
COMP 633: Parallel Computing
Fall 2021

Written Assignment 1: Sample Solutions

September 18, 2021

I. The Work-Time (W-T) presentation of EREW sequence reduction (Algorithm 2 in the PRAM handout)
has work complexity W (n) = O(n) and step complexity S(n) = O(lg n). Following the strategy
of Brent’s theorem, the translation of this algorithm will yield a p processor EREW PRAM program
with running time TC(n, p) = O(n/p + lg n).

(a) Construct an alternate sequence reduction algorithm directly for the bare bones EREW PRAM
model with running time TC(n, p) = O(n/p + lg p).

(b) Explain why your solution to (a) cannot be constructed by translation from a program in the W-T
model.

Sample solution (a) Using a p processor PRAM we can compute the sum of an n element sequence in
parallel by performing p sequential summations, each of size dn/pe, and combining the p results
using parallel summation. This is a form of cascading.

The PRAM program on the left of the next page implements this strategy assuming that n = 2k and
p = 2r, for some 0 ≤ r ≤ k. The PRAM program to its right assumes only that n and p are positive,
hence is a complete implementation of sequence reduction. The input is sequence A with n elements
of type T , and a binary associative operator ⊕ :T × T → T with left identity 0⊕. The result is
s =

⊕n
j=1Aj . The processor id is i.

For the algorithm on the left, p evenly divides n. The order in which the elements from A and B are
added in lines 7 and 12 corresponds to a left-to-right reduction of A whenever ⊕ is associative. The
concurrent running time of this algorithm is

line TC(n, p)

4 Θ(1)
5–8 Θ(n/p)

10–14 Θ(lg p)
16–18 Θ(1)

4–18 Θ(np + lg p)

1

1 local T B[1..p]
2 local integer h, j, `
3

4 B[i] ← 0⊕
5 for ` = 1 to n/p do
6 j ← (i− 1)(np) + `

7 B[i] ← B[i]⊕A[j]
8 enddo
9

10 for h = 1 to lg p do
11 if i 6 p/2h then
12 B[i] ← B[2i− 1]⊕B[2i]
13 endif
14 enddo
15

16 if i = 1 then
17 s ← B[1]
18 endif

local T B[1..p]
local integer h, j, `

B[i] ← 0⊕
for ` = 1 to dn/pe do
j ← (i− 1)dnp e+ `

if j 6 n then
B[i] ← B[i]⊕A[j]

endif
enddo
for h = 1 to dlg pe do

if i 6 dp/2he then
if 2i 6 dp/2h−1e then
B[i] ← B[2i− 1]⊕B[2i]

else
B[i] ← B[2i− 1]

endif
endif

enddo
if i = 1 then
s ← B[1]

endif
The algorithm performs only exclusive reads, since all references to shared array A in line 7 and
shared array B in line 12 are to unique elements within each iteration, and the reference to B[1] in
line 17 is performed by a single processor. The algorithm also performs only exclusive writes, since
all assignments to B are to unique elements according to the processor index, and the assignment to s
in line 17 is only performed by a single processor. Thus the PRAM model is EREW, as desired.

For the algorithm on the right, the same remarks apply concerning the EREW PRAM model. The
time complexity is given by TC(n, p) = O(dn/pe + dlg pe) which is still O(n/p + lg p). Note that
when p > n, the lg p term dominates.

(b) The PRAM algorithms above cannot be expressed directly in the W-T model because the improved divi-
sion of work involves the number of processors p, a quantity that is not part of the design, expression,
and analysis of a W-T program. When p = o(n), the algorithm given here is asymptotically faster
than the PRAM algorithm obtained by the application of Brent’s theorem to the W-T formulation of
sequence reduction. Thus Brent’s theorem applied to an optimal W-T algorithm does not always yield
an optimal PRAM running time for the problem.

2

II. Given a sequence s[1..n], the maximum contiguous subsequence sum (mcss) of s is the largest sum of
any contiguous subsequence of s (including the empty subsequence, with sum zero), i.e.

mcss = max

(
0, max

1≤i≤j≤n

j∑
k=i

sk

)
When all elements of s are positive the mcss is the sum of all elements in s. When all elements
are negative, the mcss is zero, corresponding to the sum of an empty subsequence. The assignment
includes an optimal sequential algorithm for this problem with O(n) time complexity. Design a
work efficient EREW algorithm in the Work-Time framework for this problem with step complexity
O(lg n).

