
Programming Research GroupQUESTIONS AND ANSWERS ABOUT BSPD.B. SkillicornDepartment of Computing and Information ScienceQueen's University, Kingston, Canadaskill@qucis.queensu.caJonathan M.D. Hill and W.F. McCollComputing LaboratoryUniversity of OxfordOxford, U.K.fJonathan.Hill, Bill.McCollg@comlab.ox.ac.ukRevised 11th November 1996PRG-TR-15-96
�Oxford University Computing LaboratoryWolfson Building, Parks Road, Oxford OX1 3QD

AbstractBulk Synchronous Parallelism (BSP) is a parallel programming model that abstracts fromlow-level program structures in favour of supersteps. A superstep consists of a set of indepen-dent local computations, followed by a global communication phase and a barrier synchroni-sation. Structuring programs in this way enables their costs to be accurately determined froma few simple architectural parameters, namely the permeability of the communication networkto uniformly-random tra�c and the time to synchronise. Although permutation routing andbarrier synchronisations are widely regarded as inherently expensive, this is not the case. Asa result, the structure imposed by BSP comes for free in performance terms, while bringingconsiderable bene�ts from an application-building perspective. This paper answers the mostcommon questions we are asked about BSP and justi�es its claim to be a major step forwardin parallel programming.1 Why is another model needed?In the 1980s a large number of di�erent types of parallel architectures were developed.With hindsight we now see that this variety was both unnecessary and unhelpful. It stiedthe commercial development of parallel applications software because, to achieve acceptableperformance, all such software had to be tailored to the speci�c architectural properties ofthe machine.Today the number of parallel computation models and languages probably greatly exceedsthe number of di�erent architectures with which parallel programmers had to contend tenyears ago. Most are inadequate because they make it hard to achieve portability, hard toachieve performance, or both. Those based on message passing are inadequate because ofthe complexity of correctly creating paired communication actions (send and receive) in largeand complex software. Such systems are prone to deadlock as a result. Furthermore, theperformance of such programs is impossible to predict because of the interactions of largenumbers of individual data transfers.Some take the view that models based on shared memory are easier to program becausethey provide the abstraction of a single, shared address space and so a whole class of placementdecisions are avoided. Moderately-parallel architectures capable of providing this abstractioncan certainly be built, so they also believe that the modest parallelism they provide is enoughto satisfy performance demands for the foreseeable future. We are dubious about both claims.While shared memory does reduce the need for placement, it creates a need to control simul-taneous access to the same location. This requires either careful crafting of programs, inthe PRAM style, or expensive lock management. Implementing shared-memory abstractionsrequires a larger and larger fraction of the computer's resources to be devoted to communi-cation and the maintenance of coherence. Worse still, the technology required to provide theabstraction is the least likely to be of a commodity nature, and hence even more expensive.The Bulk Synchronous Parallel (BSP) model [35] provides software developers with anattractive escape route from the world of architecture-dependent parallel software. The emer-gence of the model has coincided with the convergence of commercial parallel machine designsto a standard architectural form with which it is very compatible. These developments havebeen enthusiastically welcomed by a rapidly-growing community of software engineers whoproduce scalable and portable parallel applications. However, while the parallel-applicationscommunity has welcomed the approach, there is still a surprising degree of skepticism amongst1

parts of the computer science research community. Many people seem to regard some of theclaims made in support of the BSP approach as \too good to be true".The only sensible way to evaluate an architecture-independent model of parallel compu-tation such as BSP is to consider it in terms of all of its properties, that is (a) its usefulnessas a basis for the design and analysis of algorithms, (b) its applicability across the wholerange of general-purpose architectures and its ability to provide e�cient, scalable performanceon them, and (c) its support for the design of fully-portable programs with analytically-predictable performance. To focus on only one of these at a time, is simply to replace the zooof parallel architectures in the 1980s by a new zoo of parallel models in the 1990s. It seemslikely that this viewpoint on the nature and role of models will gain more and more supportas we move from the straightforward world of parallel algorithms to the much more complexworld of parallel software systems.2 What is Bulk Synchronous Parallelism?Bulk Synchronous Parallelism is a style of parallel programming developed for general-purpose parallelism, that is parallelism across all application areas and a wide range of archi-tectures [25]. Its goals are more ambitious than most parallel-programming systems which areaimed at particular kinds of applications, or work well only on particular classes of parallelarchitectures [26].BSP's most fundamental properties are that:� It is simple to write. BSP programs look much the same as sequential programs. Onlya bare minimum of extra information needs to be supplied to describe the use of paral-lelism.� It is independent of target architectures. Unlike many parallel programming systems,BSP is designed to be architecture-independent, so that programs run unchanged whenthey are moved from one architecture to another. Thus BSP programs are portable ina strong sense.� The performance of a program on a given architecture is predictable. The executiontime of a BSP program can be computed from the text of the program and a few simpleparameters of the target architecture. This makes design possible, since the e�ect of adecision on performance can be determined at the time it is made.BSP achieves these properties by raising the level of abstraction at which programs arewritten and implementation decisions made. Rather than considering individual processesand individual communication actions, BSP considers computation and communication atthe level of the entire program and executing computer. Determining the bulk properties ofa program, and the bulk ability of a particular computer to satisfy them makes it possible todesign with new clarity.One way in which BSP is able to achieve this abstraction is by renouncing locality as aperformance optimisation. This simpli�es many aspects of both program and implementationdesign, and in the end does not adversely a�ect performance for most application domains.There will always be some application domains for which locality is critical, for examplelow-level image processing, and for these BSP may not be the best choice.2

Local ComputationsVirtual Processors

Barrier SynchronisationGlobal Communications
Figure 1: A Superstep3 What does the BSP programming style look like?BSP programs have both a vertical structure and a horizontal structure. The verticalstructure arises from the progress of a computation through time. For BSP, this is a sequentialcomposition of global supersteps, which conceptually occupy the full width of the executingarchitecture. Each superstep is further subdivided into three ordered phases consisting of:� computation locally in each process, using only values stored in the memory of itsprocessor;� communication actions amongst the processes, involving movement of data betweenprocessors;� a barrier synchronisation, which waits for all of the communication actions to complete,and which then makes the data that was moved available in the local memories of thedestination processors.The horizontal structure arises from concurrency, and consists of a �xed number of virtualprocesses. These processes are not regarded as having a particular linear order, and may bemapped to processors in any way. Thus locality plays no role in the placement of processeson processors. A superstep is shown in Figure 1.We will use p to denote the virtual parallelism of a program, that is the number of processesit uses. If the target parallel computer has fewer processors than the virtual parallelism, anextension of Brent's theorem [5] can be used to transform a BSP program into a slimmerversion.4 How does communication work? 3

Most parallel programming systems handle communication, both conceptually and interms of implementation, at the level of individual actions: memory-to-memory transfers,sends and receives, or active messages. However, this level is di�cult to work with becausethere are many simultaneous communication actions in a parallel program, and their interac-tions are complex. This makes it hard to say much about the time any single communicationaction will take to complete.Considering communication actions en masse both simpli�es their treatment and makesit possible to bound the time it takes to deliver a whole set of data. BSP does this byconsidering all of the communication actions of a superstep as a unit. For the time being,imagine that all messages have a �xed size. During a superstep, each process has designatedsome set of outgoing messages and is expecting to receive some set of incoming messages.If the maximum number of incoming or outgoing messages per processor is h, then such acommunication pattern is called an h-relation. The communication pattern in Figure 1 is a2-relation. Because of the random placement of processes on processors, any structure onthe set of messages in the abstract will almost certainly not be reected as structure in thetarget architecture's communication topology. Thus the destination processor addresses ofan h-relation are likely to approximate a sequence of permutations of processor identi�ers.The ability of communication network to deliver data is captured by a parameter, g,that measures the permeability of the network to continuous tra�c addressed to uniformly-random destinations. Both the random placement of processes in processors, and techniquessuch as adaptive routing help to make the load generated by h-relations approximate the loadgenerated by sequences of random permutations. Thus the applied load on the communicationnetwork has the kind of characteristics for which g is an appropriate measure. The parameterg is de�ned such that it takes time hg to deliver an h-relation. Subject to some small provisos,discussed later, hg is an accurate measure of communication performance over a large range ofarchitectures. The value of g is normalised with respect to the clock rate of each architectureso that it is in the same units as the time for executing sequences of instructions.Sending a message of length m clearly takes longer than sending a message of size 1. Forreasons that will become clear later, BSP does not distinguish between a message of length mand m messages of length 1|the cost in either case is mhg. So messages of varying lengthsmay either be costed using the form mhg where h is the number of messages, or the messagelengths can be folded into h, so that it becomes the number of units of data to be transferred.The parameter g is related to the bisection bandwidth of the communication network butit is not equivalent. It also depends on other factors such as:� the protocols used to interface with and within the communication network,� the bu�er management by both the processors and the communication network,� the routing strategy used in the communication network, and� the BSP runtime system.So g is bounded below by the ratio of p to the bisection bandwidth, suitable normalised, butmay be much larger. Only a very unusual network would have a bisection bandwidth thatgrew faster than p, so this means that g is a monotonically increasing function of p. The value4

of g is, in practice, determined empirically for each parallel computer, by running suitablebenchmarks. A BSP benchmarking protocol is given in Appendix BNote that g is not the normalised single-word delivery time, but the single-word deliverytime under continuous tra�c conditions. This di�erence is subtle but crucial.5 Surely this isn't a very precise measure of how long communication takes?Don't hotspots and congestion make it very inaccurate?One of the most di�cult problems of determining the performance of conventional mes-saging systems is precisely that congestion makes upper bounds hard to determine and quitepessimistic. BSP largely avoids this di�culty.An apparently-balanced communication pattern may always generate hotspots in someregion of the interconnection topology. BSP prevents this in several ways. First, the randomallocation of processes to processors breaks up patterns arising from the problem domain.Second, the BSP runtime system uses routing techniques that avoid localised congestion.These include randomised routing [36], in which particular kinds of randomness are introducedinto the choice of route for each communication action, and adaptive routing [4], in which dataare diverted from their normal route in a controlled way to avoid congestion. If congestionoccurs, as when an architecture has only a limited range of deterministic routing techniquesfor the BSP runtime system to choose from, this limitation on continuous message tra�c isreected in the measured value of g.Notice also that the de�nition of an h-relation distinguishes the cost of a balanced commu-nication pattern from one that is skewed. A communication pattern in which each processorsends a single message to some other (distinct) processor counts as a 1-relation. However,a communication pattern that transfers the same number of messages, but in the form of abroadcast from one processor to all of the others, counts as a p-relation. Hence, unbalancedcommunication, which is the most likely to cause congestion, is charged a higher cost. Thusthe cost model does take into account congestion phenomena arising from the limits on eachprocessor's capacity to send and receive data, and from the extra tra�c that might occur onthe communication links near a busy processor.Experiments have shown that g is an accurate measure of the cost of moving large amountsof data on a wide range of existing parallel computers.6 Isn't it expensive to give up locality?Yes, there will always be application domains where exploiting locality is the key toachieving good performance. However, there are not as many of them as a naive analysismight suggest, for the following reason. Most performance-limited problems work with largeamounts of data, and can therefore exploit large amounts of virtual parallelism. However,most existing parallel computers have only modest numbers of processors. When highly-parallel programs are mapped to much less parallel architectures, many virtual processesmust be multiplexed onto each physical processor by the programmer. When this is done,almost all of the locality is lost, unless the communication network happens to match thestructure of the problem domain very closely. Thus problems with apparently large amountsof locality tend not to have much locality when they actually execute.5

