COMP 633 Parallel Computing Fall 2021

http://www.cs.unc.edu/~prins/Classes/633/

Parallel computing

- What is it?
 - multiple processors cooperating to solve a single problem
 - hopefully faster than using a single processor!
- Why is it needed?
 - greater compute performance

Where is performance needed?

- sometimes performance is required in time-critical tasks
 - timely and accurate weather forecast
 - obstacle detection for self driving cars
- sometimes performance gives a competitive advantage
 - from Walmart to Wall Street
 - data mining of trends
 - delivery logistics
 - real-time analytics (high frequency trading)
 - engineering, manufacturing, and pharmaceuticals
 - vehicle crash simulations, material properties prediction, drug design
- sometimes performance is the only way to answer a question
 - scientific progress using mathematical modeling and numerical simulation
 - human genome assembly
 - computational science and the timely Nobel prize

Why can't we just build a faster single processor ?

- Moore's "Law"
 - processor performance per \$ doubles every two years !

Transistor miniaturization and performance

Dennard scaling

- transistor switching power ∞ transistor size
- shrinking transistor size
 - decreases switching power
 - decreases switching time (higher clock frequency)
 - increases number of transistors per unit area
- so for the same power and space budget we get
 - faster arithmetic operations
 - pipelined arithmetic
 - more and larger caches
 - \Rightarrow increased performance
- Limits to Dennard Scaling
 - as transistor size approaches quantum mechanical limits
 - increasing leakage current
 - exponential power increase!

Parallelism is now the principal source of performance

- Processor evolution after 2004 (Intel)
 - multiple cores per socket
 - lower per-core performance
 - similar power per chip
 - per-core "turbo" mode
 - vector units and larger caches
 - multiple and higher performance off-chip memory interfaces

processor performance characteristics

Moore's "law"

- performance per socket is still increasing but no longer exponentially
- power/cooling per socket is the limiting factor
- Factors limiting parallel computing
 - overall system power
 - inconveniently slow speed of signal propagation!

Parallel computing at various scales

Top supercomputers (2020)

Sunway TaihuLight

National Research Center for Parallel Computer Engineering and Technology in Wuxi, CN

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,072	415,530.0	513,854.7	28,335
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371

What are the parallel computing challenges?

- Parallel computing involves many aspect of computer science
 - new algorithms must be designed
 - new algorithm analysis techniques must be used
 - new programming models and languages must be learned
 - memory operation and performance must be understood
 - communication costs and network behavior must be considered
 - different operating systems, services, and I/O
 - different debugging and performance monitoring
 - novel and continuously changing hardware

- ...

Summary: Why study parallel computing?

- It is useful and it is used
- It involves new algorithms and analytic techniques
- Future computing will increasingly be predicated on the use of parallelism
- To understand what is feasible and what is not

How else is parallelism used?

- Parallelism may improve reliability
 - high availability
 - high assurance
- Parallelism may be inherent in the problem
 - (G)UIs
 - distributed systems
 - >80 processors in a modern luxury car
- Parallelism is a simple load scaling approach
 - server farms

... but these are not the focus of this course!

Parallel Computing vs. Distributed Computing

- Parallel Computing (COMP 633)
 - Multiple processors cooperating to solve a single problem
 - Key concepts
 - Design and analysis of scalable parallel algorithms
 - Programming models
 - Systems architecture and hardware characteristics
 - Performance analysis, prediction, and measurement
- Distributed Systems (COMP 734)
 - Providing reliable services to multiple users via a system consisting of multiple processors and a network
 - Key concepts
 - Services & protocols
 - Reliability
 - Security
 - Scalability

Parallel Computing vs. Concurrent Algorithms

- Parallel Computing (COMP 633)
 - Multiple processors cooperating to solve a single problem
 - Key concepts
 - Design and analysis of scalable parallel algorithms
 - Programming models
 - Systems architecture and hardware characteristics
 - Performance analysis, prediction, and measurement
- Distributed and Concurrent Algorithms (COMP 735)
 - Specification of fundamental algorithms and proofs of their correctness and performance properties
 - Mutual exclusion
 - Readers and writers
 - Key concepts
 - Lower and upper bounds, impossibility proofs
 - Formal methods
 - Wait-free and lock-free methods

Course Introduction

- Organization and content of this course
 - prerequisites
 - source materials
 - course grading
 - what will be studied
- Introductory examples

Organization of the course

- Course web page
 - Syllabus
 - Prerequisites
 - Learning Objectives
 - Honor Code
 - Topics
 - Online discussion Piazza
 - Source materials reading assignments
 - Assignments and grading
 - Computer usage
- Reading assignment for next time
 - Parallel Random Access Machine (PRAM) model and algorithms
 - sections 1, 2, 3.1 (pp 1-8)
- Sign up for Piazza
 - using link on web page

What will we study?

- Course is organized around different models of parallel computation
 - shared memory models [main focus]
 - PRAM
 - Loop-level parallelism, threads, tasks (OpenMP, Cilk)
 - Accelerators (Cuda)
 - distributed memory models [secondary focus]
 - bulk-synchronous processing (BSP, UPC), message passing (MPI)
 - data-intensive models [cursory treatment]
 - MapReduce/Hadoop, spark
- For each model we examine
 - algorithm design techniques
 - cost model and performance prediction
 - how to express programs
 - hardware and software support
 - performance analysis
 - advantages and limitations of the model including realism, applicability and tractability

by studying some examples in detail

Let's try it right now!

