1. Let $H[1:n]$ be an array of integer values in the range $1..k$, with that $1 \leq k \leq n$. We want to find the most frequently occurring value m in H, i.e. the mode of H. For example, with $n = 8, k = 4$, and $H = [1, 3, 1, 3, 4, 3, 1]$, we should find $m = 3$. For simplicity you can assume that the mode is unique.

(a) Verify that the sequential time complexity for this problem is $\Theta(n)$.

(b) Describe an efficient parallel BSP algorithm for this problem using p processors assuming the condition $n = kp$ with $k \geq p$ and give its BSP cost. The input H is distributed evenly over the processors, so initially each processor holds $k = n/p$ input values (assume p divides n evenly). The result m should be available in the first processor on termination.

SAMPLE SOLUTION

(a) To understand whether a solution is efficient, we need to determine the sequential time complexity of the problem. In general, finding the mode of a collection of values requires $\Omega(n \log n)$ time. However, our mode problem is restricted, as values in $H[1:n]$ are drawn from the range $1..k$ and we are given $k \leq n$. Thus we can histogram the values in H using an auxiliary array of size k and determine the mode in time $O(k + n) = O(n)$. This is also a lower bound since we have to examine all n input values. Thus the sequential time complexity is $\Theta(n)$.

(b) Under the BSP model H is distributed evenly across processors with each processor holding n/p values. Following the strategy of the sequential algorithm, we can histogram the occurrences of values in H and identify the value with maximum occurrence count. We do this in three supersteps as follows.

1. Each processor histograms its n/p local values across k bins. Next, this histogram is partitioned into p groups each with k/p bins and a total exchange of the groups among the p processors is performed so processor i receives counts of values in group i from each processor. The BSP cost for this step is

 $O(n/p) + p(k/p) \cdot g + L = O(n/p) + k \cdot g + L = O(n/p) + O(n/p) \cdot g + L$

2. Each processor receives k/p mode candidates and p counts for each candidate. These counts are summed to create k/p elements of the complete histogram in each processor. Each processor selects the value with the maximum count in its group and sends it to processor 1. Since $p = n/k < n/p$, the BSP cost for this step is $O(n/p) + O(n/p) \cdot g + L$

3. Processor 1 examines the p candidates for the mode received from the previous step to find m, the mode of H. Since $p = n/k < n/p$, the BSP cost is $O(n/p) + L$.

Thus the total BSP cost is $O(n/p) + O(n/p) \cdot g + 3 \cdot L$. The BSP algorithm is work-efficient since the work term is $O(n/p)$. The algorithm’s communication overhead depends on the network since

$$\lim_{n \to \infty} \frac{O(n/p) \cdot g + 3 \cdot L}{O(n/p)} \approx g$$
2. The Discrete Fourier Transform (DFT) of a sequence of complex values \(X[0:n-1]\) and \(n = 2^r\) yields complex values \(Y[0:n-1]\) such that
\[Y_i = \sum_{0 \leq k < n} X_k \omega^{ki}\] where \(\omega = e^{2\pi \sqrt{-1}/n}\). The radix-2 FFT to compute \(Y[0:n-1]\) (in bit-reversed index order) can be expressed as a W-T model algorithm with
\[S(n) = O(lg n)\] and \(W(n) = O(n lg n)\) as follows

```plaintext
forall i \in 0:n-1 do
    Y[i] := X[i]
end
for m := 0 to r-1 do
    forall i \in 0:n-1 do
        let \((b_0 \ldots b_{m-1} b_m b_{m+1} \ldots b_{r-1})\) be the binary representation of \(i\)
        int j := \((b_0 \ldots b_{m-1} 0 b_{m+1} \ldots b_{r-1})\)
        int k := \((b_0 \ldots b_{m-1} 1 b_{m+1} \ldots b_{r-1})\)
        int h := \((b_m b_{m-1} \ldots b_0 0 \ldots 0)\)
        Y[i] := Y[j] + Y[k] \cdot \omega^h
    end forall
end for
```

(a) Construct an algorithm where \(n = p\) with BSP cost \(O(lg p)(1 + g + L)\).
(b) Construct an algorithm where \(n = 2^r\) and \(r \geq 2 \lg p\) with BSP cost
\[O(1) \left(\frac{n \lg n}{p} + \frac{n}{p} \cdot g + L \right)\]

In both cases \(X\) and \(Y\) should be distributed evenly over processors.

