Lecture 23:
 Randomized Algorithms

Chapter 12

Randomized Algorithms

- Randomized algorithms incorporate random, rather than deterministic, decisions
- Commonly used in situations where no exact and/or fast algorithm is known
- Main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.

Select

\therefore 四

- Select(L, k) finds the $\mathrm{k}^{\text {th }}$ smallest element in L
- Select(L,1) find the smallest...
- Well known O(n) algorithm

$$
\begin{aligned}
& \operatorname{minv}=\text { HUGE } \\
& \text { for } v \text { in } L: \\
& \quad \text { if }(v<m i n v): \\
& \quad \operatorname{minv}=v
\end{aligned}
$$

- Select(L, len(L)/2) find the median...
- How?
- median $=\operatorname{sorted}(\mathrm{L})[\operatorname{len}(\mathrm{L}) / 2] \quad \rightarrow \mathrm{O}(\mathrm{n} \operatorname{logn})$
- Can we find medians, or $1^{\text {st }}$ quartiles in $\mathrm{O}(\mathrm{n})$?

Select Recursion

\therefore 四

- Select(L, k) finds the $\mathrm{k}^{\text {th }}$ smallest element in \mathbf{L}
- Select an element m from unsorted list \mathbf{L} and partition L the array into two smaller lists:

$$
\mathbf{L}_{l o} \text { - elements smaller than } m
$$

and

$$
\mathbf{L}_{h i} \text { - elements larger than } m .
$$

- If $\operatorname{len}\left(\mathbf{L}_{l_{0}}\right)>k$ then Select $\left(\mathbf{L}_{l o}, k\right)$
- else if $\mathrm{k}>\operatorname{len}\left(\mathbf{L}_{l o}\right)+1$ then
$\operatorname{Select}\left(\mathbf{L}_{h i}, \mathrm{k}-\operatorname{len}\left(\mathbf{L}_{l o}\right)-1\right)$
- else m is the $\mathrm{k}^{\text {th }}$ smallest element

Example of Select(L, 5)

\therefore NTM Given an array: $\mathbf{L}=\{6,3,2,8,4,5,1,7,0,9\}$

Step 1: Choose the first element as m

$$
\left.\right|^{L=[0,3,8,4,5,1,7,0,91}
$$

Our Selection

Example of Select(cont'd)

 Step 2: Split the array into \mathbf{L}_{lo} and \mathbf{L}_{hi}

Example of Select(cont'd)

Step 3: Recursively call Select on either $\mathbf{L}_{l o}$ or $\mathbf{L}_{h i}$ until len $\left(\mathbf{L}_{l o}\right)=\mathrm{k}$, then return m.

$$
\begin{aligned}
& \operatorname{len}\left(\mathrm{L}_{l o}\right)>\mathrm{k}=5 \rightarrow \operatorname{Select}(\{3,2,4,5,1,0\}, 5) \\
& \mathrm{k}=5>\operatorname{len}\left(\mathrm{L}_{l 0}\right)+1 \rightarrow \operatorname{Select}(\{4,5\}, 5-3-1) \\
& m \\
& \mathrm{~L}_{\mathrm{lo}}=\{2,1,0\} \quad \mathrm{L}_{\mathrm{hi}}=\{4,5\} \\
& \mathrm{L}_{\mathrm{lo}}=\{\operatorname{empty}\}, \mathrm{L}_{\mathrm{hi}}=\{5\} \\
& k=1=\operatorname{len}\left(\mathrm{L}_{10}\right)+1 \rightarrow \text { return } 4
\end{aligned}
$$

Select Code

\therefore NTM

```
def select(L, k):
    value = L[0]
    Llo = [t for t in data if t < value]
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
            return select(Llo, k)
    elif (k > below):
            return select(Lhi, k - below)
    else:
                            return value
```


Select Analysis with Good Splits

- Runtime depends on our selection of m :
- A good selection will split \mathbf{L} evenly such that

$$
\left|\mathbf{L}_{l o}\right|=\left|\mathbf{L}_{h i}\right|=|\mathbf{L}| / 2
$$

- The recurrence relation is:

$$
T(n)=T(n / 2)
$$

$$
-\mathrm{n}+\mathrm{n} / 2+\mathrm{n} / 4+\mathrm{n} / 8+\mathrm{n} / 16+\ldots=2 \mathrm{n} \rightarrow \mathrm{O}(\mathrm{n})
$$

Select Analysis with Bad Splits

 However, a poor selection will split \mathbf{L} unevenly and in the worst case, all elements will be greater or less than m so that one Sublist is full and the other is empty.
For a poor selection, the recurrence relation is

$$
T(n)=T(n-1)
$$

In this case, the runtime is $\mathrm{O}\left(n^{2}\right)$.