7 Most parallel computers have a considerable cost associated with starting upcommunication. Doesn't this mean that the cost model is inaccurate for smallmessages, since g doesn't account for start-up costs?The cost model can be inaccurate, but only in rather special circumstances. Recall that allof the communications in a superstep are regarded as taking place at the end of the superstep.This semantics makes it possible for implementations to wait until the end of the computationpart of each superstep to begin the communication actions that have been requested. Theycan then package the data to be transferred into larger message units. The cost of startingup a data transfer is thus only paid once per destination per superstep and can be folded intothe value of g.However, if the total amount of communication in a superstep is small, then start-upe�ects may make a noticeable di�erence to the performance. We address this quantitativelylater.8 Aren't barrier synchronisations expensive? How are their costs accounted for?Yes, barriers are often expensive on today's architectures and so they should be used assparingly as possible. On the other hand, barriers are not nearly as inherently expensiveas they are believed to be in high-performance computing folklore [17]. Future architecturedevelopments may make them much cheaper.The cost of a barrier synchronisation comes in two parts:� The cost caused by the variation in the completion times of the computation steps thatparticipate. There is not much that an implementation can do about this, but it doessuggest that balance in the computation parts of a superstep is a good thing.� The cost of reaching a globally-consistent state in all of the processors. This depends,of course, on the communication network, but also on whether or not special-purposehardware is available for synchronising, and on the way in which interrupts are handledby processors.For each architecture, the cost of a barrier synchronisation is captured by a parameter, l.The diameter of the communication network, or at least the length of the longest path thatallows state to be moved from one processor to another clearly imposes a lower bound on l.However, it is also a�ected by many other factors, so that, in practice, an accurate value of lfor each parallel architecture is obtained empirically.Notice that barriers, although potentially costly, have a number of attractive features.There is no possibility of deadlock or livelock in a BSP program because barriers make circu-larities in data dependencies impossible. Hence there is no need for tools to detect and dealwith them. Barriers also permit novel forms of fault tolerance.9 How do these parameters allow the cost of programs to be determined?The cost of a single superstep is the sum of three terms: the (maximum) cost of the localcomputations on each processor, the cost of the global communication of an h-relation, and6

the cost of the barrier synchronisation at the end of the superstep. Thus the cost is given bycost of a superstep = MAXprocesseswi + MAXprocesseshi g + lwhere i ranges over processes, and wi is the time for the local computation in process i. Oftenthe maxima are assumed and BSP costs are expressed in the form w+ hg+ l. The cost of anentire BSP program is just the sum of the cost of each superstep. We call this the standardcost model.To make this sum meaningful, and to allow comparisons between di�erent parallel com-puters, the parameters w, g, and l are expressed in terms of the basic instruction executionrate of the target architecture. Since this will only vary by a constant factor across archi-tectures, asymptotic complexities for programs are often given unless the constant factorsare critically important. Note that we are assuming that the processors are homogeneous,although it is not hard to avoid that assumption by expressing performance factors in anycommon unit.The existence of a cost model that is both tractable and accurate makes it possible to trulydesign BSP programs, that is to consciously and justi�ably make choices between di�erentimplementations of a speci�cation. For example, it is clear that the following strategies shouldbe used to write e�cient BSP programs:� balance the computation in each superstep between processes, since w is a maximumover computation times, and the barrier synchronisation must wait for the slowest pro-cess;� balance the communication between processes, since h is a maximum over fan-in andfan-out of data; and� minimise the number of supersteps, since this determines the number of times l appearsin the �nal cost.The cost model also shows how to predict performance across target architectures. Thevalues of p, w, and h for each superstep, and the number of supersteps can be determinedby inspection of the program code, subject to the usual limits on determining the cost ofsequential programs. Values of g, and l can then be inserted into the cost formula to estimateexecution time before the program is executed. The cost model can be used� as part of the design process for BSP programs;� to predict the performance of programs ported to new parallel computers; and� to guide buying decisions for parallel computers if the BSP program characteristics oftypical workloads are known.Other cost models for BSP have been proposed, incorporating �ner detail. For example,communication and computation could conceivably be overlapped, giving a superstep cost ofthe form MAX(w; hg) + l7

although this optimisation is not usually a good idea on today's architectures [16, 32]. It isalso sometimes argued that the cost of an h-relation is limited by the time taken to send hmessages and then receive h messages, so that the communication term should be of the form(hin + hout)gAll of these variations alter costs by no more than small constant factors, so we will continueto use the standard cost model in the interests of simplicity and clarity.A more important omission from the standard cost model is any restriction on the amountof memory required at each processor. While the existing cost model encourages balance incommunication and limited barrier synchronisation, it encourages proigate use of memory.An extension to the cost model to bound the memory associated with each processor is beinginvestigated.The cost model also makes it possible to use BSP to design algorithms, not just programs.Here the goal is to build solutions that are optimal with respect to total computation, totalcommunication, and total number of supersteps over the widest possible range of values of p.Designing a particular program then becomes a matter of choosing among known algorithmsfor those that are optimal for the range of machine sizes envisaged for the application.For example two BSP algorithms for matrix multiplication have been developed. The �rst,a block parallelization of the standard n3 algorithm [26], has (asymptotic) BSP complexityBlock MM cost = n3=p+ (n2=p1=2)g + p1=2lrequiring memory at each processor of size n2=p. This is optimal in time and memory re-quirement.A more sophisticated algorithm due to McColl and Valiant [23] has BSP complexityBlock and Broadcast MM cost = n3=p+ (n2=p2=3)g + lrequiring memory at each processor of size n2=p2=3. This is optimal in time, communication,and supersteps, but requires more memory at each processor. Therefore the choice betweenthese two algorithms in an implementation may well depend on the relationship between thesize of problem instances and the memory available on processors of the target architecture.10 Is BSP a programming discipline, or a programming language, or somethingelse?BSP is a model of parallel computation. It is concerned with high-level structure ofcomputations. Therefore it does not prescribe the way in which local computations arecarried out, nor how communication actions are expressed. All existing BSP languages areimperative, but there is no intrinsic reason why this need be so.BSP can be expressed in a wide variety of programming languages and systems. Forexample, BSP programs could be written using existing communication libraries such asPVM [9], MPI [27], or Cray's SHMEM. All that is required is that they provide non-blockingcommunication mechanisms and a way to implement barrier synchronisation. However, thevalues of g and l depend not only on the hardware performance of the target architecture8

but also on the amount of software overhead required to achieve the necessary behaviour, sosystems not designed with BSP in mind may not deliver good values of g and l.The most common approach to BSP programming is SPMD imperative programmingusing Fortran or C, with BSP functionality provided by library calls. Two BSP librarieshave been in use for some years: the Oxford BSP Library [28] and the Green BSP Library[11, 12]. A standard has recently been agreed for a library called BSPLib [13]. The BSPLibcontains operations for delimiting supersteps, and two variants of communication, one basedon direct-memory transfer, and the other on bu�ered message passing.Other BSP languages have been developed. These include GPL [24], and Opal [21]. GPLis a �rst attempt to develop an MIMD language permitting synchronisation of subsets ofexecuting processes. Opal is an object-based BSP language.11 How easy is it to program using the BSPLib library?The BSPLib library provides the operations shown in Table 1. There are operations to:� set up a BSP program;� discover properties of the environment in which each process is executing;� participate in a barrier synchronisation;� communicate, either directly into or out of a remote memory, or using a message queue;� abort a computation from anywhere inside it; and� communicate in a high-performance unbu�ered mode.The BSPLib library is freely available in both Fortran and C from http://www.bsp-worldwide.org/implmnts/oxtool.htm. A more complete description of the library can be found in Ap-pendix A.Another higher-level library provides specialised collective-communication operations. Theseare not considered as part of the core library, but they can be easily realised in terms of thecore. These include operations for broadcast, scatter, gather, and total exchange.12 In what application domains has BSP been used?BSP has been used in a number of application areas, primarily in scienti�c computing.Much of this work has been done as part of contracts with Oxford Parallel (http://www.comlab.ox.ac.uk/oxpara/).Computational uid dynamics applications of BSP include: (a) an implementation of aBSP version of the OPlus library for solving 3D multigrid viscous ows, used for computationof ows around aircraft or complex parts of aircraft in a project with Rolls Royce [6], (b) aBSP version of FLOW3D, a computational uid dynamics code, (c) oil reservoir modellingin the presence of discontinuities and anisotropies in a project with Schlumberger GeoquestLtd. 9

Class Operation MeaningInitialisation bsp init Simulate dynamic processesbsp begin Start of SPMD codebsp end End of SPMD codeEnquiry bsp pid Find my process idbsp nprocs Number of processesbsp time Local timeSynchronisation bsp sync Barrier synchronisationDRMA bsp pushregister Make region globally visiblebsp popregister Remove global visibilitybsp put Push to remote memorybsp get Pull from remote memoryBSMP bsp set tag size Choose tag sizebsp send Send to remote queuebsp get tag Match tag with messagebsp move Fetch from queueHalt bsp abort One process halts allHigh Performance bsp hpput Unbu�ered versionsbsp hpget of communicationbsp hpmove primitivesTable 1: Core BSP operationsComputational electromagnetics applications of BSP [30] include: (a) 3D modelling ofelectromagnetic interactions with complex bodies using unstructured 3D meshes, in a projectwith British Aerospace, (b) parallelisation of the TOSCA, SCALA, and ELEKTRA codes,and demonstrations on problems such as design of electric motors and permanent magnets forMRI imaging, (c) a parallel implementation of a time domain electromagnetic code ParEMC3dwith absorbing boundary conditions, (d) parallelisation of the EMMA-T2 code for calculatingelectromagnetic properties of microstrips, wires and cables, and antennae [33].There is also work involving parallelising the MERLIN code in a project with Lloyds Reg-ister of Shipping and Ford Motor Company. BSP has also been applied to plasma simulationat Rensselaer Polytechnic Institute in New York [31].13 What do BSP programs look like?Most BSP programs for real problems are large and it is impractical to include their sourcehere. Instead we include some small example programs to show how the BSPLib interfacecan be used. We illustrate some di�erent possibilities using the standard parallel pre�x orscan operation: given x0; : : : ; xp�1 (with xi stored on process i), compute x0 + � � � + xi oneach process i.All sums: version 1.The function bsp_allsums1 calculates the partial sums of p integers stored on p processors.The algorithm uses the logarithmic technique that performs dlog pe supersteps, such that10