SAMPLE SOLUTION

(a) Observe the FFT communication pattern is naturally suited to processors logically arranged in a boolean hypercube because in each step of the algorithm we compare values in \(Y\) whose index differs in the same digit position when viewed as a binary value. If we distribute \(n = p = 2^k\) values of \(Y\) in processor index order, then in iteration \(0 \leq m \leq r - 1\), one of \(y_j\) and \(y_k\) is at processor \(i\), and the other is at processor \(nb_{r-m}(i)\), where \(nb_d(i)\) is the label of the processor across dimension \(d\), i.e. the processor whose index differs from \(i\) only in bit \(d\).

Consequently, if we vary the dimension \(j\) from \(r\) down to 1 on successive iterations, the communication pattern is a simple exchange of \(y\) values across dimension \(j\), followed by an update of the local \(y\).

Here is the program for processor \(i\):
for \(j := r \) downto 1 do

\[
y' := \text{value of } y \text{ at } nb_j(i) \quad \text{SS1}
\]

if \((i(j) = 1) \) then

\[
y, y' := y', y
\]
endif

\[
h := \text{bitrev}(i \text{ div } 2^{j-1}) \cdot 2^{j-1} \quad \text{SS2}
\]

\[
y := y + y' \cdot \omega^h.
\]

end do

Each iteration of this loop communicates a single value in one superstep, and performs a constant amount of work in a second superstep. Since we are alternating communication and computation supersteps on successive iterations, we can combine the computation on iteration \(j \) with the communication on iteration \(j + 1 \), and perform one additional superstep at the end. Since \(y \) holds a complex value, we should treat it as a two word transfer to yield a BSP cost of \(O(1) + 2g + L \) per superstep. For a total of \(\lg p \) iterations, the BSP cost is \(O(\lg p) (1 + g + L) \).

(b) For the case \(n > p \), we can have an array \(Y \) with \(n/p \) values in each processor. We can continue to treat the problem as if arranged on a boolean hypercube of dimension \(\lg n \), where \(\lg p \) dimensions are embedded across processors and the remaining \(\lg n - \lg p \) dimensions are embedded within the array \(Y \) at each processor. Then we apply a communication optimization similar in strategy to the one used to improve the communication efficiency of bitonic sort and the multiscan in radix sort.

Suppose we have \(p = 2^q \) processors and \(n = 2^k 2^q \) values with \(k \geq q \), which we view as arranged in a Boolean hypercube of degree \(k + q \). If we assume a cyclic decomposition of input values across processors (i.e. successive values in the input are distributed across successive processors), then the first \(k \) iterations of the algorithm (communicating values along the highest \(k \) dimensions of the hypercube) can be performed entirely locally within each processor, while the last \(q = \lg p \) iterations require communication across processors. Since the cost of each such communication between processors is \((n/p)(2g + L) \), this would yield an overall communication cost of \((\lg p)(n/p)(2g + L) \) which is too large.

We can improve the communication cost as follows.

Superstep (1) performs \(k \) iterations locally within each processor followed by a transposition of the data from cyclic distribution into block distribution. This will embed the lowest \(q \) dimensions entirely within processor memory.

Superstep (2) then applies the last \(q \) iterations of the algorithm locally.

The transposition is a total exchange operation in which the \(i^{th} \) group of \(n/p^2 \) values must be moved to processor \(i \), hence is an \(h \)-relation of size \(n/p \). On termination the result is equally distributed across processors in a block distribution (the first \(n/p \) values are in the first processor, the second \(n/p \) values are in the second processor, etc.).

The complete algorithm has two supersteps. The first has cost \(k(n/p) + 2(n/p)g + L \). The second has cost \(q(n/p) + L \). The total BSP cost is thus

\[
(k + q)(n/p) + 2(n/p)g + 2L = (n \lg n)/p + 2(n/p)g + 2L
\]

and satisfies our target bound in part (b) of the question. For an additional cost of \(2(n/p)g + 2L \) we can accept input values distributed evenly across processors in any fashion, so we can relax our assumption of input data arranged in a cyclic distribution while retaining the asymptotic BSP cost.