Our dilemma:
I could have sort ed
first and done
better
$\mathrm{O}(n)$ or $\mathrm{O}\left(n^{2}\right)$,
depending on the list... or $\mathrm{O}(n \log n)$ independent of it

Select Analysis (cont'd)

- Select seems risky compared to sort
- To improve Select, we need to choose m to give good 'splits'
- It can be proven that to achieve $\mathrm{O}(n)$ running time, we don't need a perfect splits, just reasonably good ones.
- In fact, if both subarrays are at least of size $n / 4$, then running time will be $\mathrm{O}(n)$.
- This implies that half of the choices of m make good splitters.

A Randomized Approach

- To improve Select, randomly select m.
- Since half of the elements will be good splitters, if we choose m at random we will get a 50% chance that m will be a good choice.
- This approach will make sure that no matter what input is received, the expected running time is small.

Randomized Select

\therefore NTM
def randomizedSelect(L, k): value = random.choice(L)
Llo $=$ [t for t in data if $t<v a l u e]$ Lhi $=$ [t for t in data if $t>v a l u e]$ below = len(Llo) + 1
if (k < len(Llo)):
return randomizedSelect(Llo, k)
elif (k > below):
return randomizedSelect(Lhi, k-below)
else:
return value

RandomizedSelect Analysis

- Worst case runtime: $\mathrm{O}\left(n^{2}\right)$
- Expected runtime: $\mathrm{O}(n)$.
- Expected runtime is a good measure of the performance of randomized algorithms, often more informative than worst case runtimes.
- Worst case runtimes are rarely repeated
- RandomizedSelect always returns the correct answer, which offers a way to classify Randomized Algorithms.

Two Types of Randomized Algorithms

- Las Vegas Algorithms - always produce the correct solution (i.e. randomizedSelect), but may exceed expected time bound with small probability
- Monte Carlo Algorithms - do not always return the correct solution (but typically meet a worst case boudn)
- Las Vegas Algorithms are always preferred, but not always easy to come by.

The Motif Finding Problem

 Motif Finding Problem: Given a list of t sequences each of length n, find the "best" pattern of length l that appears in each of the t sequences.

$$
l=8
$$

A New Motif Finding Approach

- Motif Finding Problem: Given a list of t sequences each of length n, find the "best" pattern of length l that appears in each of the t sequences.
- Previously: we solved the Motif Finding Problem using a Branch and Bound or a Greedy technique.
- Now: randomly select possible locations and find a way to greedily change those locations until we converge to the hidden motif.

Profiles Revisited

- Let $\mathbf{s}=\left(s_{1}, \ldots, s_{\mathrm{t}}\right)$ be the starting positions for l mers in our t sequences.
- The substrings corresponding to these starting positions will form:
- $t \times$ l alignment matrix
- 4 x l profile matrix*

* Note that we now define the profile matrix in terms of frequency, not counts as in

$$
P(X \mid \text { profile })=0.6 * 0.8 * 0.8 * 1.0 * 0.6 * 0.8 * 0.6 * 0.8=0.0885
$$ Lecture 5.

Scoring Strings with a Profile

\therefore NTM

- Let l-mer $\mathbf{a}=a_{1}, a_{2}, a_{3}, \ldots a_{l}$
- $P(\mathbf{a} \mid \mathbf{P})$ is defined as the probability that an l-mer a was created by the Profile \mathbf{P}.
- If a is very similar to the consensus string of \mathbf{P} then $P(\mathbf{a} \mid \mathbf{P})$ will be high
- If \mathbf{a} is very different, then $P(\mathbf{a} \mid \mathbf{P})$ will be low.

$$
\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})=\prod_{i=1}^{l} p\left(a_{i} i\right)
$$

Scoring Strings with a Profile (cont'd)

\therefore 四 Given a profile: $\mathbf{P}=$

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

The probability of the consensus string: $\operatorname{Prob}($ aaacct $\mid \mathbf{P})=$???