Divide and conquer solution. The sequential algorithm given in the assignment incrementally updates the
mcss of successively larger prefixes of the input sequence by maintaining enough information to
determine how inclusion of the next element alters the mcss. For the sequential algorithm it suffices
to maintain the mcss of the prefix and the maximum segment sum that ends in the last position of the
prefix.

We can consider a similar approach for a parallel algorithm, using a divide-and-conquer strategy on
a balanced binary tree. Working upwards from the lowest level in the tree, solutions for consecutive
subsections are combined at each level.

To simplify the presentation define i:j, where i ≤ j, to be the sequence of values i, i + 1, ..., j, i.e.
the range includes value j. Note that i : i is the sequence with i as its only element, and there is no
way to make an empty sequence. We can characterize the mcss of an arbitrary subsequence s[i : j] of
s using the tuple Ri:j = (ti:j , li:j , ri:j ,mi:j) where ti:j =

∑
k∈i:j sk is the sum of all elements in the

section, li:j is the maximum prefix sum in the section, ri:j is the maximum suffix sum in the section,
and mi:j is the maximum contiguous subsequence sum in the section.

Given Ri:j and Rj+1:k for two consecutive subsequences of s, we can compute Ri:k = Ri:j ⊕Rj+1:k

for the combined subsequence as follows

ti:k = ti:j + tj+1:k

li:k = max(li:j , ti:j + lj+1:k)

ri:k = max(rj+1:k, ri:j + tj+1:k)

mi:k = max(mi:j ,mj+1,k, ri:j + lj+1:k)

In the last line, the mcss of two contiguous sections is the larger of the individual mcss of each section
and the maximum sum subsequence that straddles the two sections. It is simple to verify that the ⊕
operation on consecutive subsequences of s is associative, i.e.

∀ 1 ≤ i ≤ j ≤ k ≤ ` ≤ n : (Ri:j ⊕Rj+1:k)⊕Rk+1:` = Ri:j ⊕ (Rj+1:k ⊕Rk+1:`)

Hence we can compute R1:n =
⊕

i∈1:nRi:i directly using a parallel reduction algorithm. For all
1 6 i 6 n, we initialize Ri:i = (si,max(0, si),max(0, si),max(0, si)). The reduction will yield
R1:n, and within this tuple mcss = m1:n.

The complexity of combining two tuples using ⊕ is O(1) work and O(1) steps under the EREW
model, hence parallel reduction of n values has work complexity W (n) = O(n) and step complexity
S(n) = O(lg n) in the EREW model.

3

Data-parallel solution. It is possible to solve this problem using simple data parallel operations such as
reversals, reductions, and parallel prefix sums on the input sequence. Possible, but not easy to derive!

For this approach, we need a couple of definitions. If w is a sequence of n elements with index
domain 1..n, let w denote the reverse of w, meaning (w)i = wn+1−i. For v and w integer sequences
of equal length and ⊕ some binary operation on integers, let v⊕̂w be the elementwise extension of ⊕
to corresponding elements of v and w, i.e.

(
v⊕̂w

)
i

= vi ⊕ wi.

Now mcss = max(0,m) where

m = max
1≤i≤j≤n

∑
k∈i:j

sk

= max

i∈1:n

max
j∈i:n

∑
k∈i:j

sk

= max

i∈1:n

max
j∈i:n

si +
∑
k∈1:j

sk −
∑
k∈1:i

sk

= max

i∈1:n

si −
∑
k∈1:i

sk + max
j∈i:n

∑
k∈1:j

sk

= max

i∈1:n

(
si − prefix sum(s)i + max

j∈i:n
(prefix sum(s)j)

)
= max

i∈1:n

(
si − prefix sum(s)i + prefix max(prefix sum(s))i

)
= max

i∈1:n

(
s −̂ prefix sum(s) +̂ prefix max(prefix sum(s))

)
i

= reduce max
(
s −̂ prefix sum(s) +̂ prefix max(prefix sum(s))

)
In the final expression, pref sum, prefix max, and reduce max are familiar parallel primitives with
work complexity O(n) and step complexity O(lg n) under the EREW model. Elementwise operations
−̂ and +̂, as well as the reversal operation have work complexity O(n) and step complexity O(1) in
the same model. Finally we construct mcss from m using constant work and steps.

