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Lecture 23: 
Randomized Algorithms 

 
Chapter 12 
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Randomized Algorithms 
• Randomized algorithms incorporate random, 

rather than deterministic, decisions 
• Commonly used in situations where no exact 

and/or fast algorithm is known 
• Main advantage is that no input can reliably 

produce worst-case results because the 
algorithm runs differently each time. 
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Select 
• Select(L, k) finds the kth smallest element in L 
• Select(L,1) find the smallest… 

– Well known O(n) algorithm 
 
 
 

• Select(L, len(L)/2) find the median… 
– How?  
– median = sorted(L)[len(L)/2]     O(n logn) 

• Can we find medians, or 1st quartiles in O(n)? 
 

minv = HUGE 
for v in L: 
    if (v < minv): 
        minv = v 
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Select Recursion 
• Select(L, k) finds the kth smallest element in L 

– Select an element m from unsorted list L and  
partition L the array into two smaller lists:  

      Llo - elements smaller than m 
 and 
        Lhi - elements larger than m. 

• If len(Llo) > k then  
 Select(Llo, k) 

• else if k > len(Llo) + 1 then  
 Select(Lhi, k - len(Llo) - 1 ) 

• else m is the kth smallest element 
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Example of Select(L, 5) 

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 } 
 
Step 1:  Choose the first element as m 
 
      L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 } 
 
 
 
 

Our  Selection 
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Example of Select(cont’d) 

Step 2:  Split the array into Llo and Lhi 
 

                                             Llo = { 3,    2,    4,    5,    1,    0 } 
 
 
 
 L = {    6,     3,     2,     8,     4,     5,     1,     7,     0,     9 } 
 
 
              Lhi = { 8,     7,     9 } 
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Example of Select(cont’d) 

Step 3: Recursively call Select on either Llo or Lhi 
until len(Llo) = k, then return m. 
len(Llo) > k = 5   Select({ 3,  2,  4,  5,  1,  0 }, 5) 

m = 3 

Llo = { 2,  1,  0 }    Lhi = { 4, 5 }  

m = 4 
Llo = { empty },  Lhi = {  5  } 

k = 5 > len(Llo) +1   Select({4,  5 }, 5 - 3 - 1) 

k  = 1  ==  len(Llo) + 1  return 4 
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Select Code 

def select(L, k): 
    value = L[0] 
    Llo = [t for t in data if t < value] 
    Lhi = [t for t in data if t > value] 
    below = len(Llo) + 1 
    if (k < len(Llo)): 
        return select(Llo, k) 
    elif (k > below): 
        return select(Lhi, k - below) 
    else: 
        return value 
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Select Analysis with Good Splits 

• Runtime depends on our selection of m: 
 
 - A good selection will split L evenly such that 
 

  |Llo | = |Lhi |= |L|/2 
 
 - The recurrence relation is: 
  T(n)  =  T(n/2) 

 
  - n + n/2 + n/4 + n/8 + n/16 + ….= 2n  O(n) 
 
 

Same as search 
for minimum 
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Select Analysis with Bad Splits 

However, a poor selection will split L unevenly and in the  
worst case, all elements will be greater or less than m so  
that one Sublist is full and the other is empty.   

For a poor selection, the recurrence relation is 
  T(n)  =  T(n-1) 

In this case, the runtime is O(n2). 
 
 
Our dilemma:  

O(n) or O(n2), 
 depending on the list… or O(n log n) independent of it 

   
 
 
 
 

I could have sort ed 
first  and done   
bet t er 
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Select Analysis (cont’d) 

• Select seems risky compared to sort 
• To improve Select, we need to choose m  

to give good ‘splits’ 
• It can be proven that to achieve O(n) running 

time, we don’t need a perfect splits, just 
reasonably good ones.  

• In fact, if both subarrays are at least of size n/4, 
then running time will be O(n). 

• This implies that half of the choices of m make 
good splitters.   
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A Randomized Approach 
• To improve Select, randomly select m. 
• Since half of the elements will be good splitters, 

if we choose m at random we will get a 50% 
chance that m will be a good choice. 

• This approach will make sure that no matter 
what input is received, the expected running 
time is small. 
 



