Parallel Computing
COMP 633 Fall 2019

Written Assignment #1

Assigned: Tue Aug 27
Due: Tue Sep 10

Instructions: work together with one other student in the class and turn in a single paper with both names. If you prefer, you may work on your own.

I. [6] The Work-Time (W-T) presentation of EREW sequence reduction (Algorithm 2 in PRAM handout) has work complexity $W(n) = O(n)$ and step complexity $S(n) = O(lg n)$. Following the strategy of Brent’s theorem, the translation of this algorithm will yield a p processor EREW PRAM program with running time

$$T(n, p) = O(n/p + lg n)$$

(a) Construct an alternate sequence reduction algorithm directly for the bare bones EREW PRAM with running time $T(n, p) = O(n/p + lg p)$.

(b) Explain why your solution to (a) cannot be expressed in the W-T model.

II. [10] Let A and B be sets of integers with $|A| = m \leq n = |B|$. The elements of the sets are stored in increasing order in arrays $A[1..m]$ and $B[1..n]$, respectively (since A and B are sets, there are no duplicate elements in either of these arrays). Using this representation, construct a CREW W-T algorithm that determines whether $A \subseteq B$ in $O(lg n)$ steps and $O(n)$ work.

III. [10] Choose one of the following two problems:

(a) Suppose we have a sequence $X[1..n]$ with values drawn from some large set S so that $n = o(|S|)$, i.e. S has asymptotically more than n values. We want to determine whether any value occurs in X more than once. Using hashing we can construct a sequential algorithm for this problem with expected sequential time $O(n)$ using $O(n)$ space. Construct a CRCW W-T algorithm using the arbitrary write-collision model for this problem with expected work complexity $O(n)$ and expected step complexity as small as you can get it using $O(n)$ space. Your complexity argument can be informal.
(b) Given a sequence $s[1..n]$, the maximum contiguous subsequence sum (mcss) of s is the largest sum that can be formed from any contiguous subsequence of s (including the empty subsequence, with sum zero), i.e.

$$mcss = \max_{1 \leq i \leq j \leq n} \left(\sum_{k=i}^{j} s_k \right)$$

When all elements of s are positive the mcss is the sum of all elements in s. When all elements are negative the mcss is zero, corresponding to the sum of an empty subsequence. Here is an optimal sequential algorithm for this problem:

```plaintext
integer MCSS(sequence<integer> s)
    MaxSoFar, MaxEndingHere ← 0, 0
    for i = 1 to n do
        MaxEndingHere ← max(MaxEndingHere + s[i], 0)
        MaxSoFar ← max(MaxSoFar, MaxEndingHere)
    enddo
    return MaxSoFar
```

Design a work-efficient EREW algorithm in the Work-Time framework with step complexity $\Theta(\lg n)$ for this problem.