COMP 633 - Parallel Computing

Lecture 2
August 22, 2019

PRAM (1): The PRAM model and its complexity measures
First class summary

• This course is about parallel computing to achieve high(-er) performance on individual problems
 – start with high level PRAM model
 • study algorithms and their asymptotic complexity
 – subsequently focus on more practical models from implementation point of view
 • shared memory, accelerators, distributed memory
 – study programming models, hardware organization, performance prediction and analysis
 – examine various algorithms and case studies
Topics today

• PRAM model
 – execution model
 – programming model

• Work-Time model
 – programming model
 – complexity metrics
 – Brent’s theorem: translation to PRAM programs

• Parallel prefix algorithm
 – derivation
 – applications
PRAM model of parallel computation

- **PRAM** = Parallel Random Access Machine
 - p processors
 - shared memory
 - each processor has a unique identity $1 \leq i \leq p$
 - **synchronous** PRAM model
 - Single Instruction, Multiple Data
 - each processor may be active (✓) or inactive (✗)
 - each instruction is executed only by active processors
 - each instruction completes in unit time
• PRAM program
 – sequential program
 – expressions involving processor id i have a unique value in each processor
 • i can be used as an array index
 \[X[i] := 10 * i \]
 • conditionals specify active processors
 \[
 \begin{align*}
 \text{if } \text{odd}(i) \text{ then} & \\
 & X[i] := X[i] + X[i+1] \\
 \text{endif}
 \\
 \text{if } i \leq 2 \text{ then} & \\
 & X[i] := 1 \\
 \text{else} & \\
 & X[i] := -1 \\
 \text{endif}
 \end{align*}
 \]
Concurrent memory access - Read

- **Concurrent reads (CR)**
 - all readers of a given location see the same value
 \[
 X[i] := y
 \]
 value of \(y \) read concurrently by all \(p \) processors
 \[
 X[i] := B[\lfloor i/2 \rfloor]
 \]
 the first \(p/2 \) elements of \(B \) are read concurrently by two processors

- **Eliminating bounded-degree concurrent reads**
 - replace \(X[i] := B[\lfloor i/2 \rfloor] \) with

    ```
    if odd(i) then
        X[i] := B[\lfloor i/2 \rfloor]
    endif
    if even(i) then
        X[i] := B[\lfloor i/2 \rfloor]
    endif
    ```

 concurrent read is eliminated but number of steps is doubled

 Ex. \(p = 6 \)

 \[
 \begin{array}{ccccccc}
 1 & 1 & 2 & 2 & 3 & 3 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 X \quad 1 \quad 2 \quad 3 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 B \quad 1 \quad 2 \quad 3 \\
 \end{array}
 \]
Concurrent memory access - Write

- Concurrent writes (CW)
 - final value depends on arbitration policy among writes to the same destination:
 - Arbitrary CW
 - nondeterministic choice among values written
 - Common CW
 - All processors that write a value must write the same value, else error
 - Priority CW
 - value written by processor with lowest processor id
 - Combining Write
 - all values combined using a specified associative operation (e.g. “+”)

- Example (p = 6)

 \[
 y := X[i] \\
 B\left[\lceil i/2 \rceil \right] := X[i]
 \]
Concurrent writes:

- Let $B[1:p]$ be an array of boolean values and define $c = B_1 \lor B_2 \lor \ldots \lor B_p$

 - use p processors and concurrent writes to compute c in a constant number of steps
 a) with combining CW

 b) with a CW policy other than combining CW (which?)
Concurrent memory access

- **PRAM variants**
 - EREW, CREW, ERCW, CRCW
 - differ in performance, not expressive power
 - EREW < CREW < CRCW
 - loosely reflect difficulty of model implementation

- **The following are considered EREW**
 - references to
 - processor id i
 - number of processors p
 - problem size n

 - references to local variables
      ```plaintext
      local h;  h := 2*i + 1;  X[h] := X[i]
      ```

 - expression evaluation is synchronous, e.g.
      ```plaintext
      X[i] := X[i] + X[i+1]
      is EREW
      ```
A PRAM program

- **Simple problem: vector addition**
 - given V, W vectors of length n
 - compute $Z = V + W$

- **PRAM program**
 - constructed to operate with arbitrary
 - problem size n
 - number of processors p
 - work to be performed must explicitly be “scheduled” across processors
 - time complexity with p procs
 - $T_c(n,p) =$
 - PRAM model?

