COMP 633 Parallel Computing
Fall 2021

http://www.cs.unc.edu/~prins/Classes/633/
Parallel computing

• What is it?
 – multiple processors cooperating to solve a single problem
 – hopefully faster than using a single processor!

• Why is it needed?
 – greater compute performance
Where is performance needed?

- sometimes performance is required in time-critical tasks
 - timely and accurate weather forecast
 - obstacle detection for self driving cars

- sometimes performance gives a competitive advantage
 - from Walmart to Wall Street
 - data mining of trends
 - delivery logistics
 - real-time analytics (high frequency trading)
 - engineering, manufacturing, and pharmaceuticals
 - vehicle crash simulations, material properties prediction, drug design

- sometimes performance is the only way to answer a question
 - scientific progress using mathematical modeling and numerical simulation
 - human genome assembly
 - computational science and the timely Nobel prize
Why can’t we just build a faster single processor?

- Moore’s “Law”
 - processor performance per $ doubles every two years!
Transistor miniaturization and performance

• Dennard scaling
 – transistor switching power \propto transistor size
 – shrinking transistor size
 • decreases switching power
 • decreases switching time (higher clock frequency)
 • increases number of transistors per unit area
 – so for the same power and space budget we get
 • faster arithmetic operations
 • pipelined arithmetic
 • more and larger caches
 ⇒ increased performance

• Limits to Dennard Scaling
 – as transistor size approaches quantum mechanical limits
 • increasing leakage current
 • exponential power increase!

[Graph showing Power Density (W/cm²) from 1970 to 2010, with data points for 8004, 8086, 386, 486, Pentium®, P6, showing power density increasing over time with labels for Sun’s surface, Rocket nozzle, Nuclear reactor, Hot plate. Source: Patrick Gelsinger, Intel®]
Parallelism is now the principal source of performance

- **Processor evolution after 2004 (Intel)**
 - *multiple cores per socket*
 - lower per-core performance
 - similar power per chip
 - per-core “turbo” mode
 - vector units and larger caches
 - multiple and higher performance
 - off-chip memory interfaces

- **Moore’s “law”**
 - performance per socket is still increasing but no longer exponentially
 - power/cooling per socket is the limiting factor

- **Factors limiting parallel computing**
 - overall system power
 - inconveniently slow speed of signal propagation!
Parallel computing at various scales

• Modern processor core
 – pipelined, superscalar, multiword ALUs
 – L1 and L2 caches

• Socket
 – multiple cores (4 – 64)
 – L3 cache

• Accelerators
 – Nvidia V100 GPU (2560 arithmetic units)

• Node
 – up to 4 sockets
 – up to 8 accelerators
 – fast local interconnect

• Cluster
 – tens to thousands of nodes
 – high speed interconnection network

64-bit floating point ops per second (FLOPS)

- Giga 10^9
- Tera 10^{12}
- Peta 10^{15}
- Exa 10^{18}
Top supercomputers (2020)

Sunway TaihuLight
National Research Center for Parallel Computer Engineering and Technology in Wuxi, CN

<table>
<thead>
<tr>
<th>Rank</th>
<th>System</th>
<th>Cores</th>
<th>Rmax (TFlop/s)</th>
<th>Rpeak (TFlop/s)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan</td>
<td>7,299,072</td>
<td>415,530.0</td>
<td>513,854.7</td>
<td>28,335</td>
</tr>
<tr>
<td>2</td>
<td>Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States</td>
<td>2,414,592</td>
<td>148,600.0</td>
<td>200,794.9</td>
<td>10,096</td>
</tr>
<tr>
<td>4</td>
<td>Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China</td>
<td>10,649,600</td>
<td>93,014.6</td>
<td>125,435.9</td>
<td>15,371</td>
</tr>
</tbody>
</table>
What are the parallel computing challenges?

