
11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 1

Lecture 20:
Clustering and Evolution

Study Chapter 10.4 – 10.8

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 2

Clique Graphs
• A clique is a graph where every vertex is connected

via an edge to every other vertex
• A clique graph is a graph where each connected

component is a clique
• The concept of clustering is closely related to clique

graphs. Every partition of n elements into k clusters
can be represented as a clique graph
on n vertices with k cliques.

• Clusters are maximal cliques (cliques not contained
in any other complete subgraph)
• 1,6,7 is a non-maximal clique.

• An arbitrary graph can be transformed into a clique
graph by adding or removing edges

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 3

Transforming Graphs into a Clique Graphs

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 4

Corrupted Cliques Problem
Determine the smallest number of edges that need be
added or removed to transform a graph to a clique
graph

Input: A graph G

Output: The smallest number of edge additions
and/or removals that transforms G into a clique
graph

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 5

Distance Graphs

• One can turn a distance matrix into a distance graph
– Genes are represented as vertices in the graph
– Choose a distance threshold θ
– If the distance between two vertices is below θ, draw

an edge between them
– The resulting graph may contain cliques
– These cliques represent clusters of closely located

data points!

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 6

Transforming Distance Graph into Clique Graph

The distance graph
(threshold θ=7) is
transformed into a
clique graph after
removing the two
highlighted edges

After transforming
the distance graph
into the clique
graph, the dataset is
partitioned into three
clusters

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 7

Heuristics for Corrupted Clique Problem

• Corrupted Cliques problem is NP-Hard, some
heuristics exist to approximately solve it:

• CAST (Cluster Affinity Search Technique): a
practical and fast algorithm:
– CAST is based on the notion of genes close to

cluster C or distant from cluster C
– Distance between gene i and cluster C:

d(i,C) = average distance between gene i and all genes in C

Gene i is close to cluster C if d(i,C)< θ and distant otherwise

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 8

CAST Algorithm
1. CAST(S, G, θ)
2. P Ø
3. while S ≠ Ø
4. v vertex of maximal degree in the distance graph G
5. C {v}
6. while a close gene i not in C or distant gene i in C exists
7. Find the nearest close gene i not in C and add it to C
8. Remove the farthest distant gene i in C
9. Add cluster C to partition P
10. S S \ C
11. Remove vertices of cluster C from the distance graph G
12. return P

S – set of elements, G – distance graph, θ - distance threshold

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 9

Evolution and DNA Analysis:
the Giant Panda Riddle

• For roughly 100 years scientists were unable to figure
out which family the giant panda belongs to

• Giant pandas look like bears but have features that are
unusual for bears and typical for raccoons, e.g., they do
not hibernate

• In 1985, Steven O’Brien and colleagues solved the giant
panda classification problem using DNA sequences and
algorithms

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 10

Evolutionary Tree of Bears and Raccoons

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 11

Evolutionary Trees: DNA-based Approach

• 1965: Emile Zuckerkandl and Linus Pauling
brought reconstructing evolutionary
relationships with DNA into the spotlight

• In the first few years after Zuckerkandl and
Pauling proposed using DNA for evolutionary
studies, the possibility of reconstructing
evolutionary trees by DNA analysis was hotly
debated

• Now it is a dominant approach to study
evolution.

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 12

Out of Africa Hypothesis
• Around the time the giant panda riddle was

solved, a DNA-based reconstruction of the
human evolutionary tree led to the Out of
Africa Hypothesis that claims our most ancient
ancestor lived in Africa roughly 200,000 years
ago

• Largely based on mitochondrial DNA

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 13

Human Evolutionary Tree (cont’d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 14

The Origin of Humans:
”Out of Africa” vs Multiregional Hypothesis

Out of Africa:
– Humans evolved in

Africa ~150,000 years
ago

– Humans migrated out
of Africa, replacing
other humanoids
around the globe

– There is no direct
descendence from
Neanderthals

Multiregional:
– Humans evolved in the last two

million years as a single species.
Independent appearance of
modern traits in different areas

– Humans migrated out of Africa
mixing with other humanoids on
the way

– There is a genetic continuity from
Neanderthals to humans

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 15

mtDNA analysis supports
“Out of Africa” Hypothesis

• African origin of humans inferred from:
– African population was the most diverse

(sub-populations had more time to diverge)
– The evolutionary tree separated one group of

Africans from a group containing all five
populations.

