COMP 633 - Parallel Computing

Lecture 2
August 24, 2021

PRAM (1): The PRAM model and
Its complexity measures

3333333 - Prins PRAM (1)

First class summary

* In this course we study how to speed up large computational problems
using parallel computing

— in theory and in practice

 We study various parallel programming models

— Initially we consider a theoretical model, the Parallel Random Access
Machine (PRAM)

 study algorithms and their asymptotic complexity

— Subsequently we focus on practical models and their implementation
on current hardware
« shared memory multiprocessors, accelerators, and distributed memory
clusters

— examine execution model, hardware operation, programming constructs,
performance analysis

— illustrate principles using various case studies

COMP 633 - Prins PRAM (1)

Topics today

« PRAM model
— execution model
— programming model

 Work-Time model
— programming model
— complexity metrics
— Brent’'s theorem: translation to PRAM programs

o Parallel prefix algorithm

— derivation
— applications

COMP 633 - Prins PRAM (1)

PRAM model of parallel computation

e PRAM = Parallel Random Access Machine
— P processors

— shared memory

y 4
— each processor has a unique
identity 1 <i<p shared memory
— synchronous PRAM model
A
* Single Instruction, Multiple Data (SIMD) '
« each processor may be Y @x active? § v
active (V) or inactive (%) oo
» each instruction is executed I procs 1

by active processors only

» each instruction completes
in unit time instructions

COMP 633 - Prins PRAM (1)

PRAM program

« PRAM program
— sequential program
— expressions involving processor id i have a unique
value in each processor
» | can be used as an array index
X[i] = 10 * i

 conditionals specify active processors X[1..4]

1T odd(i) then
X[i] = X[i] + X[i+1]
endif

iIT 1 < 2 then
X[i] =1
else
X[i] = -1

endif

PRAM (1)

COMP 633 - Prins

Concurrent memory access - Read

 Concurrent reads (CR)

— all readers of a given location see the same value
X[1] :=vy value of y read concurrently by all p processors

X[i] := B[li/2]] the first p/2 elements of B are read concurrently
by two processors

* Eliminating bounded-degree concurrent reads
— replace X[i] := B[li/21] with

1T odd(1) then
X[i] := B[[i/2]] X

1 1 2
endif Ex.
1T even(i) then p =6
B 1

X[i] := B[[i72]]
endif

2 | 3
3
concurrent read is eliminated but number of steps is doubled

] ———
COMP 633 - Prins PRAM (1) ﬂz 6
]

2

Concurrent memory access - Write

e Concurrent writes (CW)

— final value depends on the arbitration policy among writes to the
same destination:
 Arbitrary CW
— nondeterministic choice among values written

e« Common CW

— processors that write a value to the same destination must write the same
value, else error

* Priority CW
— value written by processor with lowest processor id
e Combining Write
— all values combined using a specified associative operation (e.g. “+”

. Example (p = 6) X |10] 20| 30| 40| 50| 60
y = X[i] l |
B[[i72] 1 := X[i] y B

COMP 633 - Prins PRAM (1)

Concurrent writes:

« Let B[1:p] be an array of boolean values and define c=B; v By v...v By

— use p processors and concurrent writes to compute c in a constant number
of steps

a) with combining CW

b) with a CW policy other than combining CW (which?)

COMP 633 - Prins PRAM (1)

Concurrent memory access

e PRAM variants
— EREW, CREW, ERCW, CRCW

— differ in performance, not expressive power
« EREW < CREW < CRCW

— loosely reflect difficulty of model implementation

 The following are considered EREW

— references to
e processor id i
e number of processors p
e problem size n

— references to local variables
local h; h = 2*1 + 1; X[h] := X[i]

— expression evaluation is synchronous, e.g.

X[i] := X[i] + X[i+1]
is EREW

COMP 633 - Prins PRAM (1)

A PRAM program

o Simple problem: vector
addition

given V,W vectors of length n
compute Z=V +W

e PRAM program

constructed to operate with
arbitrary

e problem size n
e number of processors p
work to be performed must

explicitly be “scheduled”
across processors

time complexity with p procs

« T (n,p) =
PRAM model?

COMP 633 - Prins

SRR S N N N R
————1v
1w
T ——— |

| &—> 1 1 1 1

P | | | |

p - In/pl
Input: V[1:n], W[1:n] in shared memory
Output: Z[1:n] in shared memory
proc id

local 1Integer h, Kk
for h := 1 to [n/p| do
k := (h=-1)ep + i
iIT K < n then
Z[k] := V[K] + W[K]
endif
enddo

PRAM (1)

Work-Time paradigm

 W-T parallel programming model

— high-level PRAM programming model
» specifies available parallelism
* no explicit scheduling of parallelism over processors

— simplifies algorithm presentation and analysis
— W-T programs can be mechanically translated to PRAM programs

e W-T program

— sequential program WT program for vector addition

— Torall construct Input: V[1:n], W[L:n]
» specification of Output; Z[1:n]
available parallelism
* number of processors forall i in 1:n do
IS not a parameter of Z[i] := V[i] + W[Li]
the model ! enddo

COMP 633 - Prins PRAM (1)

Programming notation for the W-T framework

e standard sequential programming notation

— Statements
e assignment
« statement composition

 alternative construct (if ... then ... else ...)