Scoring Strings with a Profile (cont'd)

\therefore 四 Given a profile: $\mathbf{P}=$

A	$\mathbf{1} / \mathbf{2}$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

The probability of the consensus string:
$\operatorname{Prob}($ aaacct $\mid \mathbf{P})=1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8=.033646$

Scoring Strings with a Profile (cont'd)

\therefore 四
Given a profile: $\mathbf{P}=$

A	$\mathbf{1} / \mathbf{2}$	$7 / 8$	$\mathbf{3 / 8}$	0	$\mathbf{1 / 8}$	0
C	$1 / 8$	0	$1 / 2$	$\mathbf{5 / 8}$	$3 / 8$	0
T	$1 / 8$	$\mathbf{1} 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$\mathbf{1} / \mathbf{8}$

The probability of the consensus string:
$\operatorname{Prob}($ aaacct $\mid \mathbf{P})=1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8=.033646$
Probability of a different string:
$\operatorname{Prob}(\boldsymbol{a t a c a g} \mid \mathbf{P})=1 / 2 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 1 / 8=.001602$

P-Most Probable l-mer

\therefore NTM

- Define the P-most probable l-mer from a sequence as an l-mer in that sequence which has the highest probability of being created from the profile \mathbf{P}.

$\mathbf{P}=$| A | $1 / 2$ | $7 / 8$ | $3 / 8$ | 0 | $1 / 8$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $1 / 8$ | 0 | $1 / 2$ | $5 / 8$ | $3 / 8$ | 0 |
| T | $1 / 8$ | $1 / 8$ | 0 | 0 | $1 / 4$ | $7 / 8$ |
| G | $1 / 4$ | 0 | $1 / 8$ | $3 / 8$ | $1 / 4$ | $1 / 8$ |

Given a sequence $=$ ctataaaccttacatc, find the P-most probable l-mer

P-Most Probable l-mer (cont'd)

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

Find the $\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})$ of every possible 6-mer:
First try: ctataaccttacatc
Second try: ctataaccttacatc
Third try: ctataaccttacatc
-Continue this process to evaluate every possible 6-mer

P-Most Probable l-mer (cont'd)

 Compute $\operatorname{prob}(\mathbf{a} \mid \mathbf{P})$ for every possible 6-mer:

String, Highlighted in Red	Calculations	$\operatorname{prob}(\mathbf{a} \mid \mathbf{P})$
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 7 / 8 \times 3 / 8 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8$.0336
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 1 / 2 \times 5 / 8 \times 1 / 4 \times 7 / 8$.0299
ctataaaccttacat	$1 / 2 \times 0 \times 1 / 2 \times 01 / 4 \times 0$	0
ctataaaccttacat	$1 / 8 \times 0 \times 0 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 0 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 7 / 8$.0004

P-Most Probable l-mer (cont'd)

 P-Most Probable 6-mer in the sequence is aaacct:

String, Highlighted in Red	Calculations	$\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})$
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 7 / 8 \times 3 / 8 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8$.0336
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 1 / 2 \times 5 / 8 \times 1 / 4 \times 7 / 8$.0299
ctataaaccttacat	$1 / 2 \times 0 \times 1 / 2 \times 01 / 4 \times 0$	0
ctataaaccttacat	$1 / 8 \times 0 \times 0 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 0 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 7 / 8$.0004

P-Most Probable l-mer (cont'd)

\therefore NTM
aaacct is the P-most probable 6-mer in:

ctataaaccttacatc

because $\operatorname{Prob}($ aaacct $\mid \mathbf{P})=.0336$ is greater than the $\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})$ of any other 6-mer in the sequence.

Dealing with Zeroes

- In our toy example $\operatorname{prob}(\mathbf{a} \mid \mathbf{P})=0$ in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.
- To avoid many entries with $\operatorname{prob}(\mathbf{a} \mid \mathbf{P})=0$, there exist techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero (assigning a prior probability, we will not address these techniques here).