Input: $V[1:n], W[1:n]$ in shared memory
Output: $Z[1:n]$ in shared memory

```
local integer h, k
for h := 1 to \( \lfloor n/p \rfloor \) do
  k := (h-1) \cdot p + i
  if k \leq n then
    Z[k] := V[k] + W[k]
  endif
enddo
```
Work-Time paradigm

- W-T parallel programming model
 - high-level PRAM programming model
 - specifies available parallelism
 - no explicit scheduling of parallelism over processors
 - simplifies algorithm presentation and analysis
 - W-T programs can be mechanically translated to PRAM programs

- W-T program
 - sequential program
 - forall construct
 - specification of available parallelism
 - number of processors is not a parameter of the model!

WT program for vector addition

Input: V[1:n], W[1:n]
Output: Z[1:n]

forall i in 1:n do
 Z[i] := V[i] + W[i]
enddo
Programming notation for the W-T framework

- **standard sequential programming notation**
 - statements
 - assignment
 - statement composition
 - alternative construct (if ... then ... else ...)
 - repetitive construct (for, while)
 - expressions
 - arithmetic and logical functions
 - variable reference
 - (recursive) function and procedure invocation

- **forall** statement
 - specifies T may be executed simultaneously for each value of i in D
 - no restriction on T
 - can be a sequence of statements
 - can invoke (recursive) functions
 - can be another (nested) forall statement

```
forall i in D do
    statement T depending on i
enddo
```
W-T complexity metrics

• Work complexity $W(n)$
 – total number of operations performed (as a function of input size n)

• Step complexity $S(n)$
 – number of parallel steps required (as a function of input size n)
 – assuming unbounded parallelism

• Inductively defined over constructs of W-T programming notation
W-T complexity measures: simple example

forall i in 2:n-1 do
 R[i] := (R[i-1] + R[i] + R[i+1])/3
enddo

for h := 1 to k do
 forall i in 2:n-1 do
 R[i] := (R[i-1] + R[i] + R[i+1])/3
 enddo
enddo
Work and Step Complexity of the forall construct

• How to define work and time complexity of the forall construct?

\[P: \text{forall } i \text{ in } D \text{ do} \]
\[\quad \text{body } T \text{ depending on } i \]
\[\text{enddo} \]

– assume we can determine \(W(T_i) \) and \(S(T_i) \) for each \(i \) in \(D \)

• \(W(P) = \)

• \(S(P) = \)
W-T complexity measures: vector summation

- let \(n = 2^k \)

\[
\begin{align*}
\text{forall } & i \text{ in } 1:n/2 \text{ do} \\
\text{enddo}
\end{align*}
\]

\[
\begin{align*}
\text{for } & h := 1 \text{ to } k \text{ do} \\
&\text{forall } i \text{ in } 1:n/2^h \text{ do} \\
&\text{enddo} \\
\text{enddo}
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
S & 1 & n \\
\hline
n = 4, k = 2
\end{array}
\]
W-T complexity measures: vector summation

- **Vector summation** (sum - reduction)
 - given $V[1..n]$, $n = 2^k$
 - compute $s = \text{sum}(V[1:n])$
 - optimal sequential time $T_s(n) = \Theta(n)$

- **Complexity**

 $\text{Input: } V[1:n] \text{ vector of integers, } n = 2^k$

 $\text{Output: } s = \text{sum}(V[1:n])$

P1:

forall i in 1:n do
 $B[i] := V[i]$
enddo

P2:

for $h := 1$ to k do
 forall i in 1:n/2^h do
 enddo
enddo

P3:

