COMP 633: Parallel Computing

Fall 2021
 Written Assignment \#2

Assigned: Mon Nov 1
 Due: Tue Nov 23

1. [10] Let $H[1: n]$ be an array of integer values in the range $1 . . k$, with that $1 \leq k \leq n$. We want to find the most frequently occurring value m in H, i.e. the mode of H. For example, with $n=8, k=4$, and $H=[1,3,1,3,3,4,3,1]$, we should find $m=3$. For simplicity you can assume that the mode is unique.
(a) Verify that the sequential time complexity for this problem is $\Theta(n)$.
(b) Describe an efficient parallel BSP algorithm for this problem using p processors assuming the condition $n=k p$ with $k \geq p$ and give its BSP cost. The input H is distributed evenly over processors, so that initially each processor holds k input values (assume p divides n evenly). The result m should be available in the first processor on termination.
2. [10] An alternative way to construct a bitonic sort for $N=n p$ elements with $p=2^{k}$ processors is to extend the compare-exchange operation to sorted sequences. For v, w sorted sequences of length n let $\mathrm{CE}_{\text {seq }}(v, w)=s, t$ with $s=\operatorname{merge}(v, w)[1: n]$ and $t=\operatorname{merge}(v, w)[n+1: 2 n]$. Observe the $2 n$ elements of s, t define a permutation of the $2 n$ elements of v, w and that s, t are partitioned, meaning any element in s is less than or equal to any element in t. More formally, the transitive relation $s \preccurlyeq t \equiv \forall_{1 \leq i, j \leq n} s_{i} \leq t_{j}$.

Using this relation, design a comparison-based bitonic sort of $N=n p$ elements using processors with asymptotically optimal work efficiency (in the sense of lecture 16, last slide). Show the complete BSP cost of your solution.