Randomized Select 
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def randomizedSelect(L, k): 
    value = random.choice(L) 
    Llo = [t for t in data if t < value] 
    Lhi = [t for t in data if t > value] 
    below = len(Llo) + 1 
    if (k < len(Llo)): 
        return randomizedSelect(Llo, k) 
    elif (k > below): 
        return randomizedSelect(Lhi, k-below) 
    else: 
        return value 
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RandomizedSelect Analysis 

• Worst case runtime: O(n2) 
• Expected runtime: O(n). 
• Expected runtime is a good measure of the 

performance of randomized algorithms, often 
more informative than worst case runtimes. 

• Worst case runtimes are rarely repeated  
• RandomizedSelect always returns the correct 

answer, which offers a way to classify 
Randomized Algorithms. 
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Two Types of Randomized  Algorithms 

• Las Vegas Algorithms – always produce the 
correct solution (i.e. randomizedSelect), but may 
exceed expected time bound with small 
probability 
 

• Monte Carlo Algorithms – do not always return 
the correct solution (but typically meet a worst 
case boudn) 
 

• Las Vegas Algorithms are always preferred, but 
not always easy to come by. 



cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat 
 
agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc 
 
aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt 
 
agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca 
 
ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc 
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The Motif Finding Problem 
Motif Finding Problem: Given a list of t sequences 

each of length n, find the “best” pattern of length 
l that appears in each of the t sequences. 

l = 8 

t=5 

DNA 

n = 69  
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A New Motif Finding Approach 
• Motif Finding Problem: Given a list of t 

sequences each of length n, find the “best” 
pattern of length l that appears in each of the t 
sequences. 

• Previously: we solved the Motif Finding 
Problem using a Branch and Bound or a  
Greedy technique. 

• Now: randomly select possible locations and 
find a way to greedily change those locations 
until we converge to the hidden motif. 
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Profiles Revisited 
• Let s = (s1,...,st) be the starting positions for l-

mers in our t sequences.   
• The substrings corresponding 

to these starting positions  
will form: 

    - t x l alignment matrix  
    - 4 x l profile matrix*  

 
 

 
 

 * Note that we now define the  
profile matrix in terms of  
frequency,  not counts as in  
Lecture 5. 

              a   G   g   t   a   c   T   t 
              C   c   A   t   a   c   g   t 
              a   c   g   t   T   A   g   t 
              a   c   g   t   C   c   A   t 
              C   c   g   t   a   c   g   G 
         ____________________________________ 
    
          A  0.6 0.0 0.2 0.0 0.6 0.2 0.2 0.0 
          C  0.4 0.8 0.0 0.0 0.2 0.8 0.0 0.0 
          G  0.0 0.2 0.8 0.0 0.0 0.0 0.6 0.2 
          T  0.0 0.0 0.0 1.0 0.2 0.0 0.2 0.8 
         ____________________________________ 
 
        X     a   c   g   t   a   c   g   t 
             
P(X|profile)=0.6*0.8*0.8*1.0*0.6*0.8*0.6*0.8 = 0.0885   

l 

t 

4 
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• Let l-mer  a = a1, a2, a3, … al  
• P(a|P) is defined as the probability that an  

l-mer a was created by the Profile P.  
• If a is very similar to the consensus string of P 

then P(a|P)  will be high 
• If a is very different, then P(a|P) will be low. 
                                               l 
                           Prob(a|P) =Π p(ai,i) 
                                                                i=1 

Scoring Strings with a Profile 



11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 20 

Scoring Strings with a Profile (cont’d) 

Given a profile: P =  
 
 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = ???  
The probability of the consensus string: 
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Scoring Strings with a Profile (cont’d) 

Given a profile: P =  
 
 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 
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Scoring Strings with a Profile (cont’d) 

Given a profile: P =  
 
 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 

Probability of a different string: 
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P-Most Probable l-mer 

• Define the P-most probable l-mer from a sequence as an 
l-mer in that sequence which has the highest probability 
of being created from the profile P. 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

P   = 

Given a sequence = ctataaaccttacatc, find the P-most 
probable l-mer  
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Third try:  c t a t a a a c c t t a c a t c 

Second try:  c t a t a a a c c t t a c a t c 

First try:  c t a t a a a c c t t a c a t c 

P-Most Probable l-mer (cont’d) 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

Find the Prob(a|P) of every possible 6-mer:   

-Continue this process to evaluate every possible 6-mer 
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P-Most Probable l-mer (cont’d) 

String, Highlighted in Red Calculations prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