– Tree was rooted on branch between groups of
greatest difference.

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 16

Evolutionary Tree of Humans (mtDNA)

The evolutionary
tree separates one
group of Africans
from a group
containing all five
populations.

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 17

Evolutionary Tree of Humans: (microsatellites)

• Neighbor joining
tree for 14 human
populations
genotyped with 30
microsatellite loci.

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 18

Human Migration Out of Africa

http://www.becominghuman.org

1. Yorubans
2. Western Pygmies
3. Eastern Pygmies
4. Hadza
5. !Kung

1
2 3 4

5

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 19

Evolutionary Trees

How are these trees built from DNA sequences?
– leaves represent existing species
– internal vertices represent ancestors

• Binary weighted tree: all internal vertices have degree 3

– root represents the oldest evolutionary ancestor

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 20

Rooted and Unrooted Trees

In the unrooted tree the position of
the root (“oldest ancestor”) is
unknown. Otherwise, they are like
rooted trees

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 21

Distances in Trees

• Edges may have weights reflecting:
– Number of mutations on evolutionary path

from one species to another
– Time estimate for evolution of one species into

another
• In a tree T, we often compute

dij(T) – tree distance between i and j

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 22

Distance in Trees

d1,4 = 12 + 13 + 14 + 17 + 13 = 69

2 3 4

5

4

1 6

13

12

17

16
12

13

1312

i

j

14

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 23

Distance Matrix
• Given n species, we can compute the n x n distance

matrix Dij

• Dij may be defined as the edit distance between a
gene in species i and species j, where the gene of
interest is sequenced for all n species.

Dij – edit distance between i and j

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 24

Edit Distance vs. Tree Distance
• Given n species, we can compute the n x n distance

matrix Dij

• Dij may be defined as the edit distance between a
gene in species i and species j, where the gene of
interest is sequenced for all n species.

Dij – edit distance between i and j
• Note the difference with

dij(T) – tree distance between i and j

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 25

Fitting Distance Matrix
• Given n species, we can compute the n x n

distance matrix Dij

• Evolution of these genes is described by a tree
that we don’t know.

• We need an algorithm to construct a tree that
best fits the distance matrix Dij

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 26

Fitting Distance Matrix

• Fitting means Dij = dij(T)
Lengths of path in an (unknown) tree T

Edit distance between species (known)

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 27

Reconstructing a 3 Leaved Tree
• Tree reconstruction for any 3x3 matrix is

straightforward
• We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 28

Reconstructing a 3 Leaved Tree (cont’d)

dic + djc = Dij

+ dic + dkc = Dik

2dic + djc + dkc = Dij + Dik

2dic + Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2
Similarly,

djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/2

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 29

Trees with > 3 Leaves
• An unrooted tree with n leaves has 2n-3 edges

• This means fitting a given tree to a distance matrix D
requires solving a system of (n choose 2) = n(n-1)/2
equations with 2n-3 variables (over-determined)

• This is not always possible to solve for n > 3
given arbitrary/noisy distances

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 30

Additive Distance Matrices

Matrix D is
ADDITIVE if there
exists a tree T with
dij(T) = Dij

NON-ADDITIVE
otherwise

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 31

Distance Based Phylogeny Problem

• Goal: Reconstruct an evolutionary tree from a
distance matrix

• Input: n x n distance matrix Dij

• Output: weighted tree T with n leaves fitting D

• If D is additive, this problem has a solution and
there is a simple algorithm to solve it

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 32

Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with common parent k
• Remove the rows and columns of i and j
• Add a new row and column corresponding to k, where

the distance from k to any other leaf m can be computed
as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into
k, iterate algorithm for
rest of tree

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 33

Finding Neighboring Leaves

• Or solution assumes that we can easily find
neighboring leaves given only distance values

• How might one approach this problem?
• It is not as easy as selecting a pair of closest

leaves.