• Parallel computing involves many aspect of computer science
 – new algorithms must be designed
 – new algorithm analysis techniques must be used
 – new programming models and languages must be learned
 – memory operation and performance must be understood
 – communication costs and network behavior must be considered
 – different operating systems, services, and I/O
 – different debugging and performance monitoring
 – novel and continuously changing hardware
 – …
Summary: Why study parallel computing?

• It is **useful** and it is **used**

• It involves **new algorithms** and **analytic techniques**

• **Future computing** will increasingly be predicated on the use of parallelism

• To understand **what is feasible and what is not**
How else is parallelism used?

• Parallelism may improve reliability
 – high availability
 – high assurance

• Parallelism may be inherent in the problem
 – (G)UIs
 – distributed systems
 • >80 processors in a modern luxury car

• Parallelism is a simple load scaling approach
 – server farms

... but these are not the focus of this course!
Parallel Computing vs. Distributed Computing

• Parallel Computing (COMP 633)
 – Multiple processors cooperating to solve a single problem
 – Key concepts
 • Design and analysis of scalable parallel algorithms
 • Programming models
 • Systems architecture and hardware characteristics
 • Performance analysis, prediction, and measurement

• Distributed Systems (COMP 734)
 – Providing reliable services to multiple users via a system consisting of multiple processors and a network
 – Key concepts
 • Services & protocols
 • Reliability
 • Security
 • Scalability
Parallel Computing vs. Concurrent Algorithms

- **Parallel Computing (COMP 633)**
 - Multiple processors cooperating to solve a single problem
 - Key concepts
 - Design and analysis of scalable parallel algorithms
 - Programming models
 - Systems architecture and hardware characteristics
 - Performance analysis, prediction, and measurement

- **Distributed and Concurrent Algorithms (COMP 735)**
 - Specification of fundamental algorithms and proofs of their correctness and performance properties
 - Mutual exclusion
 - Readers and writers
 - Key concepts
 - Lower and upper bounds, impossibility proofs
 - Formal methods
 - Wait-free and lock-free methods
Course Introduction

• Organization and content of this course
 – prerequisites
 – source materials
 – course grading
 – what will be studied

• Introductory examples
Organization of the course

- Course web page
 - Syllabus
 - Prerequisites
 - Learning Objectives
 - Honor Code
 - Topics
 - Online discussion - Piazza
 - Source materials – reading assignments
 - Assignments and grading
 - Computer usage

- Reading assignment for next time
 - Parallel Random Access Machine (PRAM) model and algorithms
 - sections 1, 2, 3.1 (pp 1-8)

- Sign up for Piazza
 - using link on web page
What will we study?

- Course is organized around different models of parallel computation
 - shared memory models [main focus]
 - PRAM
 - Loop-level parallelism, threads, tasks (OpenMP, Cilk)
 - Accelerators (Cuda)
 - distributed memory models [secondary focus]
 - bulk-synchronous processing (BSP, UPC), message passing (MPI)
 - data-intensive models [cursory treatment]
 - MapReduce/Hadoop, spark

- For each model we examine
 - algorithm design techniques
 - cost model and performance prediction
 - how to express programs
 - hardware and software support
 - performance analysis
 - advantages and limitations of the model including realism, applicability and tractability

By studying some examples in detail
Let’s try it right now!

- **Vector summation**
 - given vector $V[1..n]$ compute $s = \sum_{i=1}^{n} V_i$

 e.g. for $n = 8$

 $$s = V_1 + V_2 + \ldots + V_7 + V_8$$

- **sequential algorithm**
 - $n-1$ additions: optimal
 - e.g. sum from left to right
 - sequential running time
 - $T(n) = O(n)$
Example 1: DAG model of parallel computation

- A program $P = (V, E)$ is a tree where
 - leaf vertices in V \sim values
 - interior vertices in V \sim operations
 - edges E \sim evaluation dependences

\begin{align*}
V_1 &+ V_2 &+ V_3 &+ V_4 &+ V_5 &+ V_6 &+ V_7 &+ V_8 \\
V_1 &+ V_2 &+ V_3 &+ V_4 &+ V_5 &+ V_6 &+ V_7 &+ V_8
\end{align*}
Execution of a DAG “program”