Compute prob(a|P) for every possible 6-mer: 
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P-Most Probable l-mer (cont’d) 

String, Highlighted in Red Calculations Prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 
ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

P-Most Probable 6-mer in the sequence is aaacct: 
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P-Most Probable l-mer (cont’d) 

ctataaaccttacatc 

because Prob(aaacct|P) = .0336  is greater 
than the Prob(a|P) of any other 6-mer in the 
sequence. 

aaacct is the P-most probable 6-mer in: 
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Dealing with Zeroes 

• In our toy example prob(a|P)=0 in many cases. 
In practice, there will be enough sequences so 
that the number of  elements in the profile with a 
frequency of zero is small. 

• To avoid many entries with prob(a|P)=0, there 
exist techniques to equate zero to a very small 
number so that one zero does not make the 
entire probability of a string zero (assigning a 
prior probability, we will not address these 
techniques here). 
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P-Most Probable l-mers in Many Sequences 

• Find the P-most probable 
l-mer in each of the “t” 
sequences. 

ctataaacgttacatc 

atagcgattcgactg 

cagcccagaaccct 

cggtataccttacatc 

tgcattcaatagctta 

tatcctttccactcac 

ctccaaatcctttaca 

ggtcatcctttatcct 

  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

P= 
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P-Most Probable l-mers in Many 
Sequences (cont’d) 

ctataaacgttacatc 

atagcgattcgactg 

cagcccagaaccct 

cggtgaaccttacatc 

tgcattcaatagctta 

tgtcctgtccactcac 

ctccaaatcctttaca 

ggtctacctttatcct 

  P-Most Probable l-mers form a new profile 

1 a a a c g t 

2 a t a g c g 

3 a a c c c t 

4 g a a c c t 

5 a t a g c t 

6 g a c c t g 

7 a t c c t t 

8 t a c c t t 

A 5/8 5/8 4/8 0 0 0 

C 0 0 4/8 6/8 4/8 0 

T 1/8 3/8 0 0 3/8 6/8 

G 2/8 0 0 2/8 1/8 2/8 
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Comparing New and Old Profiles 

Red – frequency increased, Blue – frequency decreased 

1 a a a c g t 

2 a t a g c g 

3 a a c c c t 

4 g a a c c t 

5 a t a g c t 

6 g a c c t g 

7 a t c c t t 

8 t a c c t t 

A 5/8 5/8 4/8 0 0 0 

C 0 0 4/8 6/8 4/8 0 

T 1/8 3/8 0 0 3/8 6/8 

G 2/8 0 0 2/8 1/8 2/8 

A 1/2  7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 
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Greedy Profile Motif Search 

Use P-Most probable l-mers to adjust start positions until 
we reach a “best” profile; this is the motif. 

 

1) Select random starting positions. 
2) Create a profile P from the substrings at these starting 

positions. 
3) Find the P-most probable l-mer a in each sequence and 

change the starting position to the starting position of a. 
4) Compute a new profile based on the new starting 

positions after each iteration and proceed until we 
cannot increase the score anymore. 
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GreedyProfileMotifSearch Algorithm 

1. GreedyProfileMotifSearch(DNA, t, n, l ) 
2.  Randomly select starting positions s=(s1,…,st) from DNA 
3.  bestScore  0 
4.      while Score(s, DNA) > bestScore 
5.         form profile P from s 
6.     bestScore  Score(s, DNA) 
7.     for   i  1  to  t 
8.         Find a P-most probable l-mer a from the ith sequence 
9.         si  starting position of a 
10.  return bestScore 
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GreedyProfileMotifSearch Analysis 

• Since we choose starting positions randomly, there 
is little chance that our guess will be close to an 
optimal motif, meaning it will take a very long time 
to find the optimal motif. 

• It is unlikely that the random starting positions will 
lead us to the correct solution at all. 

• In practice, this algorithm is run many times with 
the hope that random starting positions will be close 
to the optimum solution simply by chance. 
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Gibbs Sampling 
• GreedyProfileMotifSearch is probably not the 

best way to find motifs. 
• However, we can improve the algorithm by 

introducing Gibbs Sampling, an iterative 
procedure that discards one l-mer after each 
iteration and replaces it with a new one. 