10631

7531

4321

Figure 2: All sums using the logarithmic techniqueduring the kth superstep, the processes in the range 2k�1 � i < p each combine their localpartial sums with process i� 2k�1. Figure 2 shows the steps involved in summing the valuesbsp pid()+1 using 4 processors.int bsp_allsums1(int x) {int i, left, right;bsp_pushregister(&left,sizeof(int));bsp_sync();right = x;for(i=1;i<bsp_nprocs();i*=2) {if (bsp_pid()+i < bsp_nprocs())bsp_put(bsp_pid()+i,&right,&left,0,sizeof(int));bsp_sync();if (bsp_pid()>=i) right = left + right;}bsp_popregister(&left);return right;} When bsp put(bsp pid()+i,&right,&left,0,sizeof(int)) is executed on process bsp pid(),then a single integer right is copied into the memory of processor bsp pid()+i at the address&left+0 (where left is a previously-registered data structure).The procedure bsp pushregister allows all processors to declare that the variable leftis willing to have data put into it during a DRMA operation. The reason that registration isrequired is that each processor's copy of the data structure left is not necessarily stored atthe same address. Registration therefore creates a correspondence between data structuresthat have the \same name" on di�erent processors.The cost of the algorithm is dlog pe(1 + g + l) + l as there are dlog pe + 1 supersteps(including one for registration); during each superstep a local addition is performed (whichcosts 1 op), and at most one message of size 1 word enters and exits each process.All sums: version 2.An alternative implementation of the pre�x sums function can be achieved in a singlesuperstep by using a temporary data structure containing up to p integers. Each process iputs the data to be summed into the ith element of the temporary array on processes j (where0 � j � i). After all communications have been completed, a local sum is then performed onthe accumulated data. The cost of the algorithm is p+ pg + 2l.11

int bsp_allsums2(int x) {int i, result,*array = calloc(bsp_nprocs(),sizeof(int));if (array==NULL)bsp_abort("Unable to allocate %d element array",bsp_nprocs());bsp_pushregister(array,bsp_nprocs()*sizeof(int));bsp_sync();for(i=bsp_pid();i<bsp_nprocs();i++)bsp_put(i,&x,array,bsp_pid()*sizeof(int),sizeof(int));bsp_sync();result = array[0];for(i=1;i<=bsp_pid();i++) result += array[i];free(array);bsp_popregister(array);return result;} The �rst algorithm performs a logarithmic number of additions and supersteps, while thesecond algorithm performs a linear number of additions but a constant number of supersteps.If the operation being performed at each iteration of the algorithm were changed from addi-tion to another, more-costly, associative operator, then BSP cost analysis provides a simplemechanism for determining which is the better implementation.All sums on an array.Either of the routines de�ned above can be used to sum n values held in n=p blocksdistributed among p processors. The algorithm proceeds in four phases:1. The running sum of each n=p block of integers is computed locally on each processor.2. As the last element of each n=p block contains the sum of each n=p-element segment,then either of the two simple algorithms can be used to calculate the running sums ofthe last element in each block (call this last).3. Each processor gets the value of last from its left neighbouring processor (we call thislefts last).4. Adding lefts last to each of the locally-summed n=p elements produces the desirede�ect of the running sums of all n elements.void bsp_allsums(int *array, int n_over_p) {int i, last, lefts_last;bsp_pushregister(&last,sizeof(int));for (i=1;i<n_over_p;i++)array[i] += array[i-1];last = bsp_allsums2(array[n_over_p-1]);if (bsp_pid()==0) lefts_last=0;else 12

bsp_get(bsp_pid()-1,&last,0,&lefts_last,sizeof(int));bsp_sync();for(i=0;i<n_over_p;i++)array[i] += lefts_last;bsp_popregister(&last);}void main() {int i,j,n_over_p,*xs;bsp_begin(bsp_nprocs());n_over_p = 100;xs = calloc(n_over_p,sizeof(int));for (i=0;i<n_over_p;i++) xs[i]=1;bsp_allsums(xs,n_over_p);for(i=0;i<bsp_nprocs();i++) {if (bsp_pid()==i) {printf("On process %d: ",bsp_pid());for(j=0;j<n_over_p;j++) printf("%d ",xs[j]);printf("\n");fflush(stdout);}bsp_sync();}bsp_end();}14 What are typical values of g and l for common parallel computers?Values of the BSP cost model parameters are shown in Table 2. The values of the g andl parameters are normalised by the instruction rate of each processor (to aid comparisonsbetween machines, raw rates are also given in microseconds). Because this instruction ratedepends heavily upon the kind of computations being done, the average of two di�erentmeasured values are used:bsc measures the cost of an inner product, where O(n) operations are performed on a datastructure of size n. The value of n is chosen to be far greater than the cache size oneach processor. This benchmark therefore gives a lower-bound megaop rate for theprocessor as each arithmetic operation induces a cache miss.dse measures the cost of a dense matrix multiplication, where O(n3) operations are performedon a data structures of size n2. Because a large percentage of the computation can bekept in cache, this benchmark gives an upper-bound megaop rate for the processor.As we have already mentioned, good BSP algorithm design is often based around balancedpatterns of communication. We illustrate the communication capacity g using two balanced13

communications. The �rst is a particularly easy 1-relation, a cyclic shift of data betweenneighbouring processors. This benchmark provides an upper-bound rate for communication.Parallel computers have far greater di�culty in achieving scalable communication forpatterns of communication that move lots of data to many destinations. As an extremeexample, we consider the p-relation generated by a total exchange among the processors. Noscalable architecture can provide p2 dedicated wires because it is too expensive. So sparserinterconnections are used. For example, the Cray T3D uses a 3D Torus, while the IBMSP2 uses a hierarchy of 8-node fully-connected crossbar switches. The value of g for a totalexchange therefore provides a good measure of the lower-bound rate of communication of anarchitecture.Not very surprisingly, the two values of g, derived directly from a 1-relation, and fromthe pg cost of a p-relation total exchange can be quite di�erent. This might mean thatthe 1-relation performance of the network is not very good (for example, a ring takes timeproportional to p to deliver both a 1-relation and a p-relation), but usually means that thenetwork's e�ective capacity is not as large as the per-link bandwidth would suggest. Whencost modelling algorithms, it is advisable to use the value of g produced by the total exchangebenchmark.When p = 1, g represents the memory speed of the processor, taking into account anybu�ering of communication that may occur in the implementation of BSPLib . The e�ciencyof the communication network can also be roughly estimated by comparing the cost of gfor one processor with g for p > 1. This gives a ratio of inter-processor communication tomemory speed, which is 9 for the IBM SP2 (8 nodes) with switch communication, 19 for theSGI Power Challenge (4 nodes), and 8 for the Cray T3D (256 nodes).Machine Mops p l g (local) g (total exch.) n1=2bsc dse s ops �s op/word �s/word op/word �s/word wordsSGI PowerChallenge 53 94 74 1 226 3.1 0.5 0.007 0.5 0.007 802 1132 15.3 9.8 0.13 10.2 0.14 123 1496 20.2 8.9 0.12 9.5 0.13 124 1902 25.7 9.8 0.13 9.3 0.13 12Cray T3D 5 19 12 1 68 5.6 0.3 0.02 0.3 0.02 942 164 13.5 0.7 0.06 1.0 0.08 714 168 13.9 0.7 0.06 0.8 0.65 668 175 14.4 0.8 0.07 0.8 0.65 599 383 31.7 0.9 0.07 1.2 0.10 3916 181 14.9 0.9 0.07 1.0 0.08 6125 486 40.2 1.1 0.09 1.5 0.13 2632 201 16.6 1.1 0.09 1.4 0.12 2864 148 12.3 1.0 0.09 1.7 0.14 27128 301 24.9 1.1 0.09 1.8 0.15 20256 387 32.1 1.2 0.11 2.4 0.19 15IBM SP2 (switch) 25 27 26 1 244 9.4 1.3 0.05 1.3 0.05 72 1903 73.2 6.3 0.24 7.8 0.30 64 3583 137.8 6.4 0.25 8.0 0.31 78 5412 208.2 6.9 0.27 11.4 0.43 6continued on next page : : :
14

