1. [7] Let \(H[1:n] \) be an array of integer values in the range \(1 \ldots k \), with that \(1 \leq k \leq n \). We want to find the most frequently occurring value \(m \) in \(H \), i.e. the mode of \(H \). For example, with \(n = 8, k = 4 \), and \(H = [1, 3, 1, 3, 3, 4, 3, 1] \), we should find \(m = 3 \). For simplicity you can assume that the mode is unique.

 (a) Verify that the sequential time complexity for this problem is \(\Theta(n) \).

 (b) Describe an efficient parallel BSP algorithm for this problem using \(p \) processors assuming the condition \(n = kp \) with \(k \geq p \) and give its BSP cost. The input \(H \) is distributed evenly over processors, so that initially each processor holds \(k \) input values (assume \(p \) divides \(n \) evenly). The result \(m \) should be available in the first processor on termination.

2. [10] The Discrete Fourier Transform (DFT) of a sequence of complex values \(X[0:n-1] \) where \(n = 2^r \) yields complex values \(Y[0:n-1] \) (where \(Y_i = \sum_{0 \leq k < n} X_k \omega^{ki} \) and \(\omega = e^{2\pi\sqrt{-1}/n} \)). The radix-2 Fast Fourier Transform (FFT) computes \(Y[0:n-1] \) (in bit-reversed index order) and can be expressed as a W-T model parallel algorithm with \(S(n) = O(lg n) \) and \(W(n) = O(n \ lg n) \) as follows

   ```
   forall i \in 0:n-1 do
     Y[i] := X[i]
   end
   for m := 0 to r-1 do
     forall i \in 0:n-1 do
       let \((b_0 \ldots b_{m-1} b_m b_{m+1} \ldots b_{r-1})\) be the binary representation of \( i \)
       int j := \((b_0 \ldots b_{m-1} 0 b_{m+1} \ldots b_{r-1})\)
       int k := \((b_0 \ldots b_{m-1} 1 b_{m+1} \ldots b_{r-1})\)
       int h := \((b_m \ldots b_{m-1} 0 0 \ldots 0)\)
       Y[i] := Y[j] + Y[k] \cdot \omega^h
     end forall
   end for
   ```

 (a) Construct an algorithm in the BSP model where \(n = p \) with BSP cost \(O(lg p)(1 + g + L) \).

 (b) Construct an algorithm in the BSP model where \(n = 2^r \) and \(r \geq 2 \ lg p \) with BSP cost

 \[
 O(1) \left(\frac{n \ lg n}{p} + \frac{n}{p} \cdot g + L \right)
 \]

 In both cases \(X \) and \(Y \) should be distributed evenly over processors.