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First class summary
• In this course we study how to speed up large computational problems 

using parallel computing
– in theory and in practice

• We study various parallel programming models
– Initially we consider a theoretical model, the Parallel Random Access 

Machine (PRAM)
• study algorithms and their asymptotic complexity

– Subsequently we focus on practical models and their implementation 
on current hardware

• shared memory multiprocessors, accelerators, and distributed memory 
clusters

– examine execution model, hardware operation, programming constructs, 
performance analysis

– illustrate principles using various case studies
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Topics today

• PRAM model
– execution model
– programming model

• Work-Time model
– programming model
– complexity metrics
– Brent’s theorem:  translation to PRAM programs

• Parallel prefix algorithm
– derivation
– applications
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• PRAM = Parallel Random Access Machine

– p processors

– shared memory

– each processor has a unique 
identity 1 ≤ i ≤ p

– synchronous PRAM model 

• Single Instruction, Multiple Data (SIMD)
• each processor may be 

active () or inactive ()
• each instruction is executed 

by active processors only
• each instruction completes

in unit time

PRAM model of parallel computation

shared memory

1 2 p• • •
procs

instructions

active? 
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• PRAM program
– sequential program
– expressions involving processor id i have a unique 

value in each processor
• i can be used as an array index

X[i] := 10 * i

• conditionals specify active processors
if odd(i) then

X[i] := X[i] + X[i+1]
endif

if i ≤ 2 then
X[i] := 1

else
X[i] := -1

endif

PRAM program

1 2 3 4

X[1..4]
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• Concurrent reads (CR)
– all readers of a given location see the same value

X[i] := y value of y read concurrently by all p processors
X[i] := B[ i/2 ] the first p/2 elements of B are read concurrently

by two processors

• Eliminating bounded-degree concurrent reads
– replace X[i] := B[ i/2 ] with

if odd(i) then
X[i] := B[ i/2 ]

endif
if even(i) then

X[i] := B[ i/2 ]
endif

concurrent read is eliminated but number of steps is doubled

Concurrent memory access - Read

1 1 2 2 3 3

1 2 3

X

B

Ex. 
p = 6
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Concurrent memory access - Write
• Concurrent writes (CW)

– final value depends on the arbitration policy among writes to the 
same destination:

• Arbitrary CW
– nondeterministic choice among values written

• Common CW
– processors that write a value to the same destination must write the same 

value, else error
• Priority CW

– value written by processor with lowest processor id
• Combining Write

– all values combined using a specified associative operation (e.g. “+”)

• Example (p = 6) 

y := X[i]

B[ i/2 ] := X[i]

10 20 30 40 50 60X

By
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Concurrent writes: 
• Let B[1:p] be an array of boolean values and define 

– use p processors and concurrent writes to compute c in a constant number 
of steps
a) with combining CW

b) with a CW policy other than combining CW  (which?)

pBBBc ∨∨∨= 21
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Concurrent memory access
• PRAM variants

– EREW, CREW, ERCW, CRCW
– differ in performance, not expressive power

• EREW < CREW < CRCW 
– loosely reflect difficulty of model implementation

• The following are considered EREW
– references to 

• processor id i
• number of processors p
• problem size n

– references to local variables
local h;  h := 2*i + 1;  X[h] := X[i]

– expression evaluation is synchronous, e.g.
X[i] := X[i] + X[i+1]

is EREW
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• Simple problem: vector 
addition
– given V,W vectors of length n
– compute Z = V + W

• PRAM program
– constructed to operate with 

arbitrary
• problem size n
• number of processors p

– work to be performed must 
explicitly be “scheduled” 
across processors

– time complexity with p procs
• Tc(n,p) =

– PRAM model?

Input: V[1:n], W[1:n] in shared memory
Output: Z[1:n] in shared memory

local integer h, k
for h := 1 to n/p do

k := (h-1)•p + i
if k ≤ n then

Z[k] := V[k] + W[k]
endif

enddo

V

W

Z

A PRAM program

p

n

proc id

𝑝𝑝 ⋅ 𝑛𝑛/𝑝𝑝
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• W-T parallel programming model
– high-level PRAM programming model 

• specifies available parallelism
• no explicit scheduling of parallelism over processors 

– simplifies algorithm presentation and analysis
– W-T programs can be mechanically translated to PRAM programs

• W-T program
– sequential program
– forall construct

• specification of 
available parallelism

• number of processors 
is not a parameter of 
the model !