: : : continued from previous pageMachine Mops p l g (local) g (total exch.) n1=2bsc dse s ops �s op/word �s/word op/word �s/word wordsMultiprocessor Sun 3.8 16.4 10.1 1 24 2.4 0.4 0.04 0.4 0.04 72 54 5.3 3.0 0.29 3.4 0.34 73 74 7.4 2.9 0.29 4.1 0.41 84 118 11.7 3.3 0.32 4.1 0.41 11Hitachi SR2001 2.3 8.5 5.4 1 31 5.6 0.2 0.05 0.2 0.05 162 1165 216.1 2.6 0.50 3.0 0.54 84 2299 426.1 2.8 0.53 3.0 0.56 88 3844 712.1 3.0 0.54 3.1 0.59 816 4638 911.4 3.0 0.55 3.0 0.55 832 6906 1321.7 4.7 0.90 4.9 0.92 6Convex Exemplar 10.5 1 60 5.8 0.16 0.02 182 21373 2035 8.3 0.8 64 64457 6138 9.2 0.9 78 194476 18521 11.3 1.2 9Digital Alpha Farm 10.1 1 29 2.9 0.3 0.03 172 17202 1703.1 81.1 8.0 43 34356 3401.6 83.0 8.2 44 47109 4664.3 81.3 8.1 4Parsytec GC 19.3 1 98 5.1 1.0 0.05 1.0 0.05 162 6309 325 109 5.6 113 5.9 34 23538 1219 190 9.9 143 7.4 38 29080 1506 252 13.1 254 13.2 316 224977 11600 253 13.1 342 17.7 332 130527 6700 272 14.1 658 34.1 3IBM SP2 (ethernet) 25 27 26 1 241 9.3 1.3 0.05 1.3 0.05 82 18759 721.5 182.1 7.0 183.6 7.1 34 39025 1500.9 388.2 14.9 628.2 24.2 58 88795 3415.2 1246.6 47.3 1224.1 47.1 2Table 2: BSP machine parameters. (1) All values for g are for communications of 32-bitwords; (2) benchmarks were performed at the -O3 optimisation level; (3) the Cray T3D, SGIPowerChallenge, IBM SP2, Parsytec GC, and Hitachi SR2001 used native implementationsof the toolset; (4) the toolset used on the multiprocessor Sun was built using generic SystemV shared-memory facilities; (5) the Digital Alpha Farm consists of a cluster of Alpha work-stations connected via FDDI and a giga-switch. The toolset implementation was built on topof a generic version of MPI (mpich).Appendix B shows how these �gures were obtained. The meaning of n1=2 is explained inSection 16.15 How can the BSPLib be implemented e�ciently on today's architectures?The semantics of the BSPLib operations reects the high-level view of BSP in which com-putation and communication do not overlap. The Oxford implementation of BSPLib keepsthese two phases separate also. Thus while the semantics of calls to put and get permitsthem to begin executing concurrently with the local process's computation, the performanceadvantages of postponing them turn out to be larger than of exploiting the potential overlap15

[16]. This approach contradicts current practice in communication libraries, where overlap-ping computation and communication is considered a good thing, even though it can createat best a factor of two improvement. Of course, treating communication at the level of singlemessages provides no obvious opportunity to improve performance by postponing communi-cation.We have found that postponing communication until the end of local computation createsmajor performance-enhancement opportunities. Combining all of the messages between eachprocessor pair means that transmission startup costs are paid only once per superstep, insteadof once per message (although it does require more memory for bu�ering). The freedomto reorder transmissions to di�erent processors means that patterns guaranteed to avoidcongestion can be set up in software, rather than requiring expensive hardware solutionsoperating during the data transfers. This is important since, although congestion inside thenetwork is not as signi�cant a problem as it once was, it is common at the processor-networkinterface. The performance gains of delaying communication are so large that even the high-performance versions of the put and get operations, which are designed so that computationand communication can be overlapped without bu�ering, postpone transmissions until theend of the computation phase of each superstep.The general structure of an Oxford implementation of BSPLib is that all put and get op-erations initiated in a superstep are delayed until the end of the superstep, and optimisationswhose e�ect is to minimise both the absolute value of g and its variance are applied to theentire h-relation.Regardless of the type of parallel architecture, the ability to reorder messages before trans-mission is crucial to creating a consistent bulk-communication behaviour without increasingthe value of g. Two mechanisms used are:� randomly ordering the messages to reduce the likelihood of troublesome patterns, and� using a latin square to schedule transmissions in a guaranteed contention-free way.Which of these mechanisms is to be preferred is architecture-dependent.Recall that a latin square is a p�p square in which each of the values from 1 to p appearsp times, with no repetition in any row or column. Such a square can be used as a schedulefor the routing of the h-relation, using row i as the schedule for processor i, with the contentsof the row regarded as the destinations for each communication time step.The use of such mechanisms has a major e�ect on performance. For example, consider atotal exchange algorithm shown in Figure 3 where each processor i has data xi of size n thatis to be exchanged with every other processor. After the communication, each processor willcontain a data structure of size np containing all of the xj, where 1 � j < p. The BSP cost ofthe algorithm is png + l because p messages enter and exit each processor. However, a naiveimplementation may have each processor send a message to processor 0 on the �rst time step,to processor 1 on the second, and so on. This causes p messages to contend at process 0, thenp to contend at process 1, and so on. The cost of this communication will be O(p2) ratherthan the linear cost predicted by the BSP cost formula png+ l. An alternative ordering thatdoes not cause contention is for processors to send their data in the order mod (i+j; p); where1 � j < p, and i is the processor identi�er, using a simple latin square. The expected linear(in p) cost can then be achieved. 16

Beforecommunication
Aftercommunication

x0 x1 x2 x3? ^ ~ jx0x1x2x3 x0x1x2x3 x0x1x2x3 x0x1x2x3?� ^ ~= � ? ^� = � ?
Figure 3: Total exchange between four processorsProcs immediate transmission BSPLib delaying and reorderingcontention latin square contention latin square2 .168 .157 .157 .1574 .392 .194 .191 .1918 .461 .239 .228 .22916 .598 .289 .344 .34532 .784 .413 .465 .45664 .903 .529 .548 .546128 .961 .575 .599 .599Table 3: The e�ects of node contention on the Cray T3D. Entries in the table are in secondsfor routing a 4,000,000-relation. e.g., for 128 processors, 15625 integers per process.Table 3 shows the results of an implementation that routes total exchanges. The �rsttwo columns show what happens when the programmer writes puts in the order that causesmaximum contention and then in the latin square order that avoids it, as above. Here theruntime system is neither combining nor reordering, but transmits data as soon as the put isexecuted. The �nal two columns show what happens for the same two user programs whenBSPLib delays messages and reorders them. As expected, reordering makes a signi�cantdi�erence; and the library reordering induces the improved performance regardless of thetextual form of the program. Reordering makes the implementation consistent with themodel, without a large sacri�ce of e�ciency.The precise details of handling communication and building barriers di�ers depending onthe speci�cs of target architectures:Distributed-memory machines with remote-memory access (Cray T3D). A barriersynchronisation is performed to ensure that each process has �nished its local computation.Once all the processors have passed the barrier, one-sided memory accesses are used to routemessages into the memories of the remote processors. The communication phase of a superstepis completed by performing a further barrier synchronisation.Distributed-memory machines with message-passing (IBM SP2,Hitachi SR2001,Alpha Farm, Parsytec GC). On architectures that provide native non-blocking send andblocking receive message-passing primitives, the h-relation is routed through the communica-17

tion network in three phases:1. a total exchange is performed, exchanging information about the number, sizes, anddestination addresses of messages. This total exchange is considered to be the barriersynchronisation for the superstep.2. gets are translated into puts and the data they refer to is bu�ered at the source pro-cessor.3. after the total exchange, each processor knows how many messages, from every otherprocess, it is expecting. Each process therefore knows when the communication phaseof the superstep is complete by counting the incoming messages. Communication is per-formed by interleaving the outgoing and incoming messages, so that minimum bu�eringrequirements are placed on the underlying message-passing system.Shared-memory architectures (SGI Power Challenge, Sun, Convex Exemplar).The implementation on shared-memory architectures combines features from both of the im-plementations above. The information about the number and size of messages to be sentbetween each processor pair is constructed in a region of shared memory by each call to putand get. After the computation phase, a barrier synchronisation takes place to ensure thatthis information is frozen. Because the message information is in shared memory, an implicittotal exchange can be considered to have occurred at this point. The actual exchange of datais performed in a message-passing style. First messages are copied into bu�ers associatedwith each process in shared memory. These bu�ers are then inspected by the remote process,and their contents copied into the remote processor's memories. Using a contention-limitingorder for messages, the number of message passing bu�ers associated with each process canbe minimised. Finally, the message information region is cleared and a further barrier syn-chronisation takes place to allow renewed access to it.16 How much e�ect does message size have on the value of g?As we have already seen, the way in which BSPLib delays communication until the endof each superstep and then combines messages into the largest possible units reduces theimportance of message size. The cost model makes no distinction between the cost of aprocess sending h messages of size one or a single message of size h; both communicationshave an h-relation cost of hg. However, a superstep in which very little total communicationoccurs may still deviate from the cost model because of the e�ects of startup costs for messagetransmission.Miller re�ned the standard cost model [29] using a technique of Hockney [20] to modelthe e�ect of message granularity on communication cost. In the re�ned model, g is de�nedas a function of the message size x:g(x) = �n1=2x + 1� g1 (1)where g1 is the asymptotic communication cost for very large messages (g reported in Table 2is g1) and n1=2 is the size of message that produces half the optimal bandwidth of the machineso g(n1=2) = 2g1. 18

010
2030
4050
60

0 500 1000 1500 2000 2500
g(x)

message size in words

Actual cost of single-word messages 3
333333

3 Actual cost of combined messages +
+++++++++++

+ Theoretical model of eqn. (1). g1 = 7:8; n1=2 = 202Theoretical model of eqn. (1). g1 = 9:2; n1=2 = 6

Figure 4: Fitting experimental values of g(x) ops/word to Equation (1) using an 8-processorIBM SP2 with switch communication. The messages are communicated using one-sided putcommunication where a process puts data into another processor's memory. The top curverepresents single-word messages and the bottom curve uses a message-combining scheme.The value of n1=2 in Equation (1) is determined experimentally for each machine con�g-uration by �tting a curve to actual values of g(x). Figure 4 shows the actual values of g(x)on an 8-processor IBM SP2. Because messages are combined in each superstep, the value ofn1=2 is e�ectively reduced to 6 words. For comparison purposes, the e�ect of naively commu-nicating messages separately is shown by the data points labeled \actual cost of single-wordmessages" in the �gure. Fitting a curve to this data gives n1=2 = 202 words.The n1=2 parameter can be used to discover the minimum message size for which thestandard cost model is within a given percentage of the more-detailed cost model. For thestandard model to be within y% accuracy of the cost attributed by the model that includesmessage granularity, then:�100 + y100 � h0g1 = h0g(h0) = �n1=2h0 + 1� h0g1 (2)where h0 words is Valiant's parameter [35] that measures the minimum size of h-relation toachieve n1=2 throughput. Thus the percentage error in the communication cost h0g1 isy = �100n1=2h0 �%: (3)So on the IBM SP2 with switch communication the error in the standard BSP model forcommunicating h0=60 32-bit words is 10%. Moreover, as would be expected, as the size ofh-relation increases, the error in the standard BSP model decreases.17 What tools are available to help with building and tuning BSP programs?19