• Gibbs Sampling proceeds more slowly and 
chooses new l-mers at random increasing the 
odds that it will converge to the correct solution. 
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How Gibbs Sampling Works 
 1)  Randomly choose starting positions  
         s = (s1,...,st) and form the set of  l-mers associated  
         with these starting positions. 
    2)  Randomly choose one of the t sequences. 
 3)  Create a profile P from the other t -1 sequences. 
 4)  For each position in the removed sequence, 

      calculate the probability that the l-mer starting at 
      that position was generated by P. 

 5)  Choose a new starting position for the removed 
      sequence at random based on the probabilities 
      calculated in step 4. 

 6)  Repeat steps 2-5 until there is no improvement 
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Gibbs Sampling: an Example 
Input:  
 t = 5 sequences, motif length  l = 8 
 
   1.  GTAAACAATATTTATAGC 

   2.  AAAATTTACCTCGCAAGG 

   3.  CCGTACTGTCAAGCGTGG 

   4.  TGAGTAAACGACGTCCCA 

   5.  TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 
1)  Randomly choose starting positions,   
       s=(s1,s2,s3,s4,s5) in the 5 sequences:  
   
 s1=7 GTAAACAATATTTATAGC 

 s2=11 AAAATTTACCTTAGAAGG 

 s3=9 CCGTACTGTCAAGCGTGG 

 s4=4  TGAGTAAACGACGTCCCA 

 s5=1 TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 

2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  
 
     s1=7    GTAAACAATATTTATAGC 
 s2=11  AAAATTTACCTTAGAAGG 

 s3=9  CCGTACTGTCAAGCGTGG 

 s4=4   TGAGTAAACGACGTCCCA 

 s5=1  TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 
2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  
 
    s1=7     GTAAACAATATTTATAGC 
  

 s3=9  CCGTACTGTCAAGCGTGG 

 s4=4   TGAGTAAACGACGTCCCA 

 s5=1  TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 

3) Create profile P from l-mers in remaining 4 sequences: 

1 A A T A T T T A 
3 T C A A G C G T 

4 G T A A A C G A 

5 T A C T T A A C 

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4 

C 0 1/4 1/4 0 0 2/4 0 1/4 

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4 

G 1/4 0 0 0 1/4 0 3/4 0 
Consensus 

String 
T A A A T C G A 
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Gibbs Sampling: an Example 

4) Calculate the prob(a|P) for every possible 8-mer 
in the removed sequence:      

          Strings Highlighted in Red                      prob(a|P)  

AAAATTTACCTTAGAAGG .000732 
AAAATTTACCTTAGAAGG .000122 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG .000183 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
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Gibbs Sampling: an Example 
 
 
 

5)  Create a distribution of probabilities of  
l-mers prob(a|P), and randomly select a new 
starting position based on this distribution.  

Starting Position 1:  prob( AAAATTTA | P ) =  .706 

Starting Position 2:  prob( AAATTTAC | P ) =  .118 

Starting Position 8:  prob( ACCTTAGA | P ) = .176 

A) To create this distribution, divide each 
probability  prob(a|P) by the total: 
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Gibbs Sampling: an Example 

 B) Select a new starting position at random 
according to computed distribution: 

P(selecting starting position 1):     .706 
P(selecting starting position 2):     .118 
P(selecting starting position 8):     .176 

t = random.random() 
if (t < .706): 
    # use position 1 
elif (t < (.706 + .118)): 
    # use position 2 
else: 
    # use position 8 
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Gibbs Sampling: an Example 
Assume we select the substring with the highest 
probability – then we are left with the following 
new substrings and starting positions. 
 
  s1=7 GTAAACAATATTTATAGC 

  s2=1 AAAATTTACCTCGCAAGG 

  s3=9 CCGTACTGTCAAGCGTGG 

  s4=5  TGAGTAATCGACGTCCCA 

  s5=1 TACTTCACACCCTGTCAA 
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Gibbs Sampling: an Example 
6) We iterate the procedure again with the above 

starting positions until we cannot improve the 
score any more. 
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Gibbs Sampler in Practice 

• Gibbs sampling needs to be modified when 
applied to samples with biased distributions of 
nucleotides (relative entropy approach).  

• Gibbs sampling often converges to locally  
optimal motifs rather than globally optimal 
motifs. 

• Must be run with many randomly chosen seeds 
to achieve good results.  
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Another Randomized Approach 

• Random Projection Algorithm is a different way to 
solve the Motif Finding Problem. 