• definition
 – an operation is ready if all of its children are leaves

• parallel execution step
 – simultaneously evaluate all ready operations and replace each with its value

• program execution
 – perform parallel execution steps until no operations remain

```
V1 V2 V3 V4 V5 V6 V7 V8
```

prog 1

```
V1 V2 V3 V4 V5 V6 V7 V8
```

prog 2
Complexity metrics for DAG model

- **Work complexity** of a DAG program
 - total number of operations performed
 - \(= \) number of interior vertices in DAG

- **Step complexity** of a DAG program
 - number of execution steps
 - \(= \) length of longest path in DAG

<table>
<thead>
<tr>
<th></th>
<th>work</th>
<th>steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog 1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Prog 2</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
Asymptotic complexity metrics for DAG model

- Asymptotic complexity
 - problem size n
 - $W(n)$ asymptotic work complexity
 - $S(n)$ asymptotic step complexity
 - $T^*(n)$ optimal asymptotic sequential time complexity

- Definition
 - A DAG program is work efficient if $W(n) = O(T^*(n))$

<table>
<thead>
<tr>
<th></th>
<th>$W(n)$</th>
<th>$S(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog 1</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Prog 2</td>
<td>$O(n)$</td>
<td>$O(lg\ n)$</td>
</tr>
</tbody>
</table>
Asymptotic complexity metrics for DAG model

- Asymptotic complexity
 - problem size n
 - $W(n)$ asymptotic work complexity
 - $S(n)$ asymptotic step complexity
 - $T^*(n)$ optimal asymptotic sequential time complexity

- Definition
 - A DAG program is work efficient if $W(n) = O(T^*(n))$

<table>
<thead>
<tr>
<th></th>
<th>$W(n)$</th>
<th>$S(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog 1</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Prog 2</td>
<td>$O(n)$</td>
<td>$O(lg n)$</td>
</tr>
</tbody>
</table>
Execution of DAG programs with fixed resources

- At most p operations evaluated simultaneously in a DAG program H
 - models execution using p “processors”

- Definition
 - $T_p(n)$ is the time to execute H using p processors
 - n - problem size
 - p - maximum number of nodes that may be evaluated concurrently in each timestep
 - $T_1(n) = W(n)$
 - $T_\infty(n) = S(n)$

But what is $T_2(8)$ for prog 2?
Evaluation order

- Determining evaluation order to minimize $T_p(n)$ is NP-hard!

- Simple non-optimal greedy evaluation order
 - at each step
 - p or fewer operations ready \Rightarrow evaluate all ready nodes
 - more than p operations ready \Rightarrow evaluate any p ready nodes

- Running time using greedy strategy can be bounded

$$\left\lfloor \frac{W(n)}{p} \right\rfloor \leq T_p(n) \leq \left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)$$
“fast” parallel programs give good speedup

• Definition
 – a fast parallel program has step complexity $S(n)$ that is asymptotically smaller than work complexity $W(n)$

$$S(n) = o(W(n)) \quad \text{means} \quad \lim_{n \to \infty} \frac{S(n)}{W(n)} = 0$$

• For a fixed number of processors p, a fast parallel program gives better speedup as problem size n is increased

$$\left\lfloor \frac{W(n)}{p} \right\rfloor \leq T_p(n) \leq \left\lceil \frac{W(n)}{p} \right\rceil + S(n)$$

$$\lim_{n \to \infty} T_p(n) = O\left(\frac{W(n)}{p}\right)$$

 – asymptotically optimal speedup on large problems!
But can’t speed up indefinitely

- You can’t speed up a parallel algorithm indefinitely using more processors
 - for a fixed problem size \(n \), step complexity limits speedup
 \[
 T_p(n) = O\left(\frac{W(n)}{p} + S(n)\right)
 \]

- prog 1 cannot be sped up at all using more processors!
 - \(W(n) = \Theta(n) \)
 - \(S(n) = \Theta(n) \)

