in Trees

• Edges may have weights reflecting:
– Number of mutations on evolutionary path 

from one species to another
– Time estimate for evolution of one species into 

another
• In a tree T, we often compute 

dij(T) – tree distance between i and j 



11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 22

Distance in Trees

d1,4 = 12 + 13 + 14 + 17 + 13 = 69

2 3 4
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Distance Matrix
• Given n species, we can compute the n x n distance 

matrix Dij

• Dij may be defined as the edit distance between a 
gene in species i and species j, where the gene of 
interest is sequenced for all n species.

Dij – edit distance between i and j
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Edit Distance vs. Tree Distance
• Given n species, we can compute the n x n distance 

matrix Dij

• Dij may be defined as the edit distance between a 
gene in species i and species j, where the gene of 
interest is sequenced for all n species.

Dij – edit distance between i and j 
• Note the difference with 

dij(T) – tree distance between i and j
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Fitting Distance Matrix
• Given n species, we can compute the n x n 

distance matrix Dij

• Evolution of these genes is described by a tree 
that we don’t know.

• We need an algorithm to construct a tree that 
best fits the distance matrix Dij
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Fitting Distance Matrix

• Fitting means Dij = dij(T)
Lengths of path in an (unknown) tree T

Edit distance between species (known)
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Reconstructing a 3 Leaved Tree
• Tree reconstruction for any 3x3 matrix is 

straightforward
• We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk
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Reconstructing a 3 Leaved Tree (cont’d)

dic + djc = Dij

+ dic + dkc = Dik

2dic + djc + dkc = Dij + Dik

2dic +    Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2
Similarly,

djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/2
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Trees with > 3 Leaves
• An unrooted tree with n leaves has 2n-3 edges

• This means fitting a given tree to a distance matrix D
requires solving a system of (n choose 2) = n(n-1)/2 
equations with  2n-3 variables (over-determined)

• This is not always possible to solve for n > 3
given arbitrary/noisy distances
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Additive Distance Matrices

Matrix D is 
ADDITIVE if there 
exists a tree T with 
dij(T) = Dij

NON-ADDITIVE 
otherwise
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Distance Based Phylogeny Problem

• Goal: Reconstruct an evolutionary tree from a 
distance matrix

• Input: n x n distance matrix Dij

• Output: weighted tree T with n leaves fitting D

• If D is additive, this problem has a solution and 
there is a simple algorithm to solve it
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Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with common parent k
• Remove the rows and columns of i and j
• Add a new row and column corresponding to k, where 

the distance from k to any other leaf m can be computed 
as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into 
k, iterate algorithm for 
rest of tree
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Finding Neighboring Leaves

• Or solution assumes that we can easily find 
neighboring leaves given only distance values

• How might one approach this problem?
• It is not as easy as selecting a pair of closest 

leaves.
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Finding Neighboring Leaves

• Closest leaves aren’t necessarily neighbors
• i and j are neighbors, but (dij = 13) > (djk = 12)

• Finding a pair of neighboring leaves is 
a nontrivial problem! (we’ll return to it later)
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Neighbor Joining Algorithm
• In 1987 Naruya Saitou and Masatoshi Nei developed a 

neighbor joining algorithm for phylogenetic tree 
reconstruction

• Finds a pair of leaves that are close to each other but 
far from other leaves: implicitly finds a pair of 
neighboring leaves

• Advantages: works well for additive and other non-
additive matrices, it does not have the flawed molecular 
clock assumption
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Degenerate Triples

• A degenerate triple is a set of three distinct 
elements 1≤i,j,k≤n where Dij + Djk = Dik

• Called degenerate because it implies i, j, and k are 
collinear.

• Element j in a degenerate triple i,j,k lies on the 
evolutionary path from i to k (or  is  attached to  
this path by an edge of length 0).
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Looking for Degenerate Triples

• If distance matrix D has a degenerate triple i,j,k 
then j can be “removed” from D thus reducing 
the size of the problem.

• If distance matrix D does not have a degenerate 
triple i,j,k, one can “create” a degenerative triple 
in D by shortening all hanging or leaf edges in 
the tree. 
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Shortening Hanging Edges

• Shorten all “hanging” edges (edges that connect 
leaves) until a degenerate triple is found

Now (A,B,D) 
are degenerate
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Finding Degenerate Triples
• If there is no degenerate triple, all hanging edges are 

reduced by the same amount δ, so that all pair-wise 
distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves (when 
δ = length of shortest hanging edge), forming a 
degenerate triple i,j,k and reducing the size of the 
distance matrix D.

• The attachment point for j can be recovered in the 
reverse transformations by saving Dij for each collapsed 
leaf.
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Reconstructing Trees for Additive Distance Matrices



AdditivePhylogeny Algorithm
AdditivePhylogeny(D)
1. if D is a 2 x 2 matrix
2. T = tree of a single edge of length D1,2
3. return T
4. if D is non-degenerate
5. δ = trimming parameter of matrix D
6. for all 1 ≤ i ≠ j ≤ n
7. Dij = Dij - 2δ
8. else
9. δ = 0
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10. Find a triple i, j, k in D such that Dij + Djk = Dik
11. x = Dij
12. Remove jth row and jth column from D
13. T = AdditivePhylogeny(D)
14. Add new vertex v to T at distance x from i to k
15. Add j back to T by an edge (v,j) of length 0
16. for every leaf l in T
17. if distance from l to v in the tree ≠ Dl,j
18. output “matrix is not additive”
19. return
20. Extend all “hanging” edges by length δ
21. return T
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AdditivePhylogeny (cont’d)
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The Four Point Condition
• AdditivePhylogeny provides a way to check if 

distance matrix D is additive

• An even more efficient additivity check is the 
“four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a tree
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The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3
2 and 3 represent the 
same number: the 
length of all edges + 
the middle edge (it is 
counted twice)

1 represents a 
smaller 
number: the 
length of all 
edges – the 
middle edge

i k

lj

i k

lj

i k

lj
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The Four Point Condition: Theorem

• The four point condition for  the quartet i,j,k,l is 
satisfied if two of these sums are the same, with 
the third sum smaller than these first two

• Theorem : An n x n matrix D is additive if and 
only if the four point condition holds for every
quartet 1 ≤ i,j,k,l ≤ n



Next Time
• How to create trees if the matrices are not 

additive
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