The intensional properties of a parallel program (i.e., how it computes a result) can oftenbe hard to understand. The BSP model goes some way towards alleviated this problem if costanalysis is used to guide program development. Unfortunately, in large-scale problems, costanalysis is rarely used at the time as program development. The role of current BSP tools[18] is to aid programmers in understanding the intensional properties of their programs bygraphically providing pro�ling and cost information. The tools analyse the actual communi-cation properties of a program, or analyse the predicted performance of the code assumingthe parallel machine the program was run upon acts like a real BSP computer (i.e., a scalablemachine with constant l and g that routes h-relations in time hg + l).A central problem with any parallel-pro�ling system is the e�ective visualisation of largeamounts of pro�ling data. In contrast to conventional parallel-pro�ling tools, which highlightthe patterns of communication between individual sender-receiver pairs in a message passingsystem, the BSP approach signi�cantly simpli�es visualisation because all of the communica-tions that occur in a superstep can be visualised as a single monolithic unit.
Oxford BSP Toolset [flags -O1 -fcombine-puts -fcontention-res...]Oxford BSP Toolset [flags -O1 -fcombine-puts -fcontention-res...]0.009 seconds elapsed on a IBM SP2 Fri Jul 26 17:04:07 1996

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 milliseconds
0

2

4

6

8

10

12

14

16

18

20

22

bytes in

0 1

2

2

2

3

4

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 milliseconds
0

2

4

6

8

10

12

14

16

18

20

22

bytes out

0 1

2

2

2

3

4

0 main.c 162

1 main.c 33

2 main.c 39

3 main.c 145

4 main.c 164

Step Filename Line

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Figure 5: All sums of 32; 000 elements using the logarithmic technique on an 8-processor IBMSP2Figure 5 is an example of the results from a BSP pro�ling tool running on the IBM SP2.It shows a communication pro�le for the parallel pre�x algorithm (with n > p) developed onpage 12.The top and bottom graphs in Figure 5 show, on the y axis, the volume of data moved,and on the x axis, the elapsed time. Each pair of vertically-aligned bars in the two graphsrepresents the total communication during a superstep. Within each communication bar is aseries of bands. The height of each band represents the amount of data communicated by aparticular process, identi�ed by the band's shade. The sum of all the bands (the height of thebar) represents the total amount of communication during a superstep. The width represents20

Oxford BSP Toolset [flags -O1 -fcombine-puts -fcontention-res...]Oxford BSP Toolset [flags -O1 -fcombine-puts -fcontention-res...]0.009 seconds elapsed on a IBM SP2 Fri Jul 26 17:02:50 1996

Running sums N=32,000

0.00 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 milliseconds
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

bytes in

0 1

2

3

4

0.00 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 milliseconds
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

bytes out

0 1

2

3

4

0 main.c 162

1 main.c 86

2 main.c 90

3 main.c 145

4 main.c 164

Step Filename Line

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7Figure 6: All sums of 32; 000 elements using total exchange on an 8-processor IBM SP2the elapsed time spent in both communication and barrier synchronisation. The label foundat the top left-hand corner of each bar can be used in conjunction with the legend in the rightof the graph to identify the end of each superstep (i.e., the call to bsp sync) in the user'scode. The white space in the �gure represents the local computation time of each superstep.In Figure 5, the start and end of the running sums is identi�ed by the points labelled 0and 4. The white space in the graphs between supersteps 0 and 1 shows the computation ofthe running sums executed locally in each process on a block of size n=p. The �rst superstep,which is hidden by the label 1 at this scale, shows the synchronisation that arises due toregistration in the function bsp allsums1. The three successively-smaller bars represent thelogarithmic number of communication phases of the parallel pre�x technique. Contrastingthe sizes of the communication bars in Figure 5 with the schematic diagram of Figure 2graphically shows the diminishing numbers of processors involved in communication as theparallel pre�x algorithm proceeds. Contrasting this method of running sums with the total-exchange-based algorithm in Figure 6 shows that although the number of synchronisationswithin the algorithm is reduced from dlog pe to 1, the time spent in the total exchangeof bsp allsums2 is approximately the same as the algorithm based upon the logarithmictechnique. This is due to the larger amount of data transferred i.e., 1.51 milliseconds spentin summing p values in p processes using the parallel pre�x technique, compared to 1.42milliseconds when the total exchange is used.Figures 7 and 8 show pro�les of the same two algorithms running on a 32-processor CrayT3D, with the same data-set size as the IBM SP2. Although the T3D has a lower value forthe barrier synchronisation latency than the IBM SP2 (see Table 2), reducing the numberof supersteps from dlog 32e = 6 supersteps to 1 has a marked e�ect on the e�ciency. Theversion bsp allsums1 (i.e., logarithmic) takes 1.39 milliseconds compared to 0.91 milliseconds21

Oxford BSP Toolset [flags -O1 -fcontention-resolve 1]Oxford BSP Toolset [flags -O1 -fcontention-resolve 1] 0.028 seconds elapsed on a Cray T3D Fri Jul 26 16:58:50 1996

Running sums N=32,000

0.00 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 milliseconds
0

50

100

150

200

bytes in

0 1

2
2

2

2

2

3

4

0.00 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 milliseconds
0

50

100

150

200

bytes out

0 1

2
2

2

2

2

3

4

0 main.c 162

1 main.c 33

2 main.c 39

3 main.c 145

4 main.c 164

Step Filename Line

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 5

Proc. 6

Proc. 7

Proc. 8

Proc. 9

Proc. 10

Proc. 11

Proc. 12

Proc. 13

Proc. 14

Proc. 15

Proc. 16

Proc. 17

Proc. 18

Proc. 19

Proc. 20

Proc. 21

Proc. 22

Proc. 23

Proc. 24

Proc. 25

Proc. 26

Proc. 27

Proc. 28

Proc. 29

Proc. 30

Proc. 31Figure 7: All sums of 32; 000 elements using the logarithmic technique on a 32-processor CrayT3Dfor bsp allsums2 (i.e., total exchange).These data show that, for today's parallel computers, it is often better to reduce thenumber of supersteps, even at the expense of requiring more communication.18 How does BSPLib compare with other communication systems such as PVMor MPI?In recent years, the PVM message-passing library [1, 2, 10] has been widely implementedand widely used. In that respect, the goal of source code portability in parallel computinghas already been achieved by PVM. What then, are the advantages of BSP programming, ifany, over a message-passing framework such as PVM? On shared-memory architectures andon modern distributed-memory architectures with powerful global communications, message-passing models such as PVM are likely to be less e�cient than the BSP model, where com-munication and synchronisation are decoupled. This will be especially true on those moderndistributed-memory architectures that have hardware support for direct remote-memory ac-cess (or one-sided communications). PVM and all other message-passing systems based onpairwise, rather than barrier, synchronisation also su�er from having no simple analytic costmodel for performance prediction, and no simple means of examining the global state of acomputation for debugging.MPI [14] has been proposed as a new standard for those who want to write portablemessage-passing programs in Fortran and C. At the level of point-to-point communications(send, receive etc.), MPI is similar to PVM, and the same comparisons apply. The MPI stan-dard is very general and appears to be very complex relative to the BSP model. However,one could use some carefully-chosen combination of the various non-blocking communication22

Oxford BSP Toolset [flags -O1 -fcontention-resolve 1]Oxford BSP Toolset [flags -O1 -fcontention-resolve 1] 0.021 seconds elapsed on a Cray T3D Fri Jul 26 16:57:44 1996

Running sums N=32,000

0.00 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 milliseconds
0

500

1000

1500

2000

2500

3000

3500

bytes in

0 1

2

3

4

0.00 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 milliseconds
0

500

1000

1500

2000

2500

3000

3500

bytes out

0 1

2

3

4

0 main.c 162

1 main.c 86

2 main.c 90

3 main.c 145

4 main.c 164

Step Filename Line

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 5

Proc. 6

Proc. 7

Proc. 8

Proc. 9

Proc. 10

Proc. 11

Proc. 12

Proc. 13

Proc. 14

Proc. 15

Proc. 16

Proc. 17

Proc. 18

Proc. 19

Proc. 20

Proc. 21

Proc. 22

Proc. 23

Proc. 24

Proc. 25

Proc. 26

Proc. 27

Proc. 28

Proc. 29

Proc. 30

Proc. 31Figure 8: All sums of 32; 000 elements using a total exchange on a 32-processor Cray T3Dprimitives available in MPI, together with its barrier synchronisation primitive, to producean MPI-based BSP programming model. At the higher level of collective communications,MPI provides support for various specialised communication patterns which arise frequentlyin message-passing programs. These include broadcast, scatter, gather, total exchange, re-duction, and scan. These standard communication patterns are also provided for BSP in ahigher-level library. There has been one attempt to compare BSP performance with MPI [31]on a network of workstations. The results show that performance di�erences are very small,of the order of a few percent.Compared to PVM and MPI, the BSP approach o�ers (a) a simple programming discipline(based on supersteps) that makes it easier to determine the correctness of programs, (b) acost model for performance analysis and prediction which is simpler and compositional, and(c) more e�cient implementations on many machines.19 How is BSP related to the LogP model?LogP [7] di�ers from BSP in three ways:� It uses a form of message passing based on pairwise synchronisation.� It adds an extra parameter representing the overhead involved in sending a message.This has the same general purpose as the n1=2 parameter in BSP, except that it appliesto every communication, whereas the BSP parameter can be ignored except for a fewunusual programs.� It de�nes g in local terms. The g parameter in BSP is regarded as capturing thethroughput of an architecture when every processor inserts a message (to a uniformly-23

distributed address) on every step. It takes no account of the actual capacity of thenetwork, and does not distinguish between delays in the network itself and those causedby inability to actually enter the network (blocking back at the sending processor). Incontrast, LogP regards the network as having �nite capacity, and therefore treats g asthe minimal permissible gap between message sends from a single process. This amountsto the same thing in the end, that is g in both cases is the reciprocal of the availableper-processor network bandwidth, but BSP takes a global view of the meaning of g,while LogP takes a more local view.Over the last few years experience in developing software using the LogP model has shownthat to analyse the correctness and e�ciency of LogP programs it is often necessary, orat least convenient, to use barriers. Also major improvements in network hardware and incommunications software have greatly reduced the overhead associated with sending messages.In early multiprocessors, this overhead could be substantial, since a single processor handledboth the application and its communication. Manufacturers have learned that this is a badidea, and most newer multiprocessors provide either a dedicated processor to handle messagetra�c at each node or direct remote-memory access. In this new scenario, the only overheadfor the application processor in sending or receiving a message is the time to move it fromuser address space to a system bu�er. This is likely to be small and relatively machine-independent, and may even disappear as communication processors gain access to user addressspace directly, so the importance of the overhead parameter in the long term seems negligible.Given that LogP + barriers { overhead = BSP, the above points would suggest that theLogP model does not improve upon BSP in any signi�cant way. However, it is natural to askwhether or not the more \exible" LogP model enables a designer to produce a more e�cientalgorithm or program for some particular problem, at the expense of a more complex style ofprogramming. Recent results show that this is not the case. In [3] it is shown that the BSPand LogP models can e�ciently simulate one another, and that there is therefore no loss ofperformance in using the more-structured BSP programming style.20 How is BSP related to the PRAM model?The BSP model can be regarded as a generalisation of the PRAM model which permitsthe frequency of barrier synchronisation, and hence the demands on the routing network, tobe controlled. If a BSP architecture has a very small value of g , e.g. g = 1, then it canbe regarded as a PRAM and we can use hashing to automatically achieve e�cient memorymanagement. The value of l determines the degree of parallel slackness required to achieveoptimal e�ciency. The case l = g = 1 corresponds to the idealised PRAM, where no parallelslackness is required.21 How is BSP related to data parallelism?Data parallelism is an important niche within the �eld of scalable parallel computing. Anumber of interesting programming languages and elegant theories have been developed insupport of the data-parallel style of programming, see e.g. [34]. High Performance Fortran[22] is a good example of a practical data-parallel language. Data parallelism is particularlyappropriate for problems in which locality is crucial.24