P-Most Probable l-mers in Many Sequences

- Find the P-most probable l-mer in each of the " t " sequences.

$\boldsymbol{P}=$| A | $1 / 2$ | $7 / 8$ | $3 / 8$ | 0 | $1 / 8$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $1 / 8$ | 0 | $1 / 2$ | $5 / 8$ | $3 / 8$ | 0 |
| T | $1 / 8$ | $1 / 8$ | 0 | 0 | $1 / 4$ | $7 / 8$ |
| G | $1 / 4$ | 0 | $1 / 8$ | $3 / 8$ | $1 / 4$ | $1 / 8$ |

ctataaacgttacatc
atagcgattcgactg
cagcccagaaccct
cggtataccttacatc
tgcattcaatagctta
tatcctttccactcac
ctccaaatcctttaca
ggtcatcctttatcct

P-Most Probable l-mers in Many

Sequences (cont'd)
 ct at aaacgt tacat c

1	a	a	a	c	g	t
2	a	t	a	g	c	g
3	a	a	c	c	c	t
4	g	a	a	c	c	t
5	a	t	a	g	c	t
6	g	a	c	c	t	g
7	a	t	c	c	t	t
8	t	a	c	c	t	t
A	$5 / 8$	$5 / 8$	$4 / 8$	0	0	0
C	0	0	$4 / 8$	$6 / 8$	$4 / 8$	0
T	$1 / 8$	$3 / 8$	0	0	$3 / 8$	$6 / 8$
G	$2 / 8$	0	0	$2 / 8$	$1 / 8$	$2 / 8$

at agcgat t cgact g cagcccagaaccct cggt gaacct tacat c
tgcat t caat agct ta
t gt cct gt ccact cac ct ccaaat cctttaca ggt ct acct tt at cct

P-Most Probable l-mers form a new profile

Comparing New and Old Profiles

1	a	a	a	c	g	t
2	a	t	a	g	c	g
3	a	a	c	c	c	t
4	g	a	a	c	c	t
5	a	t	a	g	c	t
6	g	a	c	c	t	g
7	a	t	c	c	t	t
8	t	a	c	c	t	t
A	$5 / 8$	$5 / 8$	$4 / 8$	0	0	0
C	0	0	$4 / 8$	$6 / 8$	$4 / 8$	0
T	$1 / 8$	$3 / 8$	0	0	$3 / 8$	$6 / 8$
G	$2 / 8$	0	0	$2 / 8$	$1 / 8$	$2 / 8$

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

Red - frequency increased, Blue - frequency decreased

Greedy Profile Motif Search

Use P-Most probable l-mers to adjust start positions until we reach a "best" profile; this is the motif.

1) Select random starting positions.
2) Create a profile \mathbf{P} from the substrings at these starting positions.
3) Find the \mathbf{P}-most probable l-mer a in each sequence and change the starting position to the starting position of \mathbf{a}.
4) Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.

GreedyProfileMotifSearch Algorithm

1. GreedyProfileMotifSearch($D N A, t, n, I$)
2. Randomly select starting positions $\mathbf{s}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{t}}\right)$ from DNA
3. bestScore $\leftarrow 0$
4. while Score(s, DNA) > bestScore
5. form profile P from s
6. bestScore \leftarrow Score(s, DNA)
7. for $i \leftarrow 1$ to t
8.
9.

Find a P-most probable $/-$ mer a from the $i^{\text {th }}$ sequence $s_{i} \leftarrow$ starting position of a
return bestScore

GreedyProfileMotifSearch Analysis

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance.

Gibbs Sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs.
- However, we can improve the algorithm by introducing Gibbs Sampling, an iterative procedure that discards one l-mer after each iteration and replaces it with a new one.
- Gibbs Sampling proceeds more slowly and chooses new l-mers at random increasing the odds that it will converge to the correct solution.