» repetitive construct (for, while)
— expressions

 arithmetic and logical functions

 variable reference

» (recursive) function and procedure invocation

o forall statement

— specifies statement T may be
executed simultaneously
for each value of i in D

forall 1 In D do
statement T depending on |
enddo

— no restrictionon T
e can be a sequence of statements
e can invoke (recursive) functions
« can be another (nested) forall statement

COMP 633 - Prins PRAM (1)

W-T complexity metrics

 Work complexity W(n)
— total number of operations performed (as a function of input size n)

o Step complexity S(n)
— number of parallel steps required (as a function of input size n)

— assuming unbounded parallelism

* Inductively defined over constructs of W-T programming notation

COMP 633 - Prins PRAM (1)

W-T complexity measures: simple example

forall 1 In 2:n-1 do

R[i] := (R[i-1] + R[i] + R[i+1])/3

enddo

for h

enddo

= 1 to k do

forall 1 In 2:n-1 do
R[1] = (R[1-1] + R[1] + R[1+1])/3
enddo

COMP 633 - Prins

PRAM (1)

Work and Step Complexity of the forall construct

 How to define work and time complexity of the forall construct?

P: forall 1 In D do
body T depending on i
enddo

— assume we can determine W(T;) and S(T,) for eachiin D
° W(P) =

o S(P) =

COMP 633 - Prins PRAM (1)

W-T complexity measures: vector summation

e letn=2k

forall 1 In 1:n/2 do
S[1] := S[21 - 1] + S[21]
enddo

for h = 1 to k do
forall i1 in 1:n/2" do
S[i] = S[2i - 1] + S[2i]
enddo
enddo

S n=4,k=2

COMP 633 - Prins PRAM (1)

W-T complexity measures: vector summation

e Vector summation Input: V[1:n] vector of integers, n = 2k
(sum - reduction) Output: s = sum(V[1:n])
— given V[1..n], n = 2k

— ComputeS:SUm(V[l:n]) P1l: forall i in 1:n do

B[i] := V[i]
— optimal sequential enddo
time T¢(n) = O(n)
P2:for h := 1 to k do
forall i in 1:n/2" do
B[i] := B[2i-1]+B[2i]

« Complexity enddo
W(n) = enddo
P3:s := B[1]
S(n) =

PRAM model needed?

COMP 633 - Prins PRAM (1)

Brent's theorem and T.(n,p)

 Brent’s theorem schedules a W-T program for a p-processor PRAM
— idea
» simulate each parallel step in W-T program using p processors

 the work W,(n) to be performed in step i can be completed using p
rocessors in time
P {Wi (n)]

p

— bound concurrent runtime T(n,p) of resultant PRAM program
e by summing over all S(n) steps

o = 10 < S0 < [£40 b - (1

i1 i1 P i1 P

IA

S (N S(N)[w.
0] - [5m0] - £ - e

COMP 633 - Prins PRAM (1)

Scheduling W-T vector summation algorithm

W-T vector summation algorithm

Input: V[1:n] vector of integers, n = 2K
Output: s = sum(V[1:n])

P1: forall 1 In 1:n do

BLi] := V[i]
enddo

P2:for h := 1 to k do

forall 1 in 1:n/2h do
B[i] := B[2i-1]+B[2i]

enddo
enddo
P3:s = B[1]

COMP 633 - Prins

PRAM vector summation algorithm

Input: V[1:n] vector of integers, n = 2K
Output: s = sum(V[1:n])
p > 0 processor PRAM; processor index i

local integer j, r;
P1:for j := 1 to [n/p] do
r = (g-Dep + 1
iIT r < n then B[r] := V[r] endif
enddo

P2:for h := 1 to k do

for j := 1 to [(n/2M)/p] do
r .= (g-Dep + 1
if r < n/2h then

B[r] := B[2r-1]+B[2r]
endif
enddo
enddo

P3:1f 1 < 1 then s := B[1] endif

PRAM (1) e
'y

Performance of translated W-T program

Count steps needed to
perform the additions

— Brent’s theorem predicts
T.(n,p)= O@n—;lJ +1g nj

— counts for various p

p Te(n, p)
p=1 (n-1)/p
p>n Ign

p=3,n=2% k even ~|(n—-1)/p]+3lgn

Upper bound is tight (for this
program)

translation retains EREW
model

COMP 633 - Prins

PRAM vector summation algorithm

Input: V[1:n] vector of integers, n = 2k
Output: s = sum(V[1:n])
p > 0 processor PRAM; processor index i

local integer j, r;
P1:for j := 1 to [n/p] do
r := (J-Dep + 1
iIT r < n then B[r] := V[r] endif
enddo

