I. [7] The Work-Time (W-T) presentation of EREW sequence reduction (Algorithm 2 in PRAM handout) has work complexity $W(n) = O(n)$ and step complexity $S(n) = O(lg n)$. Following the strategy of Brent’s theorem, the translation of this algorithm will yield a p processor EREW PRAM program with running time

$$T_C(n, p) = O(n/p + lg n)$$

(a) Construct an alternate sequence reduction algorithm directly for the bare bones EREW PRAM with running time $T_C(n, p) = O(n/p + lg p)$.

(b) Explain why your solution to (a) cannot be expressed in the W-T model.

II. [10] Given a sequence $s[1..n]$, the maximum contiguous subsequence sum (mcss) of s is the largest sum that can be formed from any contiguous subsequence of s (including the empty subsequence, with sum zero), i.e.

$$\max_{1 \leq i \leq j \leq n} \left(\sum_{k=i}^{j} s_k \right)$$

When all elements of s are positive the mcss is the sum of all elements in s. When all elements are negative the mcss is zero, corresponding to the sum of an empty subsequence.

Here is an optimal sequential algorithm for this problem:

```plaintext
integer mcss(sequence<integer> s)
MaxSoFar, MaxEndingHere ← 0, 0
for i = 1 to n do
    MaxEndingHere ← max(MaxEndingHere + s[i], 0)
    MaxSoFar ← max(MaxSoFar, MaxEndingHere)
enddo
return MaxSoFar
```

Design a work-efficient EREW algorithm in the Work-Time framework with step complexity $\Theta(lg n)$ for this problem.

III. [10] Let A and B be sets of integers with $|A| = m \leq n = |B|$. The elements of the sets are stored in increasing order in arrays $A[1..m]$ and $B[1..n]$, respectively (since A and B are sets, there are no duplicate elements in either of these arrays). Using this representation, construct a CREW W-T algorithm that determines whether $A \subseteq B$ in $O(lg n)$ steps and $O(n)$ work.