COMP 633 Parallel Computing
Fall 2021

http://www.cs.unc.edu/~prins/Classes/633/

Parallel computing

« Whatis it?
— multiple processors cooperating to solve a single problem
— hopefully faster than using a single processor!

« Why is it needed?
— greater compute performance

COMP 633 - Prins — FA20201 01-Intro

Where is performance needed?

* sometimes performance is required in time-critical tasks
 timely and accurate weather forecast
» obstacle detection for self driving cars

e sometimes performance gives a competitive advantage

o from Walmart to Wall Street
— data mining of trends
— delivery logistics
— real-time analytics (high frequency trading)
e engineering, manufacturing, and pharmaceuticals
— vehicle crash simulations, material properties prediction, drug design

e sometimes performance is the only way to answer a gquestion
 scientific progress using mathematical modeling and numerical
simulation
— human genome assembly
— computational science and the timely Nobel prize

=
COMP 633 - Prins — FA20201 01-Intro @

Why can’t we just build a faster single processor ?

« Moore’s “Law”
— processor performance per $ doubles every two years !

120 Years of Moore’s Law

MECHANICAL “A_F-'L'JJBL;M TRANSISTOR INTEGRATED CIRCUIT

IBM BLUE GENE

1
=
©
-
ot

=
8

w

c

o]

(&}

e

@

o
=]

c

Q

[

@

w

-

@

o

(74}

c
S
=
©

=
L

m
(@]

.?_,;.GD ;905 795, 7 975 79; 9 193, 793, 794, 794, 95 190 To- Tg 5 %5 ,"_ggo ?-_‘;95 "O{Jg 20 {‘,j_,u c’.g_,s x’[‘:_?a

ce: Ray Kurzweil, DFJ

COMP 633 - Prins — FA20201 01-Intro

Transistor miniaturization and performance

e Dennard scaling

— transistor switching power o« transistor size
— shrinking transistor size
» decreases switching power
» decreases switching time (higher clock frequency)
* increases number of transistors per unit area
— so for the same power and space budget we get
» faster arithmetic operations
» pipelined arithmetic
 more and larger caches 10000

= increased performance

Sun’s surface —»
Rocket nozzle—p
Nuclear reactor —» /
100
. 8086 Hot plate —/

=
o
o
o

e Limits to Dennard Scaling
— as transistor size approaches

quantum mechanical limits Wﬁﬁm
. . 486
* increasing leakage current M . AN
e exponential power increase! 1970 1980 1990 2000 2010

’ Source: Patrick Gelsinger, Intel® ‘

Power Density (W/cm?)

COMP 633 - Prins — FA20201 01-Intro

Parallelism is now the principal source of performance

* Processor evolution after 2004 (Intel)

— multiple cores per socket J
— lower per-core performance 'y Decreasing

L. . 10% performance?
— similar power per chip o :

e per-core “turbo” mode ¢
— vector units and larger caches 107 D o
— multiple and higher performance oy =

off-chip memory interfaces S S e SE e e s O S
1975 1980 1985 1990 1995 2000 2005 2010 201%

processor performance characteristics
 Moore’s “law”
— performance per socket is still increasing but no longer exponentially

— power/cooling per socket is the limiting factor

« Factors limiting parallel computing
— overall system power
— Inconveniently slow speed of signal propagation!

COMP 633 - Prins — FA20201 01-Intro

Parallel computing at various scales

. 64-bit floating point ops
Mod_ern_processor core | oer second (FLOPS)
— pipelined, superscalar, multiword ALUs
— L1 and L2 caches — Giga 10°
core
e Socket
— multiple cores (4 — 64) socket
— L3 cache
accelerator Tera 1012
 Accelerators
— Nvidia V100 GPU (2560 arithmetic units) node
* Node
— up to 4 sockets
P cluster Peta 101>
— up to 8 accelerators
— fast local interconnect
e Cluster super-
— tens to thousands of nodes computer

— high speed interconnection network — Exa 10'8

COMP 633 - Prins — FA20201 01-Intro

Top supercomputers (2020)

Rank System

1 Supercomputer Fugaku - Supercomputer Fugaku, Ab4FX 48C
2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

2 Summit - IBM Power System AC922, IEM POWER? 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EOR
nfiniband, IBM
DOE/SC/0Oak Ridge National Laboratory

United States

4 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
|.45GHz, Sunway, NRCPC

Mational Supercomputing Center in Wux

China

10,649,600

Sunway TaihulLight
National Research Center for
Parallel Computer Engineering
and Technology in Wuxi, CN

Rmax
(TFlop/s)

415,530.0

148,600.0

73,014.6

Rpeak
(TFlop/s)

513,854.7

200,794.9

125,435.9

Power
(kW]

28,335

10,096

15,371

What are the parallel computing challenges?

