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COMP 633:  Parallel Computing 
Programming Assignment 1(a)   

Sequential all-pairs n-body simulation 
 
Assigned: Mon Sep 20 
Due:  Tue Sep 28 (at start of class) 

 
This programming assignment is divided into two parts.  In part (a) you simply build a sequential program 
and measure its performance as described below.   In part (b) that will follow next week, you will use 
OpenMP to create a parallel implementation and report on its performance.  For this assignment you may 
work on your own, or together with a partner in the class.  The score earned is not affected by working in 
a team of two. 

Problem Description 
We consider a simple simulation of point masses interacting through the gravitational force in 2D.  We 
start with a collection of 𝑛𝑛 bodies 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛.  Each body 𝑏𝑏𝑖𝑖 is described by a scalar mass 𝑚𝑚𝑖𝑖, a position 
vector 𝒓𝒓𝑖𝑖, and a velocity vector 𝒗𝒗𝑖𝑖 (vectors in 2-space).   

For a given configuration of bodies, the force vector 𝒇𝒇𝑖𝑖𝑖𝑖 on 𝑏𝑏𝑖𝑖 as a result of its interaction with 𝑏𝑏𝑗𝑗 is 

𝒇𝒇𝑖𝑖𝑖𝑖 =
𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗𝒓𝒓𝑖𝑖𝑖𝑖
�𝒓𝒓𝑖𝑖𝑖𝑖�
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Where 𝐺𝐺 is the gravitational constant, and 𝒓𝒓𝑖𝑖𝑖𝑖 = 𝒓𝒓𝑗𝑗 − 𝒓𝒓𝑖𝑖  and ‖𝒓𝒓𝑖𝑖𝑖𝑖‖ is the length of 𝒓𝒓𝑖𝑖𝑖𝑖.  The total force 𝒇𝒇𝑖𝑖 
experienced by 𝑏𝑏𝑖𝑖 as a result of its interaction with all other bodies is 

𝒇𝒇𝑖𝑖 =  � 𝒇𝒇𝑖𝑖𝑖𝑖
1≤𝑗𝑗≤𝑛𝑛
𝑗𝑗≠𝑖𝑖

 

Since 𝒇𝒇 = 𝑚𝑚𝒂𝒂, this force results in the acceleration 

𝒂𝒂𝑖𝑖 =
𝒇𝒇𝑖𝑖
𝑚𝑚𝑖𝑖

 

of body 𝑏𝑏𝑖𝑖. 

To simulate the trajectories of the 𝑛𝑛 bodies over time, we numerically integrate the equations of motion 
using a simple forward Euler method with a timestep of ∆𝑡𝑡.  Starting from initial positions 𝑟𝑟𝑖𝑖0 and velocities 
𝑣𝑣𝑖𝑖0 for all bodies at time 𝑡𝑡 = 0, we advance the positions and velocities as follows.  First, using the 
equations above, and the positions 𝑟𝑟𝑖𝑖𝑡𝑡 of all bodies at time 𝑡𝑡, compute the acceleration 𝒂𝒂𝑖𝑖𝑡𝑡 for each body 
𝑏𝑏𝑖𝑖. Then update the positions and velocities for body 𝑖𝑖 to time (𝑡𝑡 + ∆𝑡𝑡).  

𝒗𝒗𝑖𝑖𝑡𝑡+∆𝑡𝑡 = 𝒗𝒗𝑖𝑖𝑡𝑡 + ∆𝑡𝑡 ∙ 𝒂𝒂𝑖𝑖𝑡𝑡   

𝒓𝒓𝑖𝑖𝑡𝑡+∆𝑡𝑡 = 𝒓𝒓𝑖𝑖𝑡𝑡 + ∆𝑡𝑡 ∙ 𝒗𝒗𝑖𝑖𝑡𝑡  

Our objective is to compute the final state of the system at time 𝑡𝑡 = 𝑘𝑘∆𝑡𝑡, i.e. following 𝑘𝑘 iterations of this 
update scheme starting from an initial configuration of the 𝑛𝑛 bodies.  In outline this can be done as follows: 
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Create initial configuration of bodies 
for t = 1 to k 
     compute 𝑎𝑎𝑖𝑖  for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛  
     update 𝑟𝑟𝑖𝑖 and 𝑣𝑣𝑖𝑖  for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛   
end 

The body of the loop calculates 𝑛𝑛 accelerations and updates 𝑛𝑛 positions and velocities per iteration.  In a 
simulation with 𝑘𝑘 timesteps a total of 𝑘𝑘𝑛𝑛2 interactions are calculated.  For sufficiently large values of 𝑛𝑛, 
the time spent updating velocities and positions will be negligible, so we define the performance of the 
loop to be 𝑘𝑘𝑛𝑛2/𝑡𝑡elapsed interactions per second, where 𝑡𝑡elapsed is elapsed time in seconds between the 
start and end of the loop. 

Computational details 
Use 64-bit floating-point values (double) for all quantities and in all calculations.  A safe configuration of 
the bodies is equally spaced in a line or a circle in the unit square, with small mass 𝑚𝑚𝑖𝑖 = 1.0 and no initial 
velocity 𝒗𝒗𝑖𝑖0 = (0,0). Set the timestep  ∆t = 0.001 and use G =  6.673 × 10−11 m3 ∙ kg−1 ∙ s−2.  With 
these parameters the simulation will do nothing of interest for a large number of iterations, and should 
not encounter any pathologies.  The goal of this exercise is to perform the computation quickly; the 
simulation is not of interest. If you are interested in seeing something happen, you can increase G to 1.0 
to notice gravitational effects in a short simulation (with huge errors).  You can perform some simple 
computational checks on your program.  For example, the momentum of the system ∑ 𝑚𝑚𝑖𝑖𝒗𝒗𝑖𝑖1≤𝑖𝑖≤𝑛𝑛  should 
be approximately conserved.  As our simple n-body simulation suffers from various numerical problems, 
principally due to the poor integrator and unbounded forces in colliding trajectories, the momentum is 
actually not conserved precisely. I will post the values from a small 𝑛𝑛 simulation for you to compare with 
your implementation to judge ballpark similarity. 

Programming Assignment 
1. Program the simple sequential algorithm for the problem above using C or C++ on Phaedra. 
2. Create a modified sequential version of (1) that uses Newton's third law, 𝒇𝒇𝑖𝑖𝑖𝑖  = –𝒇𝒇𝑗𝑗𝑗𝑗, to halve the 

number of force calculations.  Whenever 𝑓𝑓𝑖𝑖𝑖𝑖 is computed, its contribution may be added to 𝑓𝑓𝑖𝑖 and 
subtracted from 𝑓𝑓𝑗𝑗, eliminating the need to subsequently compute 𝑓𝑓𝑗𝑗𝑗𝑗. 

3. Check both programs compute nearly the same result (why might they not compute the exact 
same result?) 

4. Optimize the performance of (1) and (2) using the gcc compiler or icc compiler.  Do not parallelize 
the programs at this stage! 

5. For values of 𝑛𝑛 ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000} on the x axis, and using 
𝑘𝑘 = 4 time steps, plot the performance of both (1) and (2) on the y axis (in units of millions of 
interactions per second).  Make 5 runs for each value of 𝑛𝑛 ≤ 2000 to show average performance 
and variation.   

6. Please turn in the performance graph described in (5) and a listing of your program. The basic 
assignment is not time consuming, but be sure to leave sufficient time to explore performance 
improvements and to get the data you need.   Details about access to phaedra and compilers are 
on the web page and will be covered in class.   
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