
Tue Nov 1, 2021  PA2 

  

COMP 633:  Parallel Computing 
Programming Assignment PA2 

 
 
Assigned: Mon Nov 1, 2021 
Due:  Tue Nov 30, 2021 

 

Assignment 

For programming assignment PA2, you can choose to implement the Lloyd k-means algorithm described 
in the attachment, or you can implement a computationally intensive problem of your choice, relevant to 
your interests.  For the latter, we need to meet briefly to agree on the suitability of the problem.  You can 
work on your own, or with a partner in the class.  Please be sure you have identified the project and 
personnel by the end of this week (Nov 5).   

You can use Phaedra for shared memory and/or the V100 GPU.  If you choose to build an implementation 
using MPI, you will need to request permission to use the Dogwood computing cluster at UNC Research 
Computing, which will take some time to request and to complete runs. 

Submission 
You need to describe  

(a) The problem you chose 
(b) The implementation platform used  
(c) The performance scaling of the problem at different problem size (e.g. different values of 𝐾𝐾 and 

𝑛𝑛, in the k-means algorithm), and with different numbers of processors.  Discuss the results. 

Also, please include your implementation file(s) with your submission. 



A K-MEANS CLUSTERING ALGORITHM

Appendix A. K-means Clustering Algorithm

This section is a brief introduction to the K-means clustering algorithm. The goal of K-means cluster-
ing is to take a set of feature vectors (x1, x2, ..., xn) and group them into K clusters (C1, C2, ..., C3) so that
the sum of variances within clusters is minimized:

k∑
i=1

∑
x∈Ci

||x− µi||2 → min. (1)

Here µi is the centroid of cluster Ci, computed as the mean of the vectors assigned to it.
The standard algorithm for solving this workload was introduced in the 1960s, and is often referred

to as Lloyd’s algorithm. Various efforts have been made to improve on this standard algorithm. In 2003
Charles Elkan introduced a new algorithm that is optimized for large values of K [15]. Then in 2010,
George Hamerly introduced an algorithm that is optimized for smaller values of K [6]. CFXKMeans
library uses the Hamerly’s algorithm for the K-means clustering, whereas scikit-learn uses Elkan’s im-
plementation. Though there have been further development in K-means clusterng algorithms, only the
algorithms relevant to the paper will be described in this section: the standard algorithm first, followed by
the Hamerly’s algorithm.

A.1. STANDARD ALGORITHM

Standard algorithm is an iterative algorithm to find the minimum variance clusters. It starts with
initial “guesses” for the cluster centroids, and these centroids are refined at each step until the algorithm
converges. K-means clustering algorithm convergence time strongly depends on these initial conditions.
There are numerous studies on how best to select the initial guesses. However, this is beyond the scope of
this discussion. In the benchmarks presented in the paper, “guesses” are selected from the feature vectors
(input).

Each step can be divided into two phases: assignment and update.

• Assignment Phase: Each feature vector (input) is assigned to the cluster that minimizes the vari-
ance. Because the Euclidean distance is the square root of the sum of squares, this is equivalent to
assigning a feature vector to the closest cluster centroid.

• Update Phase: Each centroid is updated based on its current members. In other words, the centroid
position is set to the vector average of the feature vectors assigned to it.

When there are no changes to the assignment in the assignment phase, then the algorithm has converged
to the local minimum.

Standard algorithm is shown in Algorithm 1.

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 22

Pr
ep

ar
ed

fo
rJ

an
Pr

in
s

on
Ja

nu
ar

y
17

,2
01

8
at

17
:4

8:
03

U
T

C

1

https://colfaxresearch.com/
prins
Highlight



A.1 Standard Algorithm A K-MEANS CLUSTERING ALGORITHM

Algorithm 1 Standard algorithm
1: N ← number of feature vectors
2: K ← number of clusters
3: F ← number of features
4: x⃗n ∈ IRN×F is feature vector n
5: µ⃗c ∈ IRN×K is cluster centroid c
6: An ∈ IRN is assignment of vector n
7: C⃗c ∈ IRK×F is sum of member vectors of centroid c
8: Mc ∈ IRK is number of member vectors of centroid c
9: Initialize(C⃗, A,M, x⃗)

10: while not converged do
11: converged← true
12: for n← 0, N do
13: cmin ←GetNearestCentroid(x⃗n, µ⃗)
14: if cmin ̸= An then
15: converged← false
16: C⃗An ← C⃗An − x⃗n

17: C⃗cmin
← C⃗cmin

+ x⃗n

18: MAn ←MAn − 1
19: Mcmin

←Mcmin
+ 1

20: An ← cmin

21: for c← 0, K do
22: µ⃗c ← C⃗c/Mc

23: procedure GETNEARESTCENTROID(x⃗n, µ⃗)
24: dmin ←∞
25: cmin ← 0
26: for c← 0, K do
27: d← ||x⃗n − µ⃗c||
28: if d < dmin then
29: dmin ← d
30: cmin ← c

31: return cmin

32: end procedure
33: procedure INITIALIZE(C⃗, A,M, x⃗)
34: for n← 0, N do
35: An ← 0
36: C⃗0 ← C⃗0 + x⃗n

37: Mc ← N
38: for c← 1, K do
39: C⃗c ← 0
40: Mc ← 0

41: end procedure

c⃝ Colfax International, 2017 — https://colfaxresearch.com/ 23

Pr
ep

ar
ed

fo
rJ

an
Pr

in
s

on
Ja

nu
ar

y
17

,2
01

8
at

17
:4

8:
03

U
T

C

1

https://colfaxresearch.com/

	COMP 633:  Parallel Computing
	Programming Assignment PA2
	Assigned: Mon Nov 1, 2021
	Submission