Input: V[1:n], W[1:n]
Output: Z[1:n] 

forall i in 1:n do
Z[i] := V[i] + W[i]

enddo

WT program for vector addition

Work-Time paradigm
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• standard sequential programming notation
– statements

• assignment
• statement composition
• alternative construct (if ... then ... else …)
• repetitive construct (for, while)

– expressions
• arithmetic and logical functions
• variable reference
• (recursive) function and procedure invocation

• forall statement
– specifies statement T may be 

executed simultaneously 
for each value of i in D

– no restriction on T
• can be a sequence of statements
• can invoke (recursive) functions
• can be another (nested) forall statement

forall i in D do
statement T depending on i

enddo

Programming notation for the W-T framework



13PRAM (1)COMP 633 - Prins

• Work complexity W(n)
– total number of operations performed (as a function of input size n)

• Step complexity S(n)
– number of parallel steps required (as a function of input size n) 
– assuming unbounded parallelism

• Inductively defined over constructs of W-T programming notation

W-T complexity metrics
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forall i in 2:n-1 do
R[i] := (R[i-1] + R[i] + R[i+1])/3

enddo

for h := 1 to k do
forall i in 2:n-1 do

R[i] := (R[i-1] + R[i] + R[i+1])/3
enddo

enddo

W-T complexity measures: simple example

R

1 n
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Work and Step Complexity of the forall construct

• How to define work and time complexity of the forall construct?

– assume we can determine W(Ti) and S(Ti) for each i in D

• W(P) =

• S(P) = 

PRAM (1)COMP 633 - Prins

forall i in D do
body T depending on i

enddo

P:
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forall i in 1:n/2 do
S[i] := S[2i - 1] + S[2i]

enddo

for h := 1 to k do
forall i in 1:n/2h do

S[i] := S[2i - 1] + S[2i]
enddo

enddo

W-T complexity measures:  vector summation

• let n = 2k

S

1 n

n = 4, k = 2
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• Vector summation 
(sum - reduction)
– given V[1..n], n = 2k

– compute s = sum(V[1:n])
– optimal sequential 

time Ts(n)  = Θ(n)

• Complexity
W(n)  =

S(n)   =

PRAM model needed?

Input: V[1:n] vector of integers, n = 2k

Output: s = sum(V[1:n])

P1: forall i in 1:n do
B[i] := V[i]

enddo

P2: for h := 1 to k do
forall i in 1:n/2h do

B[i] := B[2i-1]+B[2i]
enddo

enddo

P3: s := B[1]

W-T complexity measures: vector summation
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• Brent’s theorem schedules a W-T program for a p-processor PRAM
– idea 

• simulate each parallel step in W-T program using p processors
• the work Wi(n) to be performed in step i can be completed using p 

processors in time

– bound concurrent runtime TC(n,p) of resultant PRAM program
• by summing over all S(n) steps

Brent’s theorem and Tc(n,p)
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PRAM vector summation algorithm

Input: V[1:n] vector of integers, n = 2k

Output: s = sum(V[1:n]) 
p > 0 processor PRAM; processor index i

local integer j, r;
P1: for j := 1 to n/p do

r := (j-1)•p + i
if r ≤ n then B[r] := V[r] endif

enddo

P2: for h := 1 to k do
for j := 1 to (n/2h)/p do

r := (j-1)•p + i
if r ≤ n/2h then

B[r] := B[2r-1]+B[2r]
endif

enddo
enddo

P3: if i ≤ 1 then s := B[1] endif

Scheduling W-T vector summation algorithm

W-T vector summation algorithm

Input: V[1:n] vector of integers, n = 2k

Output: s = sum(V[1:n])

P1: forall i in 1:n do
B[i] := V[i]

enddo

P2: for h := 1 to k do
forall i in 1:n/2h do

B[i] := B[2i-1]+B[2i]
enddo

enddo

P3: s := B[1]
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• Count steps needed to 
perform the additions
– Brent’s theorem predicts

– counts for various p

Performance of translated W-T program
PRAM vector summation algorithm

Input: V[1:n] vector of integers, n = 2k

Output: s = sum(V[1:n]) 
p > 0 processor PRAM; processor index i

local integer j, r;
P1: for j := 1 to n/p do

r := (j-1)•p + i
if r ≤ n then B[r] := V[r] endif

enddo

P2: for h := 1 to k do
for j := 1 to (n/2h)/p do

r := (j-1)•p + i
if r ≤ n/2h then

B[r] := B[2r-1] + B[2r]
endif

enddo
enddo

P3: if i ≤ 1 then s := B[1] endif









+







 −
= n

p
nOpnTc lg1),(

  npnknp
nnp

pnp
pnTp

k

c

lg)1(even ,2 3, 
lg

/)1(1
),(

2
1+−≈==

>
−=

• Upper bound is tight (for this 
program)

• translation retains EREW 
model 
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• Prefix sum 
– Input

• Sequence X of n = 2k elements, binary associative operator +
– Output

• Sequence S of n = 2k elements, with Si = x1 + ... + xi

– Example:
• X = [1,  4,  3,   5,   6,   7,   0,   1]
• S = [1,  5,  8, 13, 19, 26, 26, 27]

– TS(n) = Θ(n)

• Uses of prefix sum
– efficient parallel implementation of sequential “scan” through 

consecutive actions
• ex:  Given series of bank transactions T[1:n], with T[i] positive or 

negative, and T[1] the opening deposit > 0
– Was the account ever overdrawn?