How Gibbs Sampling Works

1) Randomly choose starting positions
$\mathbf{s}=\left(s_{1}, \ldots, s_{t}\right)$ and form the set of l-mers associated with these starting positions.
2) Randomly choose one of the t sequences.
3) Create a profile \mathbf{P} from the other $t-1$ sequences.
4) For each position in the removed sequence, calculate the probability that the l-mer starting at that position was generated by \mathbf{P}.
5) Choose a new starting position for the removed sequence at random based on the probabilities calculated in step 4.
6) Repeat steps $2-5$ until there is no improvement

Gibbs Sampling: an Example

 Input:
$t=5$ sequences, motif length $l=8$

1. GTAAACAATATITATAGC
2. AAAATTTACCTCGCAAGG
3. CCGTACTGTCAAGCGTGG
4. TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA

Gibbs Sampling: an Example

 1) Randomly choose starting positions,

$$
\boldsymbol{s}=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right) \text { in the } 5 \text { sequences: }
$$

$$
\begin{array}{ll}
s_{1}=7 & \text { GTAAACAATATTTATAGC } \\
s_{2}=11 & \text { AAAATTTACCTTAGAAGG } \\
s_{3}=9 & \text { CCGTACTGTCAAGCGTGG } \\
s_{4}=4 & \text { TGAGTAAACGACGTCCCA } \\
s_{5}=1 & \text { TACTTAACACCCTGTCAA }
\end{array}
$$

Gibbs Sampling: an Example

 2) Choose one of the sequences at random: Sequence 2: AAAATTTACCTTAGAAGG

$s_{1}=7$ GTAAACAATATTTATAGC
$s_{2}=11$
AAAATTTACCTTAGAAGG
$s_{3}=9$
$s_{4}=4$
$s_{5}=1$
CCGTACTGTCAAGCGTGG
TGAGTAAACGACGTCCCA
TACTTAACACCCTGTCAA

Gibbs Sampling: an Example

\therefore 四 2) Choose one of the sequences at random: Sequence 2: AAAATTTACCTTAGAAGG

$$
\begin{array}{lc}
s_{1}=7 & \text { GTAAACAATATTTATAGC } \\
s_{3}=9 & \text { CCGTACTGTCAAGCGTGG } \\
s_{4}=4 & \text { TGAGTAAACGACGTCCCA } \\
s_{5}=1 & \text { TACTTAACACCCTGTCAA }
\end{array}
$$

Gibbs Sampling: an Example

3) Create profile P from l-mers in remaining 4 sequences:

$\mathbf{1}$	A	A	T	A	T	T	T	A
$\mathbf{3}$	T	C	A	A	G	C	G	T
$\mathbf{4}$	G	T	A	A	A	C	G	A
$\mathbf{5}$	T	A	C	T	T	A	A	C
A	$1 / 4$	$2 / 4$	$2 / 4$	$3 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$2 / 4$
C	0	$1 / 4$	$1 / 4$	0	0	$2 / 4$	0	$1 / 4$
\mathbf{T}	$2 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$2 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
G	$1 / 4$	0	0	0	$1 / 4$	0	$3 / 4$	0
Consensus string	T	A	A	A	T	C	G	A

Gibbs Sampling: an Example

4) Calculate the $\operatorname{prob}(\boldsymbol{a} \mid \boldsymbol{P})$ for every possible 8-mer in the removed sequence:

Strings Highlighted in Red $\operatorname{prob}(\mathbf{a} \mid \mathbf{P})$

AAAATTTACCTTAGAAGG	.000732
AAAATTTACCTTAGAAGG	.000122
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	.000183
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0

Gibbs Sampling: an Example

5) Create a distribution of probabilities of l-mers $\operatorname{prob}(\boldsymbol{a} \mid \boldsymbol{P})$, and randomly select a new starting position based on this distribution.
A) To create this distribution, divide each probability $\operatorname{prob}(\boldsymbol{a} \mid \boldsymbol{P})$ by the total:

Starting Position 1: $\operatorname{prob}($ AAAATTTA $\mid P)=.706$ Starting Position 2: $\operatorname{prob}($ AAATTTAC | P) $=.118$

Starting Position 8: $\operatorname{prob}($ ACCTTAGA | P) = . 176

Gibbs Sampling: an Example

B) Select a new starting position at random according to computed distribution:

P (selecting starting position 1): . 706 P (selecting starting position 2): . 118 P (selecting starting position 8): . 176
t = random.random()
if (t < .706) :
\# use position 1
elif (t < (. $706+.118$)):
\# use position 2
else:
\# use position 8

Gibbs Sampling: an Example

 Assume we select the substring with the highest probability - then we are left with the following new substrings and starting positions.