The BSP approach in principle o�ers a more exible and general style of programmingthan is provided by data parallelism. However, the current SPMD language implementedby BSPLib is very much like a large-grain data parallel language, in which locality is notconsidered and programmers have a great deal of control over partitioning of functionality. Inany case, the two approaches are not incompatible in any fundamental way. For some applica-tions, the exibility provided by the BSP approach may not be required and the more limiteddata-parallel style may o�er a more attractive and productive setting for parallel softwaredevelopment, since it frees the programmer from having to provide an explicit speci�cationof the various processor scheduling, communication and memory management aspects of theparallel computation. In such a situation, the BSP cost model can still play an important rolein terms of providing an analytic framework for performance prediction of the data-parallelprogram.22 Can BSP handle synchronisation among a subset of the processes?Synchronising a subset of executing processes is a complex issue because the ability of anarchitecture to synchronise is not necessarily a bulk property in the sense that its processingpower and communication resources are. Certain architecture provide a special hardwaremechanism for barrier synchronisation across all of the processors. For example the CrayT3D provides an add-and-broadcast tree, and work at Purdue [8] has created generic, fast,and cheap barrier synchronisation hardware for a wide range of architectures. Sharing thissingle synchronisation resource among several concurrent subsets that may wish to use it atany time seems di�cult. We are currently exploring this issue.Architectures in which barrier synchronisation is implemented in software do not have anydi�culty in implementing barriers for subsets of the processors. The remaining di�culty hereis a language design one|it is not yet clear what an MIMD, subset-synchronising languageshould be like if it is to retain the characteristics of BSP.23 Can BSP be used on vector, pipelined, or VLIW architectures?Nothing about BSP presupposes how the sequential parts of the computation, that is theprocesses within each processor, are computed. Thus architectures in which the processor usesa specialised technique to improve performance might make it harder to determine the valueof w for a particular program, but they do not otherwise a�ect the BSP operation or costmodelling. The purpose of normalising g with respect to processor speed is to enable terms ofthe form hg to be compared to computation times so that the balance between computationand communication in a program is obvious. Architectures that issue multiple instructions percycle might require a more sophisticated normalisation to keep these quantities comparablein useful ways.24 BSP doesn't seem to model either input/output or memory hierarchy?Both of these properties can be modelled as part of the cost of executing the computationpart of a superstep. Modelling the latency of deep storage hierarchies �ts naturally into BSP'sapproach to the latency of communication, and investigations of extensions to the BSP costmodel applicable to databases are underway. 25

25 Does BSP have a formal semantics?Several formal semantics for BSP have been developed. The paper [15] shows how thesemay be used to give algebraic laws for developing BSP programs. BSP is used as a semanticscase study in a forthcoming book [19].26 Will BSP inuence the design of architectures for the next generation ofparallel computers?The contribution of BSP to architecture design is that it clari�es those factors that aremost important for performance on problems without locality. It suggests that the criticalproperties of an architecture are:� high permeability of the communication system, that is the ability to move arbitrarypatterns of data quickly, and� the ability to reach a consistent global state quickly by barrier synchronisation.More subtly, it also suggests that predictability of communication delivery across a widerange of communication patterns is more important than extremely high performance forsome special communication patterns, and low performance for others. In other words, lowvariance is more signi�cant than low mean.The two parameters l and g capture, in a direct way, how well an architecture achievesthese two major performance properties. Details of exactly which topology to use, whatrouting technology, and what congestion control scheme are all subsumed in the single con-sideration of total throughput.When the BSP model was �rst considered, it was often felt to be necessarily ine�cientbecause of its use of permutation routing. After a while, it came to be appreciated thatpermutation routing is not necessarily expensive, and architectures that do it well were devel-oped. Then the BSP model was considered ine�cient because of its requirement for barriersynchronisation. It is now understood that barriers need not be expensive, and architecturesthat handle them well are being developed. It may be that total exchange is the next primitiveto be made central to BSP and the same arguments about ine�ciency may well be made. Newcommunication technologies, such as ATM, repay foreknowledge of communication patterns,and it may be that total exchange will turn out to be a reasonable standard building blockfor parallel architectures as well.27 How can I �nd out more about BSP?Development of BSP is coordinated by BSP Worldwide, an organisation of researchers andusers. Information about it can be found at the web site http://www.bsp-worldwide.org/.A standard for the BSPLib has been agreed. BSP Worldwide organises semiannual workshopson BSP. Other general papers about BSP are [23, 35].There are groups of BSP researchers at:� Oxford | http://www.comlab.ox.ac.uk/oucl/groups/bsp26

� Harvard | http://das-www.harvard.edu/cs/research/bsp.html� Utrecht | http://www.math.ruu.nl/people/bisseling.html� Carleton | http://www.scs.carleton.ca/�palepu/BSP.html� Central Florida | http://longwood.cs.ucf.edu/csdept/faculty/goudreau.htmlas well as individuals working on BSP at a number of other universities.Acknowledgements. We appreciate the helpful comments made on earlier drafts of thispaper by David Burgess, Ga�etan Hains, Jifeng He, Quentin Miller, Heiko Schr�oder, BolekSzymanski, and Alexandre Tiskin.D B Skillicorn was supported in part by EPSRC Research Grant GR/K63740 \A Uni�edFramework for Parallel Programming".J M DHill andW FMcColl were supported in part by EPSRC Research Grant GR/K40765\A BSP Programming Environment"A The BSPLib LibraryThis Appendix provides slightly more detail about the current major BSP system, the BSPLib. We describe C interfaces to the library, but a Fortran version is also available.InitialisationProcesses are created in a BSPLib program by the operations bsp begin and bsp end. Therecan only be one instance of a bsp begin/bsp end pair within a program, although there aretwo di�erent ways to start a BSPLib program: If bsp begin and bsp end are the �rst andlast statements in a program, then the entire BSPLib computation is SPMD.In an alternative mode a single process starts execution and determines the number ofparallel processes required for the calculation. It then spawns the required number of processesusing bsp begin. Execution of the spawned processes then continue in an SPMD manner,until bsp end is encountered by all the processes. At that point, all processes except processzero are terminated, and process zero is left to continue the execution of the rest of theprogram sequentially. One problem with providing this mode is that some parallel machinesavailable today, for example almost all distributed-memory machines, e.g. IBM SP2, CrayT3D, Meiko CS-2, Parsytec GC, Hitachi SR2001, do not provide dynamic process creation.Therefore we simulate dynamic spawning using an operation bsp init which takes as itsargument a procedure name. The procedure named in bsp init must contain bsp begin andbsp end as its �rst and last statements.The interface for these library operations isvoid bsp_init(void (*startproc)(void), int argc, char **argv);void bsp_begin(int maxprocs);void bsp_end() 27

maxprocs is the number of processes requested by the user.startproc is the name of a procedure that contains bsp begin and bsp end asits �rst and last statements.argc and argv are command line size and arguments.EnquiryThere are also operations to determine total number of processes and for each process toidentify which it is. The interface for these operations is:int bsp_nprocs();int bsp_pid();If the function bsp nprocs is called before bsp begin, then it returns the number ofprocessors which are available. If it is called after bsp begin it returns n, the actual numberof processes allocated to the program, where 1 � n � maxprocs, and maxprocs is the numberof processes requested in bsp begin. Each of the n processes created by bsp begin has aunique associated value m in the range 0 � m � n � 1. The function bsp pid returns theassociated value of the process executing the function call.SynchronisationA BSPLib calculation consists of a sequence of supersteps. The end of one superstep and thestart of the next is identi�ed by a call to the library procedure bsp sync with interfacevoid bsp_sync();DRMAThere are two ways of communicating between processes: one using direct remote-memoryaccess (DRMA), and the other using a BSP version of message passing.The DRMA communication operations are de�ned for stack- and heap-allocated datastructures as well as for static data. This is achieved by allowing a process to referenceonly certain registered areas of a remote memory. In a registration procedure, processesuse the operation bsp pushregister to announce the address of the start of a local areawhich is available for global remote use. This makes it possible to execute BSP programsusing heterogeneous processor architectures. Registration takes e�ect at the next barriersynchronisation.void bsp_pushregister (void *region, int nbytes);void bsp_popregister (void *region);region is the starting address of the region to be registered or unregistered. Thename regionmust be the same for all logically-related calls to bsp pushregisteror bsp popregister, and implementations may check that this is true.nbytes is the size of the region (used for range checking).28