P2:.for h := 1 to k do

for j := 1 to [(n/2")/p] do
r := (J-1ep + 1
if r < n/2h then

B[r] := B[2r-1] + B[2r]

endif

enddo

enddo

P3:1f 1 < 1 then s := B[1] endif

PRAM (1)

Parallel prefix-sum

e Prefix sum

— Input

« Sequence X of n = 2k elements, binary associative operator +
— Output

« Sequence S of n = 2k elements, with S; = x; + ... + X,
— Example:

e X=[1, 4,3, 5 6, 7, 0, 1]
e S=[1, 5, 8,13, 19, 26, 26, 27]
— Tg(n) = 6(n)

e Uses of prefix sum

— efficient parallel implementation of sequential “scan” through
consecutive actions

e ex: Given series of bank transactions T[1:n], with T[i] positive or
negative, and T[1] the opening deposit > 0
— Was the account ever overdrawn?

— explicit or implicit component of many parallel algorithms

COMP 633 - Prins PRAM (1)

Prefix sum algorithm

e Recursive solution
— X1 stands for X[1] and X1j stands for X[1]+X[1+1]+.. +X[]}]

S: X11 X12 X13 X14 X15 X16 X1

Z: X12 X14 X16
Recursive prefix sum

Y: X12 X34 X56

X: X1 X2 X3 X4 X5 X6 X7

« W-T complexity
- W) = W(g) +oMm), W) =0(1) =?

- S =S (g) +0(1),5(1) = 0(1) =7?

COMP 633 - Prins

PRAM (1)

7 X18
T

X18

X78

A

X8

Parallel prefix sum algorithm — WT model

Input: X[1..n] vector of integers
Output: S[1..n]

par_prefix_sum(X[1..n]) =
S %11 X112 X13 Xx14 var YI1..n/2], Z[1..n/2], S[1..n];

S[1] := X[11;
¢ M‘ / iIT n>1 then

/. X12 X14 forall 1 <1 <n/2 do
‘ Y[i] := X[2i-1] + X[2i]
= enddo
Y. X12 X34 Z[1..n/2] :

par_prefix_sum(Y[1l..n/2]);
<

/'b\ /4\ foraIIZS? n do

| if even(i) then
X: X1 X2 X3 X4 S[i] := z[i/2]

else
S[i] = Z[(7i-1)/2] + X[1]
endif
enddo
endif
return S[1..n]

COMP 633 - Prins PRAM (1)

Balanced trees in arrays

 Balanced Tree Ascend / Descend
— Key idea
e view input data as balanced binary tree
e sweep tree up and/or down
— “Tree” not a data structure but a control structure (e.g., recursion)

 Example
— vector summation 1133|105)|12]7 |36

/\
8

COMP 633 - Prins PRAM (1)

In-place prefix sum

I
()

L un S
8 £ 9 -
s 23

T > Q

2§ 7 ~~ (@) M
n_n.vee\ll cC a A
a & T — o

s - g O =) ¥
+ 4+ =

ﬁ*\/ o ® ([] Y

B —E—E—E—E BB B

)
s
<
@
o

COMP 633 - Prins

In-place prefix-sum algorithm — WT model

I Y I 3 I €Y

NN

]

T

(=]

4—

E—L0

[
\4 V
]
0 [@

COMP 633 - Prins

Input: X[1..n] vector of values, n = 2k
Output: S[1..n] vector of prefix sums

parallel prefix sum(X[1..n]) =

forall 1 1In 1:n do
S[i] := X[i]
enddo

for h =1 to k do
forall 1 in 1:n/2" do
S[2"i] := S[2"i - 2h-1] + S[2Mi]
enddo
enddo

for h = k downto 1
forall i in 2:n/2"-1 do
1T odd(i) then
S[2"1i] := S[2h-1i — 21 + S[2h-1i]
endif
enddo
enddo

PRAM (1)

Scan-based primitives

e Scan operations (parallel prefix operations) can be used to implement
many useful primitives

— Suppose we are given SCAN to compute prefix sum of integer
sequences
seg<int> SCAN(seg<int>)

— step complexity is ©(lg n)
— work complexity is ©(n)
— PRAM model is EREW

 The next three examples have the same complexity as SCAN

COMP 633 - Prins PRAM (1)

COPY (or DISTRIBUTE)

seg<int> COPY(int v, int n)){

seg<int> V[1:n];