• Guiding principle: Instances of a motif agree at a 
subset of positions. 

• However, it is unclear how to find these “non-
mutated” positions. 

• To bypass the effect of mutations within a motif, we 
randomly select a subset of positions in the pattern 
creating a projection of the pattern.   

• Search for that projection in a hope that the selected 
positions are not affected by mutations in most 
instances of the motif.   
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Projections 

• Choose k positions in string of length l. 
• Concatenate nucleotides at chosen k positions to 

form k-tuple. 
• This can be viewed as a projection of l-

dimensional space onto k-dimensional subspace. 
 

ATGGCATTCAGATTC TGCTGAT 

l = 15 k = 7      Projection 

Projection = (2, 4, 5, 7, 11, 12, 13) 
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Random Projections Algorithm 
• Select k out of l 

positions uniformly at 
random. 
 

• For each l-tuple in input 
sequences, hash into 
buckets based on the  
k selected positions. 
 

• Recover motif from 
enriched buckets that 
contain many l-tuples 
with at least one from 
each sequence. 

Bucket TGCT 

TGCACCT 

Input sequence: 
…T C A A T G C A C C T A T... 
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Random Projections Algorithm (cont’d) 
 
• Some projections will fail to detect motifs but if we try 

many of them the probability that one of the buckets fills 
increases.  

• In the example below, the bucket **GC*AC is “bad” 
while the bucket   AT**G*C is “good” 
 

ATGCGTC 

...ccATCCGACca... 

...ttATGAGGCtc... 

...ctATAAGTCgc... 

...tcATGTGACac... (1,2,5,7) projection 

ATGCGTC 

...ccATCCGACca... 

...ttATGAGGCtc... 

...ctATAAGTCgc... 

...tcATGTGACac... (3,4,6,7) projection 
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Example 
• l = 7 (motif size) , k = 4 (projection size) 
• Choose projection (1,2,5,7) 

 

GCTC 

...TAGACATCCGACTTGCCTTACTAC... 

Buckets 

ATGC 

ATCCGAC 

GCCTTAC 
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Hashing and Buckets 
• Hash function h(x) obtained from k positions of 

projection.  
• Buckets are labeled by values of h(x). 
• Enriched buckets: contain more than s  l-tuples, for 

some parameter s with representatives from all 
sequences 
 

ATTC CATC GCTC ATGC 
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Motif Refinement 
• How do we recover the motif from the sequences in 

enriched buckets? 
• k nucleotides are exact matches, (hash key of bucket). 
• Use information in other l-k positions as starting point 

for local refinement scheme, e.g. Gibbs sampler.  
 

Local refinement algorithm ATGCGAC 
Candidate motif 

ATGC 

ATCCGAC 

ATGAGGC 
ATAAGTC 

ATGCGAC 
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Synergy between Random Projection 
and Gibbs Sampler 

• Random Projection is a procedure for finding good 
starting points: every enriched bucket is a potential 
starting point.  

• Feeding these starting points into existing algorithms 
(like Gibbs sampler) provides good local search in 
vicinity of every starting point.  

• These algorithms work particularly well for “good” 
starting points.  
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Building Profiles from Buckets 

A     1    0    .25    .50    0    .50   0 

C     0    0    .25    .25   0     0     1 

G     0    0    .50     0     1    .25   0 

T      0    1    0      .25    0    .25   0 

      Profile P 

Gibbs sampler  

Refined profile P* 

ATCCGAC 

ATGAGGC 

ATAAGTC 

ATGTGAC 

ATGC 
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Motif Refinement 
• For each bucket h containing more than s 

sequences, form profile  P(h) 
 

• Use Gibbs sampler algorithm with starting point  
P(h) to obtain refined profile P* 
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Random Projection Algorithm 

• Choose a random k-projection. 
• Hash each l-mer x in input sequence into bucket 

labeled by h(x) 
• From each enriched bucket (e.g., a bucket with more 

than s sequences), form profile P and perform Gibbs 
sampler motif refinement 

• Candidate motif is best found by selecting the best 
motif among refinements of all enriched buckets. 

A Single Iteration: 
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Choosing Projection Size 
• Projection size k 
    - choose k small enough so that several motif  

instances hash to the same bucket. 
     k << l,  l / 2 < k < l - const 

    - choose k large enough to avoid contamination 
by spurious l-mers:  

                    4k >> t (n - l + 1) 
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