In summary, the following program meets the desired complexity bounds.

integer MCSS(sequence〈integer 〉 s)

1 integer m, ss[1 : n], ssm[1 : n]
2 ss = prefix sum(s)
3 ssm = reverse(prefix max(reverse(ss)))
4 m = reduce max(s +̂ ssm −̂ ss)
5 return max(0,m)

4

III. Let A and B be sets of integers with |A| = m ≤ n = |B|. The elements of the sets are stored
in increasing order in arrays A[1..m] and B[1..n], respectively (since A and B are sets, there are
no duplicate elements in either of these arrays). Using this representation, construct a CREW W-T
algorithm to determine whether A ⊆ B with O(lg n) step complexity and O(n) work complexity.

Sample Solution. Since the sets are represented as sorted sequences, it is tempting to use a fast sequential
binary search to determine in parallel whether every element of A occurs in B:

boolean R[1 : n]
forall i ∈ 1 : m do

R[i] ← binarySearch(A[i],B[1:n])
enddo
return and reduce(R[1 : n])

However, the O(m lg n) work complexity of this algorithm is too high. We may improve the work
complexity by cascading the algorithm above with an efficient sequential algorithm seq subset that
can determine whether A′ ⊆ B′ in work and steps linear in |A′| + |B′|. The seq subset algorithm
sequentially advances through through B′ (expected to be the more numerous set) while its current
element is less than the current element in A′. It advances in both sequences when elements are equal,
The algorithm reports failure if ever the current element in A′ exceeds the current element in B′, and
reports success when A′ is exhausted. As long as we can create independent subproblems of size
no larger than O(lg n), we can use seq subset on each subproblem in parallel without exceeding our
target step complexity.

To partition A and B into such subproblems, we start by dividing B (the larger set) into chunks of
size lg n. For simplicity assume n is a power of 2 so lg n is integral, and assume k = n/ lg n is also
integral. Each chunk of B induces a matching chunk in A, whose extents can be found by binary
search in A of the endpoint values of the B chunk, as shown in lines 3- 5 of the algorithm below. The
matching chunks in A may be as short as zero elements and as long as n elements. If A ⊆ B, the
length of each induced chunk of A should no greater than the length of the corresponding chunk of B
(else A could not be a subset of B). We can check that this is true for all chunks in O(lg k) steps and
O(k) work, as shown in lines 6- 9.

Finally, since all our subproblems are now known to be of appropriate size, we may apply the
seq subset procedure to each of them in parallel (in lines 12- 14) and compute the overall result (in
line 15). The algorithm follows. The input consists of arrays A[1 : m] and B[1 : n]. The algorithm
returns true iff A ⊆ B.

5

1 boolean bounds[0 : k], R[1 : k]
2 bounds[0] ← 1
3 forall i ∈ 1 : k do
4 bounds[i] ← binary search posn(B[i(lg n)], A[1 : m])
5 enddo
6 forall i ∈ 1 : k do
7 R[i] ← (bounds[i]− bounds[i− 1]) 6 lg n
8 enddo
9 if ¬and reduce(R[1 : k]) then

10 return false
11 endif
12 forall i ∈ 1 : k do
13 R[i] ← seq subset(A[bounds[i− 1] : bounds[i]], B[(i− 1)(lg n) + 1 : i(lg n)])
14 enddo
15 return and reduce(R[1:k])

Complexity analysis:
line S(n) W (n)

3–5 O(lgm) O(k lgm)
6–8 O(1) O(k)
9 O(lg k) O(k)

12–14 O(lg n) O(k lg n)
15 O(lg k) O(k)

3–15 O(lg n) O(k lg n) = O(n)

The execution model is CREW because of potential concurrent reads of elements in A by parallel
invocations of binary search posn. There are no concurrent writes.

6