« Parallel computing involves many aspect of computer science

new algorithms must be designed

new algorithm analysis techniques must be used

new programming models and languages must be learned
memory operation and performance must be understood
communication costs and network behavior must be considered
different operating systems, services, and I/O

different debugging and performance monitoring

novel and continuously changing hardware

=
COMP 633 - Prins — FA20201 01-Intro @
Iy

Summary: Why study parallel computing?

e Itis useful and it is used
* Itinvolves new algorithms and analytic techniques

* Future computing will increasingly be predicated on the use of
parallelism

» To understand what is feasible and what is not

COMP 633 - Prins — FA20201 01-Intro

How else Is parallelism used?

o Parallelism may improve reliability
— high availability
— high assurance

o Parallelism may be inherent in the problem
— (G)Uls
— distributed systems
« >80 processors in a modern luxury car

o Parallelism is a simple load scaling approach
— server farms

.. but these are not the focus of this coursel!

COMP 633 - Prins — FA20201 01-Intro

Parallel Computing vs. Distributed Computing

o Parallel Computing (COMP 633)
— Multiple processors cooperating to solve a single problem

— Key concepts
» Design and analysis of scalable parallel algorithms
* Programming models
» Systems architecture and hardware characteristics
« Performance analysis, prediction, and measurement

* Distributed Systems (COMP 734)

— Providing reliable services to multiple users via a system consisting of
multiple processors and a network
— Key concepts
* Services & protocols
» Reliability
o Security
o Scalability

=
COMP 633 - Prins — FA20201 01-Intro

Parallel Computing vs. Concurrent Algorithms

o Parallel Computing (COMP 633)
— Multiple processors cooperating to solve a single problem

— Key concepts
» Design and analysis of scalable parallel algorithms
* Programming models
« Systems architecture and hardware characteristics
« Performance analysis, prediction, and measurement

» Distributed and Concurrent Algorithms (COMP 735)
— Specification of fundamental algorithms and proofs of their
correctness and performance properties

* Mutual exclusion
* Readers and writers

— Key concepts
* Lower and upper bounds, impossibility proofs
 Formal methods
« Wait-free and lock-free methods

=
COMP 633 - Prins — FA20201 01-Intro @

Course Introduction

« Organization and content of this course
— prerequisites
— source materials
— course grading
— what will be studied

* Introductory examples

COMP 633 - Prins — FA20201 01-Intro

Organization of the course

 Course web page

— Syllabus
* Prerequisites
» Learning Objectives
* Honor Code
* Topics
— Online discussion - Piazza
— Source materials — reading assignments
— Assignments and grading

— Computer usage

 Reading assignment for next time
— Parallel Random Access Machine (PRAM) model and algorithms
e sections 1, 2, 3.1 (pp 1-8)

e Sign up for Piazza
— using link on web page

COMP 633 - Prins — FA20201 01-Intro

What will we study?

« Course is organized around different models of parallel computation

— shared memory models [main focus]
 PRAM
* Loop-level parallelism, threads, tasks (OpenMP, Cilk)
* Accelerators (Cuda)

— distributed memory models [secondary focus]

* bulk-synchronous processing (BSP, UPC), message passing (MPI)
— data-intensive models [cursory treatment]

 MapReduce/Hadoop, spark

e For each model we examine
— algorithm design techniques
— cost model and performance prediction
— how to express programs
— hardware and software support
— performance analysis

— advantages and limitations of the model including realism, applicability and
tractability

by studying some examples in detall

COMP 633 - Prins — FA20201 01-Intro

Let's try it right now!

e Vector summation ;