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 34

Finding Neighboring Leaves

• Closest leaves aren’t necessarily neighbors
• i and j are neighbors, but (dij = 13) > (djk = 12)

• Finding a pair of neighboring leaves is
a nontrivial problem! (we’ll return to it later)

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 35

Neighbor Joining Algorithm
• In 1987 Naruya Saitou and Masatoshi Nei developed a

neighbor joining algorithm for phylogenetic tree
reconstruction

• Finds a pair of leaves that are close to each other but
far from other leaves: implicitly finds a pair of
neighboring leaves

• Advantages: works well for additive and other non-
additive matrices, it does not have the flawed molecular
clock assumption

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 36

Degenerate Triples

• A degenerate triple is a set of three distinct
elements 1≤i,j,k≤n where Dij + Djk = Dik

• Called degenerate because it implies i, j, and k are
collinear.

• Element j in a degenerate triple i,j,k lies on the
evolutionary path from i to k (or is attached to
this path by an edge of length 0).

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 37

Looking for Degenerate Triples

• If distance matrix D has a degenerate triple i,j,k
then j can be “removed” from D thus reducing
the size of the problem.

• If distance matrix D does not have a degenerate
triple i,j,k, one can “create” a degenerative triple
in D by shortening all hanging or leaf edges in
the tree.

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 38

Shortening Hanging Edges

• Shorten all “hanging” edges (edges that connect
leaves) until a degenerate triple is found

Now (A,B,D)
are degenerate

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 39

Finding Degenerate Triples
• If there is no degenerate triple, all hanging edges are

reduced by the same amount δ, so that all pair-wise
distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves (when
δ = length of shortest hanging edge), forming a
degenerate triple i,j,k and reducing the size of the
distance matrix D.

• The attachment point for j can be recovered in the
reverse transformations by saving Dij for each collapsed
leaf.

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 40

Reconstructing Trees for Additive Distance Matrices

AdditivePhylogeny Algorithm
AdditivePhylogeny(D)
1. if D is a 2 x 2 matrix
2. T = tree of a single edge of length D1,2
3. return T
4. if D is non-degenerate
5. δ = trimming parameter of matrix D
6. for all 1 ≤ i ≠ j ≤ n
7. Dij = Dij - 2δ
8. else
9. δ = 0

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 41

10. Find a triple i, j, k in D such that Dij + Djk = Dik
11. x = Dij
12. Remove jth row and jth column from D
13. T = AdditivePhylogeny(D)
14. Add new vertex v to T at distance x from i to k
15. Add j back to T by an edge (v,j) of length 0
16. for every leaf l in T
17. if distance from l to v in the tree ≠ Dl,j
18. output “matrix is not additive”
19. return
20. Extend all “hanging” edges by length δ
21. return T

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 42

AdditivePhylogeny (cont’d)

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 43

The Four Point Condition
• AdditivePhylogeny provides a way to check if

distance matrix D is additive

• An even more efficient additivity check is the
“four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a tree

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 44

The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3
2 and 3 represent the
same number: the
length of all edges +
the middle edge (it is
counted twice)

1 represents a
smaller
number: the
length of all
edges – the
middle edge

i k

lj

i k

lj

i k

lj

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 45

The Four Point Condition: Theorem

• The four point condition for the quartet i,j,k,l is
satisfied if two of these sums are the same, with
the third sum smaller than these first two

• Theorem : An n x n matrix D is additive if and
only if the four point condition holds for every
quartet 1 ≤ i,j,k,l ≤ n

Next Time
• How to create trees if the matrices are not

additive

11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 46