• Vector summation

- given vector V[1..n] compute
$$s = \sum_{i=1}^{n} V_i$$

e.g. for n = 8
 $s = V_1 + V_2 + ... + V_7 + V_8$

- sequential algorithm
 - n-1 additions: optimal
 - e.g. sum from left to right
 - sequential running time
 - T(n) = O(n)

Example 1: DAG model of parallel computation

Execution of a DAG "program"

- definition
 - an operation is ready if all of its children are leaves
- parallel execution step
 - simultaneously evaluate all ready operations and replace each with its value
- program execution
 - perform parallel execution steps until no operations remain

Complexity metrics for DAG model

- Work complexity of a DAG program
 - total number of operations performed
 - = # interior vertices in DAG
- Step complexity of a DAG program
 - number of execution steps
 - = length of longest path in DAG

	work	steps
Prog 1	7	7
Prog 2	7	3

20

 V_1

Asymptotic complexity metrics for DAG model

• Asymptotic complexity

- problem size n
- W(n) asymptotic work complexity
- S(n) asymptotic step complexity
- T*(n) optimal asymptotic sequential time complexity
- Definition
 - A DAG program is work efficient if $W(n) = O(T^*(n))$

Asymptotic complexity metrics for DAG model

• Asymptotic complexity

- problem size n
- W(n) asymptotic work complexity
- S(n) asymptotic step complexity
- T*(n) optimal asymptotic sequential time complexity

• Definition

- A DAG program is work efficient if $W(n) = O(T^*(n))$

Execution of DAG programs with fixed resources

- At most p operations evaluated simultaneously in a DAG program H
 - models execution using p "processors"
- Definition
 - $-T_p(n)$ is the time to execute H using p processors
 - n problem size
 - p maximum number of nodes that may be evaluated concurrently in each timestep
 - $T_1(n) = W(n)$
 - $T_{\infty}(n) = S(n)$

But what is $T_2(8)$ for prog 2?

Evaluation order

- Determining evaluation order to minimize $T_p(n)$ is NP-hard!
- Simple non-optimal greedy evaluation order
 - at each step
 - p or fewer operations ready \Rightarrow evaluate all ready nodes
- more than p operations ready \Rightarrow evaluate any p ready nodes
- Running time using greedy strategy can be bounded

"fast" parallel programs give good speedup

- Definition
 - a *fast* parallel program has step complexity S(n) that is asymptotically smaller than work complexity W(n)

$$S(n) = o(W(n))$$
 means $\lim_{n \to \infty} \frac{S(n)}{W(n)} = 0$

 For a fixed number of processors p, a fast parallel program gives better speedup as problem size n is increased

$$\left\lceil \frac{W(n)}{p} \right\rceil \le T_p(n) \le \left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)$$
$$\lim_{n \to \infty} T_p(n) = O\left(\frac{W(n)}{p}\right)$$

- asymptotically *optimal speedup* on large problems!

But can't speedup indefinitely

- You can't speed up a parallel algorithm indefinitely using more processors
 - for a fixed problem size n, step complexity limits speedup

$$T_p(n) = O\left(\left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)\right)$$

- prog 1 cannot be sped up at all using more processors!
 - $W(n) = \Theta(n)$
 - $S(n) = \Theta(n)$
- prog 2 requires $\Omega(\lg n)$ steps regardless of the number of processors
 - $W(n) = \Theta(n)$
 - $S(n) = \Theta(\lg n)$

Consequences: work efficiency is paramount

- A parallel program H that is *not* work efficient loses asymptotically!
 - for any given p, there exists a problem size n_0 such that
 - an efficient sequential program using one processor on problems of size n > n₀ is faster than the parallel program H using p processors!
 - it doesn't help if H is fast
 - worst results on large problems!

$$T_p(n) = O\left(\left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)\right)$$

Example 2: Message-passing model

- p processors connected in a ring
 - each processor
 - runs the same program
 - has a unique processor id $0 \le i < p$
 - can send a value to its left neighbor
- summation of V[0..p-1] using p processors
 - assume V_i is in s on processor i at start
 - program terminates with $s = \sum_{j \in 0..p-1} V_j$ on processor 0

Summation program

for h := 1 to (lg p)
x := s
for j := 1 to 2^{h-1} do
 send value of x to left and receive new value for x from right
s := s + x

Analysis of summation program

```
for h := 1 to (lg p)
x := s
for j := 1 to 2<sup>h-1</sup> do
    send value of x to left and receive new value for x from right
s := s + x
```

• Let

- t_a time to perform addition
- t_c time to perform communication

$$T_{p}(n) = \sum_{h=1}^{\lg p} (t_{a} + 2^{h-1}t_{c})$$
$$= (\lg p) \cdot t_{a} + (p-1) \cdot t_{c}$$

• Is this good performance?

What's wrong?

- poor network?
 - network *diameter* is large thus values have to travel far
 - so communication time is huge compared to addition time
 - a smaller diameter network might do better
- bad communication strategy?
 - "cut-through" routing would be superior
- poor utilization of the processors?
 - only a few processors are performing useful additions!
- problem size too small?
 - this is the real problem!

Summation of n values with p processors

• Each processor holds n/p values

Summation of n values using p processors

• Analysis

- excellent performance can be achieved
 - for arbitrary p, t_a , t_c
 - asymptotically optimal speedup with sufficiently large n
 - overheads and inefficiencies can be amortized!

For next week Tuesday

- read the PRAM handout
 - secns 1,2, 3.1 (pp 1-8)