— given vector V[1..n] compute s= >V,
e.g.forn=8 1=1
s=V,+V,+...+V,+V,

e sequential algorithm
— n-1 additions: optimal
e e.g. sum from left to right

— sequential running time
* T(n) =0O(n)

COMP 633 - Prins — FA20201 01-Intro

Example 1. DAG model of parallel computation

« AprogramP = (V, E) is a tree where

leaf vertices in V
Interior vertices in V
edges E

prog 1

~ values
~ operations
~ evaluation dependences

prog 2

R

V, V, Vi V, Ve Vo V, V,

Vi +V, +V, + V, + Vg + Vg + V, + V,

COMP 633 - Prins — FA20201

01-Intro

Execution of a DAG “program”

e definition
— an operation is ready if all of its children are leaves

« parallel execution step
— simultaneously evaluate all ready operations and replace each with its value

e program execution
— perform parallel execution steps until no operations remain

prog 2

R

Vi V, Vi V, Vs Vg V, Vg

COMP 633 - Prins — FA20201 01-Intro

Complexity metrics for DAG model

 Work complexity of a DAG program

— total number of operations performed
interior vertices in DAG

prog 1

« Step complexity of a DAG program

— number of execution steps
= length of longest path in DAG

Vl V2
Kk t
wor steps orog 2
Prog 1 / 7
Prog 2 7 3

R

V., V, Vo V, Ve Vg V, Vg

COMP 633 - Prins — FA20201 01-Intro

Asymptotic complexity metrics for DAG model

o Asymptotic complexity
— problem size n
— W(n) asymptotic work complexity
— S(n) asymptotic step complexity
— T*(n) optimal asymptotic sequential time complexity

o Definition
— A DAG program is work efficient if W(n) = O(T*(n))

W(n) S(n)
Prog 1 O(n) O(n)

Prog 2 O(n) O(lg n)

COMP 633 - Prins — FA20201 01-Intro

Asymptotic complexity metrics for DAG model

o Asymptotic complexity
— problem size n

— W(n) asymptotic work complexity
— S(n) asymptotic step complexity
— T*(n) optimal asymptotic sequential time complexity

e Definition

— A DAG program is work efficient if W(n) = O(T*(n))

COMP 633 - Prins — FA20201

01-Intro

W(n) S(n)
Progl| O(n) O(n)
Prog 2 O(n) O(lg n)

Execution of DAG programs with fixed resources

» At most p operations evaluated simultaneously in a DAG program H
— models execution using p “processors”

 Definition
— Tp(n) IS the time to execute H using p processors

* n - problem size

e p - maximum number of nodes that may be evaluated concurrently in
each timestep

— Ty(n) = W(n)

- T,(n) = S(n) prog 2

But what is T,(8) for prog 27

R

V, V, Vi V, Vo Vg V, Vg

COMP 633 - Prins — FA20201 01-Intro

Evaluation order

 Determining evaluation order to minimize T,(n) is NP-hard!

e Simple non-optimal greedy evaluation order
— at each step

* p or fewer operations ready = evaluate all ready nodes
* more than p operations ready — evaluate any p ready nodes

* Running time using greedy strategy can be bounded

prog 2
[@ <T,(n) < @‘ + S(n)

COMP 633 - Prins — FA20201 01-Intro

“fast” parallel programs give good speedup

« Definition
— a fast parallel program has step complexity S(n) that is
asymptotically smaller than work complexity W(n)

_ . S(n) _
S(n)=oW(n)) means nI|_r)nOOW(n)_

0

* For afixed number of processors p, a fast parallel program gives better
speedup as problem size nis increased

PN(”)] <Tp(n) < {WS‘)J +5(n)

p
lim T (n) =0(W;”)j

— asymptotically optimal speedup on large problems!

COMP 633 - Prins — FA20201 01-Intro

But can’t speedup indefinitely

 You can’'t speed up a parallel algorithm indefinitely using more
pProcessors

— for a fixed problem size n, step complexity limits speedup

Tp(n) = O@W ;”)J + S(n)j

e prog 1 cannot be sped up at all using more processors!
— W(n) = ©(n)
— S(n) = 6(n)

« prog 2 requires Q(lg n) steps regardless of the number of processors
— W(n) = ©(n)
— S(n) = 6(Ig n)

= I
COMP 633 - Prins — FA20201 01-Intro @ 26

Consequences: work efficiency Is paramount

o A parallel program H that is not work efficient loses asymptotically!

