COMP 633: Parallel Computing
Programming Assignment 1(b)
Parallel all-pairs n-body simulation

Assigned: Thu Sep 17
Due: Thu Oct 1 (at start of class)

In this assignment you will use OpenMP to parallelize the two sequential n-body programs constructed in PA1(a). First update your PA1(a) sequential all-pair and half-pair programs as needed for correctness and performance. Verify the resulting programs compute approximately the same results as the all-pair reference implementation. Your half-pairs solution must make use of Newton's third law, \(f_{ij} = -f_{ji} \), to halve the number of force calculations needed compared to the all-pairs solution. I have posted the all-pair and half-pair solutions (written in C) that I benchmarked in class for pa1a. You can use or adapt these sequential solutions, if you wish, as a starting point for this assignment.

Programming Assignment

1. Plot the performance of your all-pairs and half-pairs sequential n-body programs for \(k = 6 \) time steps with values of \(n \in \{10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\} \) on the x axis and the observed interaction rate \(R(n, p) = \frac{kn^2}{t_p} \) on the y axis (in units of millions of interactions per second). Here \(t_p \) is the wall-clock time to perform \(k \) time steps. Add the complete command line used to compile the programs on the plot or on an attached sheet.

2. Add OpenMP parallelization directives to your two n-body programs in (1) and experiment to maximize performance. Insure the final versions maintain approximately the same results using the reference implementation. Use the \texttt{omp_get_wtime()} function from OpenMP in the master thread to obtain \(t_p \), the elapsed time in seconds.

3. Plot the parallel performance of your two programs in (2) on separate graphs. The x-axis of the graph is the number of bodies \(n \in \{200, 500, 1000, 2000, 5000, 10000, 20000\} \), and the y-axis is the performance \(R(n, p) \) in millions of interactions per second. For each \(p \in \{1, 4, 8, 16, 18, 20\} \) plot and connect the points \((n, R(n, p))\). Add the complete command line used to compile the programs and the settings of any OMP-specific environment variables such as \texttt{KMP_AFFINITY} or \texttt{GOMP_AFFINITY} and \texttt{OMP_NUM_THREADS}.

Submission

Submit your code like pa1a: send me the three performance plots before the start of class on the due date along with a listing of your parallel all-pairs and half-pairs n-body programs developed in (3) above. You can work together with a partner, if you wish just as in pa1a (be sure to include both names on the submission).