$s := B[1]$

PRAM model needed?
Brent’s theorem and $T_c(n, p)$

- Brent’s theorem schedules a W-T program for a p-processor PRAM
 - idea
 - simulate each parallel step in W-T program using p processors
 - the work $W_i(n)$ to be performed in step i can be completed using p processors in time
 $$\left\lfloor \frac{W_i(n)}{p} \right\rfloor$$
 - bound concurrent runtime $T_c(n, p)$ of resultant PRAM program
 - by summing over all $S(n)$ steps
 $$T_c(n, p) = \sum_{i=1}^{S(n)} \left\lfloor \frac{W_i(n)}{p} \right\rfloor \leq \sum_{i=1}^{S(n)} \left(\left\lfloor \frac{W_i(n)}{p} \right\rfloor + 1 \right) \leq \sum_{i=1}^{S(n)} \frac{W_i(n)}{p} + S(n) = \left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)$$

$$\left\lfloor \frac{W(n)}{p} \right\rfloor = \left\lfloor \sum_{i=1}^{S(n)} \frac{W_i(n)}{p} \right\rfloor \leq \sum_{i=1}^{S(n)} \frac{W_i(n)}{p} = T_c(n, p)$$
Scheduling W-T vector summation algorithm

W-T vector summation algorithm

Input: $V[1:n]$ vector of integers, $n = 2^k$

Output: $s = \text{sum}(V[1:n])$

P1:
```plaintext
forall i in 1:n do
    B[i] := V[i]
enddo
```

P2:
```plaintext
forall h := 1 to k do
    forall i in 1:n/2^h do
    enddo
enddo
```

P3:
```plaintext
s := B[1]
```

PRAM vector summation algorithm

Input: $V[1:n]$ vector of integers, $n = 2^k$

Output: $s = \text{sum}(V[1:n])$

$p > 0$ processor $PRAM$; processor index i

local integer j, r;

P1:
```plaintext
forall j := 1 to \lceil n/p \rceil do
    r := (j-1) \cdot p + i
    if $r \leq n$ then $B[r] := V[r]$ endif
enddo
```

P2:
```plaintext
forall h := 1 to k do
    forall i in 1:n/2^h do
    enddo
enddo
```

P3:
```plaintext
if $i \leq 1$ then $s := B[1]$ endif
```
Performance of translated W-T program

- Count steps needed to perform the additions
 - Brent’s theorem predicts
 \[T_c(n, p) = O\left(\left\lfloor \frac{n-1}{p} \right\rfloor + \lg n \right) \]
 - counts for various \(p \)
 - \(p = 1 \)
 \[T_c(n, p) = \frac{n-1}{p} \]
 - \(p > n \)
 \[\lg n \]
 - \(p = 3, n = 2^k, k \) even
 \[\approx \left\lfloor \frac{n-1}{p} \right\rfloor + \frac{1}{2} \lg n \]

- Upper bound is tight (for this program)
- translation retains EREW model

\[
\begin{align*}
\text{PRAM vector summation algorithm} \\
\text{Input: } V[1:n] \text{ vector of integers, } n = 2^k \\
\text{Output: } s = \text{sum}(V[1:n]) \\
p > 0 \text{ processor PRAM; processor index } i \\
\end{align*}
\]

```
local integer j, r;
P1: for j := 1 to \left\lfloor \frac{n}{p} \right\rfloor \text{ do} \\
    r := (j-1)\cdot p + i \\
    if r \leq n \text{ then } B[r] := V[r] \text{ endif} \\
    enddo

P2: for h := 1 to k \text{ do} \\
    for j := 1 to \left\lfloor \frac{n}{2^h} / p \right\rfloor \text{ do} \\
        r := (j-1)\cdot p + i \\
        if r \leq n/2^h \text{ then} \\
        endif \\
    enddo \\
enddo

P3: if i \leq 1 \text{ then } s := B[1] \text{ endif}
```
Parallel prefix-sum