$s_{1}=7$	GTAAACAATATTTATAGC
$s_{2}=1$	AAAATTTACCTCGCAAGG
$s_{3}=9$	CCGTACTGTCAAGCGTGG
$s_{4}=5$	TGAGTAATCGACGTCCCA
$s_{5}=1$	TACTTCACACCCTGTCAA

Gibbs Sampling: an Example

 6) We iterate the procedure again with the above starting positions until we cannot improve the score any more.

Gibbs Sampler in Practice

- Gibbs sampling needs to be modified when applied to samples with biased distributions of nucleotides (relative entropy approach).
- Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.
- Must be run with many randomly chosen seeds to achieve good results.

Another Randomized Approach

- Random Projection Algorithm is a different way to solve the Motif Finding Problem.
- Guiding principle: Instances of a motif agree at a subset of positions.
- However, it is unclear how to find these "nonmutated" positions.
- To bypass the effect of mutations within a motif, we randomly select a subset of positions in the pattern creating a projection of the pattern.
- Search for that projection in a hope that the selected positions are not affected by mutations in most instances of the motif.

Projections

- Choose k positions in string of length l.
- Concatenate nucleotides at chosen k positions to form k-tuple.
- This can be viewed as a projection of l dimensional space onto k-dimensional subspace.

$$
\text { Projection }=(2,4,5,7,11,12,13)
$$

Random Projections Algorithm

- Select k out of l
positions uniformly at random.

Input sequence:
...TCAATGCACCTAT...

- For each l-tuple in input sequences, hash into buckets based on the k selected positions.
- Recover motif from enriched buckets that contain many l-tuples with at least one from each sequence.

Bucket TGCT

Random Projections Algorithm (cont'd)

- Some projections will fail to detect motifs but if we try many of them the probability that one of the buckets fills increases.
- In the example below, the bucket **GC*AC is "bad" while the bucket $\mathrm{AT}^{* *} \mathrm{G}^{*} \mathrm{C}$ is "good"

Example

- $l=7$ (motif size) , $k=4$ (projection size)
- Choose projection $(1,2,5,7)$
... TAGACATCCGACTTGCCTTACTAC . . .

Buckets

Hashing and Buckets

- Hash function $h(x)$ obtained from k positions of projection.
- Buckets are labeled by values of $h(x)$.
- Enriched buckets: contain more than s l-tuples, for some parameter s with representatives from all sequences

ATGC

GCTC

CATC

ATTC

Motif Refinement

- How do we recover the motif from the sequences in enriched buckets?
- k nucleotides are exact matches, (hash key of bucket).
- Use information in other $l-k$ positions as starting point for local refinement scheme, e.g. Gibbs sampler.

Synergy between Random Projection and Gibbs Sampler

- Random Projection is a procedure for finding good starting points: every enriched bucket is a potential starting point.
- Feeding these starting points into existing algorithms (like Gibbs sampler) provides good local search in vicinity of every starting point.
- These algorithms work particularly well for "good" starting points.

Building Profiles from Buckets

ATGC

A	1	0	.25	.50	0	.50	0
C	0	0	.25	.25	0	0	1
G	0	0	.50	0	1	.25	0
T	0	1	0	.25	0	.25	0

Profile P

P
Gibbs sampler

Refined profile \mathbf{P}^{*}

Motif Refinement

- For each bucket h containing more than s sequences, form profile $\mathbf{P}(h)$
- Use Gibbs sampler algorithm with starting point $\mathbf{P}(h)$ to obtain refined profile \mathbf{P}^{*}

Random Projection Algorithm

A Single Iteration:

- Choose a random k-projection.
- Hash each l-mer x in input sequence into bucket labeled by $h(x)$
- From each enriched bucket (e.g., a bucket with more than s sequences), form profile \mathbf{P} and perform Gibbs sampler motif refinement
- Candidate motif is best found by selecting the best motif among refinements of all enriched buckets.

Choosing Projection Size

- Projection size k
- choose k small enough so that several motif instances hash to the same bucket.

$$
k \ll l, \quad l / 2<k<l-\text { const }
$$

- choose k large enough to avoid contamination by spurious l-mers:

$$
4^{k} \gg t(n-l+1)
$$