— for any given p, there exists a problem size n, such that

» an efficient sequential program using one processor on problems of size
n > n, is faster than the parallel program H using p processors!

— it doesn’t help if H is fast
— worst results on large problems!

To(n) = ouw F()”)J ; S(n)]

=
COMP 633 - Prins — FA20201 01-Intro @

Example 2. Message-passing model

e p processors connected in a ring

— each processor
e runs the same program
* has a unique processorid 0<i <p
« can send a value to its left neighbor

e summation of V[0..p-1] using p processors
— assume V; is in s on processor i at start
— program terminates with s = . ;¢q ,,—1 V; On processor 0

= I
COMP 633 - Prins — FA20201 01-Intro @ 28

Summation program

for h =1 to (Ig p)
X I=S
for j := 1 to 2"1 do
send value of x to left and receive new value for x from right

S I=s + X
Example: p=4 < >
@ @
0 1 2 3
h=1, s= Vy+V; V,+V,

A
A
A
A

A
A
A
A

h=2, s= Vy+V, +V,+V,

COMP 633 - Prins — FA20201 01-Intro

Analysis of summation program

X

S

for h :

for j

1 to (Ig p)
S

1 to 2"1 do

send value of x to left and receive new value for x from right

S + X

e Let

— 1, time to perform addition
— 1. time to perform communication

Igp

T()= (@t +2"")
=(lgp)-t,+(p-1)-t,

e |s this good performance?

COMP 633 - Prins — FA20201 01-Intro

What’'s wrong?

poor network?
— network diameter is large thus values have to travel far
— SO communication time is huge compared to addition time
— a smaller diameter network might do better

bad communication strategy?
— “cut-through” routing would be superior

poor utilization of the processors?
— only a few processors are performing useful additions!

problem size too small?
— this is the real problem!

COMP 633 - Prins — FA20201 01-Intro

Summation of n values with p processors

« Each processor holds n/p values

s = sum of n/p values in this processor
for h := 1 to (Ig p)

X I='S

for j := 1 to 2" do

send value of x to left and receive new value for x from right
S I= s + X

Example: (
@

© S5
i1
&~ 0
o
=

< MO
w

COMP 633 - Prins — FA20201 01-Intro

Summation of n values using p processors

e Analysis

Tp(n) = %_1]°ta +(Ig p)'ta +(p_1)'tc

%j’ta +(Ig p)'ta + ptc

— g ~ _/
speedup overhead

~
~

« excellent performance can be achieved
— for arbitrary p, t, t.
— asymptotically optimal speedup with sufficiently large n
« overheads and inefficiencies can be amortized!

COMP 633 - Prins — FA20201 01-Intro

For next week Tuesday

 read the PRAM handout
— secns 1,2, 3.1 (pp 1-8)

COMP 633 - Prins — FA20201

01-Intro

	COMP 633 Parallel Computing�Fall 2021� �http://www.cs.unc.edu/~prins/Classes/633/�
	Parallel computing
	Where is performance needed?
	Why can’t we just build a faster single processor ?
	Transistor miniaturization and performance
	Parallelism is now the principal source of performance
	Parallel computing at various scales
	Top supercomputers (2020)
	What are the parallel computing challenges?
	Summary: Why study parallel computing?
	How else is parallelism used?
	Parallel Computing vs. Distributed Computing
	Parallel Computing vs. Concurrent Algorithms
	Course Introduction
	Organization of the course
	What will we study?
	Let’s try it right now!
	Example 1: DAG model of parallel computation
	Execution of a DAG “program”
	Complexity metrics for DAG model
	Asymptotic complexity metrics for DAG model
	Asymptotic complexity metrics for DAG model
	Execution of DAG programs with fixed resources
	Evaluation order
	“fast” parallel programs give good speedup
	But can’t speedup indefinitely
	Consequences: work efficiency is paramount
	Example 2: Message-passing model
	Summation program
	Analysis of summation program
	What’s wrong?
	Summation of n values with p processors
	Summation of n values using p processors
	For next week Tuesday