• Prefix sum
 – Input
 • Sequence \(X \) of \(n = 2^k \) elements, binary associative operator +
 – Output
 • Sequence \(S \) of \(n = 2^k \) elements, with \(S_i = x_1 + ... + x_i \)
 – Example:
 • \(X = [1, 4, 3, 5, 6, 7, 0, 1] \)
 • \(S = [1, 5, 8, 13, 19, 26, 26, 27] \)
 – \(T_S(n) = \Theta(n) \)

• Uses of prefix sum
 – efficient parallel implementation of sequential “scan” through consecutive actions
 • ex: Given series of bank transactions \(T[1:n] \), with \(T[i] \) positive or negative, and \(T[1] \) the opening deposit > 0
 – Was the account ever overdrawn?
 – explicit or implicit component of many parallel algorithms
Prefix sum algorithm

• Recursive solution
 - X_i stands for $X[i]$ and X_{ij} stands for $X[i] + X[i+1] + ... + X[j]$

```
S: X11   X12   X13   X14   X15   X16   X17   X18
Z:       X12         X14         X16         X18
Y:       X12         X34         X56         X78
X:       X1         X2         X3         X4         X5         X6         X7         X8
```

• W-T complexity
 - $W(n) = W\left(\frac{n}{2}\right) + O(n), \ W(1) = O(1) \Rightarrow ?$
 - $S(n) = S\left(\frac{n}{2}\right) + O(1), \ S(1) = O(1) \Rightarrow ?$
Parallel prefix sum algorithm – WT model

Input: X[1..n] vector of integers

Output: S[1..n]

```
par_prefix_sum( X[1..n] ) =
var Y[1..n/2], Z[1..n/2], S[1..n];
S[1] := X[1];
if n > 1 then
    forall 1 ≤ i ≤ n/2 do
        Y[i] := X[2i-1] + X[2i]
    enddo
    Z[1..n/2] := par_prefix_sum(Y[1..n/2]);
    forall 2 ≤ i ≤ n do
        if even(i) then
            S[i] := Z[i/2]
        else
            S[i] := Z[(i-1)/2] + X[i]
        endif
    enddo
endif
return S[1..n]
```
Balanced trees in arrays

- Balanced Tree Ascend / Descend
 - Key idea
 - view input data as balanced binary tree
 - sweep tree up and/or down
 - “Tree” not a data structure but a control structure (e.g., recursion)

- Example
 - vector summation

1 2 3 4 5 6 7 8
+ + + + + + +

1 3 3 10 5 11 7 36
1 3 3 10 5 11 7 26
1 3 3 7 5 11 7 15
1 2 3 4 5 6 7 8
In-place prefix sum

- S(n)
- W(n)
- Space
- PRAM model
In-place prefix-sum algorithm – WT model

Input: $X[1..n]$ vector of values, $n = 2^k$
Output: $S[1..n]$ vector of prefix sums

```
parallel_prefix_sum( X[1..n] ) =
    forall i in 1:n do
        S[i] := X[i]
    enddo

    for h = 1 to k do
        forall i in 1:n/2^h do
        enddo
    enddo

    for h = k downto 1 do
        forall i in 2:n/2^{h-1} do
            if odd(i) then
                S[2^{h-1}i] := S[2^{h-1}i - 2^{h-1}] + S[2^{h-1}i]
            endif
        enddo
    enddo
```
Scan-based primitives

- Scan operations (parallel prefix operations) can be used to implement many useful primitives
 - Suppose we are given SCAN to compute prefix sum of integer sequences
    ```
    seq<int> SCAN(seq<int>)
    ```
 - step complexity is $\Theta(\lg n)$
 - work complexity is $\Theta(n)$
 - PRAM model is EREW