Each processor maintains a stack of registration slots. Logically-related calls to bsp pushregisterin di�erent processes (the ith call in each process is related to the ith call in all of the others)associate a variable name and the addresses to which it is mapped in each process with thenext available slot. Each bsp popregister invalidates the slot at the top of the stack andhence the association of a variable name with its addresses in di�erent processors. The argu-ment is logically unnecessary but may be used by an implementation to check that the user'saction and intent match.The intent of registration is to make it simple to refer to variables in other processeswithout requiring their locations to be explicitly known. A reference to a registered name ina put or get is translated to the address corresponding to the remote variable with the samename. Here is an example:Process 0int x;bsp_pushregister(&x, sizeof(int));bsp_sync();x := 3;bsp_put(1, &x, &x, 0, sizeof(int));bsp_sync();Process 1int y;bsp_pushregister(&x, sizeof(int));bsp_sync();bsp_sync();Process 0 and Process 1 register x in the �rst slot. When Process 0 executes a put, usingx as the destination region name, this is mapped to the region whose address is associatedwith the �rst slot in Process 1. Therefore, the variable x in Process 1 has the value 3 placedin it as the result of the put.The same, or overlapping, regions may be registered in more than one slot. Because theslots form a stack, processes must unregister regions in the reverse order to that in whichthey were registered.The operation bsp put pushes locally-held data into a registered remote-memory areaon a target process, without the active participation of the target process. The operationbsp get reaches into the registered local memory of another process to copy data values heldthere into a data structure in its own local memory. All gets are executed before all putsat the end of a superstep in line with the semantics that communications do not take e�ectlocally until the end of a superstep. Their interfaces arevoid bsp_[hp]put(int pid,const void *src,void *dst,int offset,int nbytes); 29

pid is the identi�er of the process where data is to be stored.src is the location of the �rst byte to be transferred by the put operation. Thecalculation of src is performed on the process that initiates the put.dst is the is the base address of the area where data is to be stored. It must be apreviously-registered data area.offset is the displacement in bytes from dst to which src will copy. The calcu-lation of offset is performed by the process that initiates the put.nbytes is the number of bytes to be transferred from src into dst. It is assumedthat src and dst are addresses of data structures that are at least nbytes insize.void bsp_[hp]get(int pid,const void *src,int offset,void *dst,int nbytes);pid is the identi�er of the process from which data is to be obtained.src is the base address of the area from which data will be obtained. src mustbe a previously-registered data structure.offset is an o�set from src. The calculation of offset is performed by theprocess that initiates the get.dst is the location of the �rst byte where the data obtained is to be placed. Thecalculation of dst is performed by the process that initiates the get.nbytes is the number of bytes to be transferred from src into dst. It is assumedthat src and dst are addresses of data structures that are at least nbytes insize.The semantics adopted for BSPLib bsp put communication is bu�ered-locally/bu�ered-remotely. When a put is executed, the data to be transferred is copied out of user addressspace immediately. The executing process is free to alter the contents of those locations afterreturn from the call to put. While the semantics is clean and safety is maximized, puts mayunduly tax the memory resources of an implementation, thus preventing large transportsof data. Consequently, BSPLib also provides a high-performance put operation bsp hpputwhose semantics is unbu�ered-locally/unbu�ered-remotely. The use of this operation requirescare, as correct data delivery is only guaranteed if neither communication nor local/remotecomputations modify either the source or the destination areas during a superstep. The mainadvantage of this operation is its economical use of memory. It is therefore particularly usefulfor applications which repeatedly transfer large data sets.The bsp get and bsp hpget operations reach into the local memory of another process andcopy previously-registered remote data held there into a data structure in the local memoryof the process that initiated them.
30

BSMPBulk synchronous remote-memory access is a convenient style of programming for BSP com-putations that can be statically analysed in a straightforward way. It is less convenientfor computations in which the volumes of data being communicated are irregular and data-dependent, or where the computation to be performed in a superstep depends on the quantityand form of data received at its start. A more appropriate style of programming in such casesis bulk-synchronous message passing (BSMP).In BSMP, a non-blocking send operation delivers messages to a system bu�er associatedwith the destination process. The message is guaranteed to be in the destination bu�er atthe beginning of the subsequent superstep, and can be accessed by the destination processonly during that superstep. A collection of messages sent to the same process has no impliedordering at the receiving end. However, since messages may be tagged, the programmer canidentify them by their tag.In BSPLib , bulk-synchronous message passing is based on the idea of two-part messages,a �xed-length part carrying tagging information that will help the receiver to interpret themessage, and a variable-length part containing the main data payload. We will call the �xed-length portion the tag and the variable-length portion the payload. In C programs, either partcould be a complicated structure. The length of the tag is required to be �xed during anyparticular superstep, but may vary between supersteps. The bu�ering mode of the BSMPoperations is bu�ered-locally/bu�ered-remotely.The procedure to set tag size must be called collectively by all processes. Moreover, in anysuperstep where bsp set tag size is called, it must be called before sending any messages.void bsp_set_tag_size (int *tag_bytes);tag bytes, on entry to the procedure, speci�es the size of the �xed-length portionof every message from the current superstep until it is updated; the defaulttag size is zero. On return from the procedure, tag bytes is changed to reectthe previous value of the tag size to allow for its use inside procedures.The tag size of incoming messages is prescribed by the outgoing tag size of the previousstep.The bsp send operation is used to send a message that consists of a tag and a payloadto a speci�ed destination process. The destination process will be able to access the messageduring the subsequent superstep. Its interface isvoid bsp_send(int pid,const void *tag,const void *payload,int payload_bytes);pid is the identi�er of the process where data is to be sent.tag is a token that can be used to identify the message. Its size is determined bythe value speci�ed in bsp set size tag.31

payload is the location of the �rst byte of the payload to be communicated.payload bytes is the size of the payload.It copies both the tag and the payload of the message out of user space into the systembefore returning. The tag and payload inputs may be changed by the user immediately afterthe bsp send.To receive a message, the operations bsp get tag and bsp move are used. The operationbsp get tag returns the tag of the �rst message in the bu�er. The operation bsp move copiesthe payload of the �rst message in the bu�er into payload, and removes that message fromthe bu�er. Its interface isvoid bsp_get_tag(int *status,void *tag);status returns -1 if the system bu�er is empty. Otherwise it returns the lengthof the payload of the �rst message in the bu�er. This length can be used toallocate an appropriately-sized data structure for copying the payload usingbsp move.tag is unchanged if the system bu�er is empty. Otherwise it is assigned the tagof the �rst message in the bu�er.void bsp_move(void *payload,int reception_nbytes);payload is an address to which the message payload will be copied. The bu�er isthen advanced to the next message.reception nbytes speci�es the size of the reception area where the payload willbe copied into. At most reception nbytes will be copied into payload.int bsp_hpmove(void **tag_ptr_buf, void **payload_ptr_buf);bsp hpmove is a function which returns -1, if the system bu�er is empty. Otherwiseit returns the length of the payload of the �rst message in the bu�er and (a)places a pointer to the tag in tag ptr buf; (b) places a pointer to the payloadin payload ptr buf; and (c) conceptually removes the message (by advancinga pointer representing the head of the bu�er).Note that bsp move ushes the corresponding message from the bu�er, while bsp get tagdoes not. This allows a program to get the tag of a message (as well as the payload size inbytes) before obtaining the payload of the message. It does, however, require that even if aprogram only uses the �xed-length tag of incoming messages the program must call bsp moveto get successive message tags.bsp get tag can be called repeatedly and will always return the same tag until a call tobsp move. 32

HaltThe function bsp abort can be used to print an error message followed by a halt of theentire BSPLib program. The routine is designed not to require a barrier synchronisation ofall processes. A single process can therefore halt the entire BSPLib program.void bsp_abort(char* format,...);format is a C-style format string as used by printf. Any other arguments areinterpreted in the same way as the variable number of arguments to printf.The function bsp time provides access to a high-precision timer|the accuracy of thetimer is implementation-speci�c. The function is a local operation of each process, and canbe issued at any point after bsp begin. The result of the timer is the time in seconds sincebsp begin. The semantics of bsp time is as though there were bsp nprocs timers, one perprocess. BSPLib does not impose any synchronisation requirements between the timers ineach process.double bsp_time();B Benchmarking
Oxford BSP Toolset [flags -O1 -fcontention-resolve 1]Oxford BSP Toolset [flags -O1 -fcontention-resolve 1] 3.085 seconds elapsed on a Cray T3D Tue Jul 30 09:16:33 1996

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 seconds
0

1

2

3

 BSP g

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 seconds
0

100

200

300

400

500

600

700

800

Kbytes out

2637

888888

27

888888

27

888888

27

8888888

27

88888888

237

888888888

27

8888888888

24

8888888888

27

8888888888

27

8888888888

29

101010101010

29

101010101010

29

10101010101010

29

1010101010101010

29

1010101010101010

29

101010101010101010

29

10101010101010101010

23

10101010101010101010

29

10101010101010101010

29

10101010101010101010

2

2 bsp_fold.c 162

3 bsp_fold.c 167

4 bsp_fold.c 171

6 bsp_probe.c 329

7 bsp_probe.c 353

8 bsp_probe.c 362

9 bsp_probe.c 390

10 bsp_probe.c 403

Step Filename Line

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7Figure 9: Cyclic shift, followed by total exchange, on an 8-processor Cray T3DThe BSP parameter l measures the minimum time for all processors to barrier synchronise.It is benchmarked by repeatedly over-sampling barrier synchronisation, whilst measuring33

the wall-clock time of the synchronisations. Repeated barrier synchronisation produces apessimistic value for l as it models the case where the computation part of each superstepcompletes in each processor at the same moment. This produces most contention in whateverresources are used for synchronising.Two values for the BSP parameter g are calculated. The �rst is the value of g experiencedwhen routing a local communication (a cyclic shift), and the second a global communicationusing a total exchange. As well as calculating the value of g, the benchmark also calculatesthe value for n1=2 used in Equation 1. This is done by routing a �xed-sized h-relation (aover-sampling of 10 iterations is performed for each h-relation) using �rst a single message ofsize h; then two messages of size h=2; through to h=4 messages of size 4 words. Figures 9,10, and 11 show communication pro�les [18] for the benchmark program running on theCray T3D and IBM SP2. Each �gure contains two graphs. The upper graph contains abreakdown of the communication patterns that arise in each superstep of the benchmark. Asthe benchmark repeatedly routes the same h-relation, albeit with a di�erent mix of messagesizes each time, the bars in upper graph are all the same size. The lower graph shows theactual value of g attained on a superstep-by-superstep basis, calculated from the executiontime of the superstep.
Oxford BSP Toolset [flags -O1 -fcontention-resolve 1]Oxford BSP Toolset [flags -O1 -fcontention-resolve 1] 8.527 seconds elapsed on a Cray T3D Tue Jul 30 09:15:57 1996