- prog 2 requires \(\Omega(\lg n) \) steps regardless of the number of processors
 - \(W(n) = \Theta(n) \)
 - \(S(n) = \Theta(\lg n) \)
Consequences: work efficiency is paramount

- A parallel program H that is *not* work efficient loses asymptotically!
 - for any given p, there exists a problem size n_0 such that
 - an efficient sequential program using one processor on problems of size $n > n_0$ is faster than the parallel program H using p processors!
 - it doesn’t help if H is *fast*
 - worst results on large problems!

\[
T_p(n) = O\left(\frac{W(n)}{p} + S(n)\right)
\]
Example 2: Message-passing model

- \(p \) processors connected in a ring
 - each processor
 - runs the same program
 - has a unique processor id \(0 \leq i < p \)
 - can send a value to its left neighbor

- summation of \(V[0..p-1] \) using \(p \) processors
 - assume \(V_i \) is in \(s \) on processor \(i \) at start
 - program terminates with \(s = \sum_{j \in 0..p-1} V_j \) on processor 0
Summation program

```plaintext
for h := 1 to \(\lg p\)
    x := s
    for j := 1 to \(2^{h-1}\) do
        send value of x to left and receive new value for x from right
    s := s + x
```

Example: \(p = 4\)

\[
\begin{align*}
\text{s} &= V_0 \quad V_1 \quad V_2 \quad V_3 \\
\text{h = 1, s =} & \quad V_0 + V_1 \quad V_2 + V_3 \\
\text{h = 2, s =} & \quad V_0 + V_1 + V_2 + V_3
\end{align*}
\]
Analysis of summation program

```
for h := 1 to (lg p)
    x := s
    for j := 1 to 2^{h-1} do
        send value of x to left and receive new value for x from right
    s := s + x
```

- Let
 - t_a time to perform addition
 - t_c time to perform communication

$$T_p(n) = \sum_{h=1}^{\lg p} (t_a + 2^{h-1}t_c) = (\lg p) \cdot t_a + (p-1) \cdot t_c$$

- Is this good performance?
What’s wrong?

• poor network?
 – network *diameter* is large thus values have to travel far
 – so communication time is huge compared to addition time
 – a smaller diameter network might do better

• bad communication strategy?
 – “cut-through” routing would be superior

• poor utilization of the processors?
 – only a few processors are performing useful additions!

• problem size too small?
 – this is the real problem!
Summation of n values with p processors

- Each processor holds n/p values

\[
\begin{align*}
 s &:= \text{sum of } n/p \text{ values in this processor} \\
 \text{for } h &:= 1 \text{ to } \lfloor \log_2 p \rfloor \\
 \text{\quad } x &:= s \\
 \text{for } j &:= 1 \text{ to } 2^{h-1} \text{ do} \\
 \text{\quad } &\text{send value of } x \text{ to left and receive new value for } x \text{ from right} \\
 s &:= s + x
\end{align*}
\]

Example:

- $n = 8$
- $p = 4$

\[
\begin{align*}
 &0 &\quad 1 &\quad 2 &\quad 3 \\
 V_0 &\quad V_2 &\quad V_4 &\quad V_6 \\
 V_1 &\quad V_3 &\quad V_5 &\quad V_7
\end{align*}
\]
Summation of n values using p processors

• Analysis

\[T_p(n) = \left(\frac{n}{p} - 1 \right) \cdot t_a + (\lg p) \cdot t_a + (p - 1) \cdot t_c \]

\[\approx \left(\frac{n}{p} \right) \cdot t_a + (\lg p) \cdot t_a + p \cdot t_c \]

- speedup
- overhead

• excellent performance can be achieved
 – for arbitrary p, t_a, t_c
 – asymptotically optimal speedup with sufficiently large n
 • overheads and inefficiencies can be amortized!
For next week Tuesday

• read the PRAM handout
 – secns 1, 2, 3.1 (pp 1-8)