- The next three examples have the same complexity as SCAN
COPY (or DISTRIBUTE)

```c
seq<int> COPY(int v, int n )
{
    seq<int> V[1:n];
    V[1] = v;
    forall i in 2 : n do
        V[i] := 0;
    enddo
    return SCAN(V);
}
```

\[
v = 5 \\
n = 7 \\
V = 5 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\
Res = 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5
\]
SEQ<int> ENUMERATE(SEQ<bool> Flag) {

SEQ<int> V[1:#Flag];
FORALL i IN 1 : #Flag DO
 V[i] := Flag[i] ? 1 : 0;
ENDDO
RETURN SCAN(V);
}

Flag = T T F T F F F T
V = 1 1 0 1 0 0 0 1
Res = 1 2 2 3 3 3 3 4
seq<T> PACK(seq<T> A, seq<bool> Flag) {

 seq<T> R[1:#A];
 P := ENUMERATE(Flag);
 forall i in 1 : #Flag do
 if Flag[i] then R[P[i]] := A[i] endif;
 enddo
 return R[1:P[#Flag]];
}

A = ! @ # $ % ^ &
Flag = T T F T F F T
P = 1 2 2 3 3 3 3 4
R = ! @ $ &
Radix Sort

Auxiliary: FL[1:n], FH[1:n], BL[1:n], BH[1:n]

for h := 0 to b-1 do
 forall i in 1:n do
 FL[i] := (A[i] bit h) == 0
 FH[i] := (A[i] bit h) != 0
 enddo
 BL := PACK(A,FL)
 BH := PACK(A,FH)
 m := #BL
 forall i in 1:n do
 A[i] := if (i ≤ m) then BL[i] else BH[i-m]endif
 enddo
enddo

S(n) =
W(n) =
Complexity measures for W-T algorithms

- Asymptotic time complexity measures
 - (optimal) sequential time complexity \(T_s(n) \)
 - parallel time complexity \(T_c(n,p) \)

- Speedup
 - definition
 \[
 SP(n, p) = \frac{T_s(n)}{T_c(n, p)}
 \]
 - limitation
 \[
 SP(n, p) = \frac{T_s(n)}{T_c(n, p)} \leq \frac{T_s(n)}{W(n)/p} = \frac{pT_s(n)}{W(n)} = O(p)
 \]

- Average available parallelism
 - definition
 \[
 AAP(n) = \frac{W(n)}{S(n)}
 \]
Objectives in the design of W-T algorithms

- **Goal 1:** construct work efficient algorithms
 - a W-T algorithm is work efficient if \(W(n) = \Theta(T_s(n)) \)

- work-inefficient parallel algorithms have limited appeal on a PRAM with a fixed number of processors \(p \)

\[
\lim_{n \to \infty} SP(n, p) \leq \lim_{n \to \infty} \frac{pT_s(n)}{W(n)} = p \lim_{n \to \infty} \frac{T_s(n)}{W(n)} = 0
\]
Objectives in the design of W-T algorithms

- **Goal 2:** minimize step complexity
 - get optimal speedup using $AAP(n) = \frac{T_s(n)}{S(n)}$ processors

\[
SP(n, AAP(n)) = \Theta\left(\frac{T_s(n)}{T_c(n, AAP(n))}\right) = \Omega\left(\frac{T_s(n)}{AAP(n)} + S(n)\right)
\]

\[
= \Omega\left(\frac{T_s(n)}{S(n) + S(n)}\right) = \Omega(AAP(n))
\]

- when $S(n)$ is decreased, $AAP(n)$ is increased
 - with fixed problem size
 - can use more processors to get greater speedup
 - with fixed number of processors
 - reach optimal speedup at smaller problem size
W-T model advantages

- Widely developed body of techniques

- Ignores scheduling, communication and synchronization
 - “easiest” parallel programming

- Source-level complexity metrics
 - Work and step complexity
 - related to running time via Brent’s theorem

- Good place to start
 - many “real-world” algorithms can be derived starting from W-T algorithms