1.00 1.70 2.40 3.10 3.80 4.50 5.20 5.90 6.60 7.30 seconds
0

1

2

3

4

 BSP g

1.00 1.70 2.40 3.10 3.80 4.50 5.20 5.90 6.60 7.30 seconds
0

2

4

6

8

10

12

14

16

18

Mbytes out

267

888888888

27

8888888888

27

888888888

27

8888888888

27

8888888888

2 7

8888888888

27

8888888888

27

8888888888

27

8888888888

23

8 8 8 8 8 8 8 8 8 8

2

10101010101010101010

2

10101010101010101010

29

10101010101010101010

29

10101010101010101010

2

10101010101010101010

2

10101010101010101010

2

10101010101010101010

2

10101010101010101010

29

10101010101010101010

29

10101010101010101010

2

2 bsp_fold.c 162

3 bsp_fold.c 167

4 bsp_fold.c 171

6 bsp_probe.c 329

7 bsp_probe.c 353

8 bsp_probe.c 362

9 bsp_probe.c 390

10 bsp_probe.c 403

Step Filename Line

Proc. 0

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Proc. 5

Proc. 6

Proc. 7

Proc. 8

Proc. 9

Proc. 10

Proc. 11

Proc. 12

Proc. 13

Proc. 14

Proc. 15

Proc. 16

Proc. 17

Proc. 18

Proc. 19

Proc. 20

Proc. 21

Proc. 22

Proc. 23

Proc. 24

Proc. 25

Proc. 26

Proc. 27

Proc. 28

Proc. 29

Proc. 30

Proc. 31Figure 10: Cyclic shift, followed by total exchange, on an 32-processor Cray T3DThe �rst exponential curve in Figure 9 shows the value of g during the local-communicationphase (cyclic shift) of the benchmark. Notice how the curve is a good match of Equation 1which uses the n1=2 parameter to account for the extra cost of communicating small messages.The second curve in Figure 9 shows the value of g when routing a series of total exchanges.The same size of h-relation, and mix of message sizes are used in this benchmark as inthe local communication benchmark. This ensures that the two benchmarks have the sametotal theoretical cost, and should therefore take the same time to run. The left-hand side ofeach curve shows the value of g1 of the communication device calculated by the benchmark34

program, whereas the dotted line in the graph shows the value of g1 from Table 2.It should be noted that the implementation of BSPLib on the Cray, does not use theoptimisation that combines small messages together (although it does use the contention-limiting optimisation). There is little need for this optimisation on the T3D as it is a close�t to a \BSP computer" with constant, scalable, and predictable values for l and g. This isborne out when a larger number of processors are used in the benchmark, as can be seen fromFigure 10.
Oxford BSP Toolset [flags -O1 -fcombine-puts -fcontention-res...]Oxford BSP Toolset [flags -O1 -fcombine-puts -fcontention-res...]3.094 seconds elapsed on a IBM SP2 Tue Jul 30 10:09:28 1996

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 seconds
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 BSP g

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 seconds
0

50

100

150

200

250

300

350

400

450

500

550

600

650

Kbytes out

2367

8888888888

27

8888888888

27

8888888888

23

8888888888

23

8888888888

27

8888888888

27

8888888888

23

8888888888

27

8888888888

27

8888888888

24

10101010101010101010

2

10101010101010101010

29

10101010101010101010

29

10101010101010101010

29

10101010101010101010

29

10101010101010101010

29

10101010101010101010

2

10101010101010101010

29

10101010101010101010

2

10101010101010101010

23

2 bsp_fold.c 162

3 bsp_fold.c 167

4 bsp_fold.c 171

6 bsp_probe.c 329

7 bsp_probe.c 353

8 bsp_probe.c 362

9 bsp_probe.c 390

10 bsp_probe.c 403

Step Filename Line

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7Figure 11: Cyclic shift followed by total exchange on an 8-processor IBM SP2Figure 11 shows the same benchmark running on a eight-processor IBM SP2. Unlike theCray, the value of g is more unpredictable. However, although g has a value which is threetimes larger than that of the Cray, the SP2 has a per-node computation rate twice that of theT3D, so the absolute values of g are closely matched on the two machines. From the uppergraph of Figure 11 it can be seen that the amount of data communicated gradually grows, eventhough the benchmark routes a �xed size h-relation. The reason for this di�erence is that, onthe SP2, small messages are combined. For the combining to work, information concerning thesize and destination of the individual communications are sent with the combined individualcommunications, so that the destination process can unpack the data correctly. Therefore,the total size of data sent may triple due to the extra unpacking information. Nevertheless,this di�erence is an implementation issue, and is not reected in the values of g reported intable 2, as the benchmark calculates a value for g for a �xed size of data communicated.References[1] A Beguelin, J Dongarra, A Geist, R Manchek, and V Sunderam. Recent enhancementsto PVM. International Journal of Supercomputing Applications and High Performance35

Computing, 95.[2] Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, and Vaidy Sunderam. Ausers' guide to PVM parallel virtual machine. Technical Report CS-91-136, Universityof Tennessee, July 1991.[3] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP vs LogP.In Proceedings of the 8th Annual Symposium on Parallel Algorithms and Architectures,pages 25{32, June 1996.[4] Boppana and Chalasani. A comparison of adaptive wormhole routing algorithms.CANEWS: ACM SIGARCH Computer Architecture News, 21, 1993.[5] R.P. Brent. The parallel evaluation of general arithmetic expressions. Journal of theACM, 21, No.2:201{206, April 1974.[6] P.I. Crumpton and M.B. Giles. Multigrid aircraft computations using the OPlus parallellibrary. In Parallel Computational Fluid Dynamics: Implementation and Results usingParallel Computers. Proceedings Parallel CFD '95, pages 339{346, Pasadena, CA, USA,June 1995. Elsevier/North-Holland.[7] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subra-monian, and T. von Eicken. Logp: Towards a realistic model of parallel computation. InFourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,San Diego, CA, May 1993.[8] H.G. Dietz, T. Muhammad, J.B. Sponaugle, and T. Mattox. PAPERS: Purdue's adapterfor parallel execution and rapid synchronization. Technical Report TR-EE-94-11, PurdueSchool of Electrical Engineering, March 1994.[9] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and VaidySunderam. PVM 3 Users Guide and Reference Manual. Oak Ridge National Laboratory,Oak Ridge, Tennessee 37831, May 1994.[10] G. A. Geist. PVM3: Beyond network computing. In J. Volkert, editor, Parallel Compu-tation, Lecture Notes in Computer Science 734, pages 194{203. Springer, 1993.[11] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards e�ciency andportability: Programming the BS model. In Proceedings of the 8th Annual Symposiumon Parallel Algorithms and Architectures, pages 1{12, June 1996.[12] Mark W. Goudreau, Kevin Lang, Satish B. Rao, and Thanasis Tsantilas. The GreenBSP Library. Technical Report 95{11, University of Central Florida, August, 1995.[13] M.W. Goudreau, J.M.D. Hill, K. Lang, W.F. McColl, S.D. Rao, D.C. Stefanescu, T. Suel,and T. Tsantilas. A proposal for a BSP Worldwide standard. BSP Worldwide, http://www.bsp-worldwide.org/, April 1996.[14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming. MITPress, Cambridge MA, 1994. 36

[15] J. He, Q. Miller, and L. Chen. Algebraic laws for BSP programming. In Proceedings ofEuropar '96. Springer-Verlag Lecture Notes in Computer Science, to appear 1996.[16] J.M.D. Hill and D.B. Skillicorn. Lessons learned from implementing BSP. TechnicalReport TR-96-21, Oxford University Computing Laboratory, November 1996.[17] J.M.D. Hill and D.B. Skillicorn. Practical barrier synchronisation. Technical ReportTR-96-16, Oxford University Computing Laboratory, August 1996.[18] Jonathan M. D. Hill, Paul I. Crumpton, and David A. Burgess. Theory, practice, and atool for BSP performance prediction. In EuroPar'96, number 1124 in Lecture Notes inComputer Science, pages 697{705. Springer-Verlag, August 1996.[19] C.A.R. Hoare and J. He. Uni�ed Theories of Programming. Prentice-Hall International,to appear 1996.[20] R.W. Hockney. Performance parameters and benchmarking of supercomputers. ParallelComputing, 17:1111{1130, 1991.[21] Simon Knee. Program development and performance prediction on BSP machines us-ing Opal. Technical Report PRG-TR-18-94, Oxford University Computing Laboratory,August 1994.[22] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E. Zosel. The HighPerformance Fortran Handbook. MIT Press, Cambridge MA, 1994.[23] W. F. McColl. Scalable computing. In J. van Leeuwen, editor, Computer Science Today:Recent Trends and Developments, volume 1000 of Lecture Notes in Computer Science,pages 46{61. Springer-Verlag, 1995.[24] W. F. McColl and Q. Miller. The GPL language: Reference manual. Technical report,ESPRIT GEPPCOM Project, Oxford university Computing Laboratory, October 1995.[25] W.F. McColl. General purpose parallel computing. In A.M. Gibbons and P. Spirakis,editors, Lectures on Parallel Computation, Cambridge International Series on ParallelComputation, pages 337{391. Cambridge University Press, Cambridge, 1993.[26] W.F. McColl. Special purpose parallel computing. In A.M. Gibbons and P. Spirakis,editors, Lectures on Parallel Computation, Cambridge International Series on ParallelComputation, pages 261{336. Cambridge University Press, Cambridge, 1993.[27] Message Passing Interface Forum. MPI: A message passing interface. In Proc. Super-computing '93, pages 878{883. IEEE Computer Society, 1993.[28] Richard Miller. A library for Bulk Synchronous Parallel programming. In Proceedingsof the BCS Parallel Processing Specialist Group workshop on General Purpose ParallelComputing, pages 100{108, December 1993.[29] Richard Miller. Two approaches to architecture-independent parallel computation. D.Philthesis, Oxford University Computing Laboratory, Wolfson Building, Parks Road, OxfordOX1 3QD, 1994. 37

[30] P.B. Monk, A.K. Parrott, and P.J. Wesson. A parallel �nite element method for electro-magnetic scattering. COMPEL, 13, Supp.A:237{242, 1994.[31] M. Nibhanupudi, C. Norton, and B. Szymanski. Plasma simulation on networks of work-stations using the bulk synchronous parallel model. In Proceedings of the InternationalConference on Parallel and Distributed Processing Techniques and Applications, Athens,GA, November 1995.[32] M.J. Quinn and P.J. Hatcher. On the utility of communication-computation overlap indata-parallel programs. J. Parallel and Distributed Computing, 33:197{204, 1996.[33] J Reed, K Parrott, and T Lanfear. Portability, predictability and performance for parallelcomputing: BSP in practice. Concurrency: Practice and Experience, to appear.[34] D.B. Skillicorn. Foundations of Parallel Programming. Cambridge Series in ParallelComputation. Cambridge University Press, 1994.[35] Leslie G. Valiant. A bridging model for parallel computation. Communications of theACM, 33(8):103{111, August 1990.[36] L.G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, Vol. A. Elsevier Science Publishers and MIT Press,1990.

38