VI1] = v;

forall 1 I1n 2 - n do
VI1] = 0;

enddo

return SCAN(V);

T< S <
D
(0]
n o 1o
ol o1 N Ol
o1 O
o1 O
o1 O
o1 O
o1 O
o1 O

COMP 633 - Prins PRAM (1)

ENUMERATE

COMP 633 - Prins

seqg<int> ENUMERATE(seg<bool> Flag){

seg<int> V[1:#Flaqg];

forall 1 I1n 1 - #Flag do
V1] := Flag[1] ? 1 : O;

enddo

return SCAN(V);

PRAM (1)

PACK

COMP 633 - Prins

seq<T> PACK(seqg<T> A, seg<bool> Flag){

seq<T> R[1:#A];
P := ENUMERATE(Flag);
forall i in 1 : #Flag do

1T Flag[1] then R[PL[1]] := A[1] endif;

enddo
return R[1:P[#Flag]];
+
A =l @ # $ % N &
Flag=T T F T F F T
P =1 2 2 3 3 3 4
R =!I @ $ &

PRAM (1)

Radix Sort

Input:
Output:
Auxiliary:

for h :=
forall 1 In 1:n do

A[1:n] with b-bit integer elements
A[1:n] sorted
FL[1:n], FH[1:n], BL[1:n], BH[1:n]

O to b-1 do

FLE1] = (A[1] bit h) ==
FH[1] := (A[1] bit h) =0
enddo
BL := PACK(A,FL)
BH = PACK(A,FH)
m = #BL
forall 1 In 1:n do
A[1] = 1f (1 £ m) then BL[1] else BH[1—m]endif
enddo
enddo
S(n) =

W(n) =

COMP 633 - Prins

PRAM (1)

Complexity measures for W-T algorithms

« Asymptotic time complexity measures
— (optimal) sequential time complexity T, (n)
— parallel time complexity T.(n,p)

e Speedup
— definition ()
SP(n, p)==—2
(n.P) T.(n, p)
— limitation

sp(n.p)— T T() _ pTi(n)
YT T wWmip W)

IA
I
I

= O(p)

« Average available parallelism
— definition
W(n)

ARP() =-c S

COMP 633 - Prins PRAM (1)

Objectives in the design of W-T algorithms

 Goal 1: construct work efficient algorithms
— a W-T algorithm is work efficient if W(n) = ©(T¢(n))

— work-inefficient parallel algorithms have limited appeal on a PRAM
with a fixed number of processors p

imsP(np) < lim 2 _ 5 iy Ts()

N—»00 n—oo W (N) n—ooW (N)

COMP 633 - Prins PRAM (1)

Objectives in the design of W-T algorithms

 Goal 2: minimize step complexity
— get optimal speedup using AAP(n) = T,(n) / S(n) processors

) Loy) T,(n)
SP(n. AAP(M) - = ®(Tc(n,AAP(n))j RO +5(n)

AAP(n)

j - Q(AAP(n))

— Q(TS (n)
S(n)+S(n)

— when S(n) is decreased, AAP(n) is increased

« with fixed problem size
— can use more processors to get greater speedup

« with fixed number of processors
— reach optimal speedup at smaller problem size

COMP 633 - Prins PRAM (1)

W-T model advantages

Widely developed body of techniques

Ignores scheduling, communication and synchronization
— “easiest” parallel programming

Source-level complexity metrics
— Work and step complexity
— related to running time via Brent’'s theorem

Good place to start

— many “real-world” algorithms can be derived starting from W-T
algorithms

COMP 633 - Prins PRAM (1) Wl 35
i Iy

	COMP 633 - Parallel Computing��Lecture 2 �August 24, 2021�� PRAM (1): The PRAM model and �its complexity measures
	First class summary
	Topics today
	PRAM model of parallel computation
	PRAM program
	Concurrent memory access - Read
	Concurrent memory access - Write
	Concurrent writes:
	Concurrent memory access
	A PRAM program
	Work-Time paradigm
	Programming notation for the W-T framework
	W-T complexity metrics
	W-T complexity measures: simple example
	Work and Step Complexity of the forall construct
	W-T complexity measures: vector summation
	W-T complexity measures: vector summation
	Brent’s theorem and Tc(n,p)
	Scheduling W-T vector summation algorithm
	Performance of translated W-T program
	Parallel prefix-sum
	Prefix sum algorithm
	Parallel prefix sum algorithm – WT model
	Balanced trees in arrays
	In-place prefix sum
	In-place prefix-sum algorithm – WT model
	Scan-based primitives
	COPY (or DISTRIBUTE)
	ENUMERATE
	PACK
	Radix Sort
	Complexity measures for W-T algorithms
	Objectives in the design of W-T algorithms
	Objectives in the design of W-T algorithms
	W-T model advantages