– explicit or implicit component of many parallel algorithms

Parallel prefix-sum
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• Recursive solution
– Xi stands for  X[i] and Xij stands for  X[i]+X[i+1]+… +X[j]

• W-T complexity

– 𝑊𝑊 𝑛𝑛 = 𝑊𝑊 𝑛𝑛
2

+ 𝑂𝑂 𝑛𝑛 , 𝑊𝑊 1 = 𝑂𝑂 1 ⇒ ?

– 𝑆𝑆 𝑛𝑛 = 𝑆𝑆 𝑛𝑛
2

+ 𝑂𝑂 1 , 𝑆𝑆 1 = 𝑂𝑂 1 ⇒ ?

Prefix sum algorithm

S: X11   X12   X13   X14   X15   X16   X17   X18  

X: X1    X2    X3    X4    X5    X6    X7    X8  

Z:       X12         X14         X16         X18  

Y:       X12         X34         X56         X78  

Recursive prefix sum
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recur

X:

Y:

Z:

S:

X12 X14

X34X12

X11 X12 X13 X14

X1 X2 X3 X4

Input: X[1..n] vector of integers
Output: S[1..n]

par_prefix_sum( X[1..n] ) = 
var Y[1..n/2], Z[1..n/2], S[1..n];
S[1] := X[1];
if n > 1 then

forall 1 ≤ i ≤ n/2  do
Y[i] := X[2i-1] + X[2i]

enddo
Z[1..n/2] := par_prefix_sum(Y[1..n/2]);
forall 2 ≤ i ≤ n do

if even(i) then
S[i] := Z[i/2]

else
S[i] := Z[(i-1)/2] + X[i]

endif
enddo

endif
return S[1..n]

Parallel prefix sum algorithm – WT model
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• Balanced Tree Ascend / Descend
– Key idea

• view input data as balanced binary tree
• sweep tree up and/or down

– “Tree” not a data structure but a control structure (e.g., recursion)

• Example
– vector summation

1 2 3 4 5 6 7 8

+ + + +

+ +

+

Balanced trees in arrays

1 2 3 4 5 6 7 8

1 3 3 7 5 11 7 15

1 3 3 10 5 11 7 26

1 3 3 10 5 11 7 36
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1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

36

10 36

1 3 6 10 15 21 28 36

3 10 21 36

• S(n)

• W(n)

• Space

• PRAM model

+ ascend phase

+ descend phase
retained value

In-place prefix sum
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Input: X[1..n] vector of values, n = 2k

Output: S[1..n] vector of prefix sums

parallel_prefix_sum( X[1..n] ) = 
forall i in 1:n do

S[i] := X[i]
enddo

for h = 1 to k do
forall i in 1:n/2h do

S[2hi] := S[2hi – 2h-1] + S[2hi]
enddo

enddo

for h = k downto 1
forall i in 2:n/2h-1 do

if odd(i) then
S[2h-1i] := S[2h-1i – 2h-1] + S[2h-1i]

endif
enddo

enddo

1 2 3 4

3 7

10

10

3 10

1 3 6 10

In-place prefix-sum algorithm – WT model

•
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Scan-based primitives
• Scan operations (parallel prefix operations) can be used to implement 

many useful primitives
– Suppose we are given SCAN to compute prefix sum of integer 

sequences
seq<int> SCAN(seq<int>)

– step complexity is Θ(lg n) 
– work complexity is Θ(n)
– PRAM model is EREW

• The next three examples have the same complexity as SCAN
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COPY (or DISTRIBUTE)

seq<int> COPY(int v, int n) ){

seq<int> V[1:n];
V[1] = v;
forall i in 2 : n do

V[i] := 0; 
enddo
return SCAN(V);

}

v     = 5
n     = 7
V     = 5   0   0   0   0   0   0
Res = 5   5   5   5   5   5   5
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ENUMERATE

seq<int> ENUMERATE(seq<bool> Flag){

seq<int> V[1:#Flag];
forall i in 1 : #Flag do

V[i] := Flag[i] ? 1 : 0;
enddo
return SCAN(V);

}

Flag = T    T    F    T    F    F   T
V =      1    1    0    1    0    0    1 
Res =  1 2 2    3 3    3    4
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PACK

seq<T> PACK(seq<T> A, seq<bool> Flag){

seq<T> R[1:#A];
P := ENUMERATE(Flag);
forall i in 1 : #Flag do

if Flag[i] then R[P[i]] := A[i] endif;
enddo
return R[1:P[#Flag]];

}

A     = !    @    #    $    %    ^    &
Flag= T    T     F   T     F    F    T
P    = 1 2 2   3 3    3     4
R    = !     @    $   &
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Radix Sort

S(n) =                 
W(n) =

Input: A[1:n] with b-bit integer elements
Output: A[1:n] sorted
Auxiliary: FL[1:n], FH[1:n], BL[1:n], BH[1:n]

for h := 0 to b-1 do
forall i in 1:n do

FL[i] := (A[i] bit h) == 0
FH[i] := (A[i] bit h) != 0

enddo
BL := PACK(A,FL)
BH := PACK(A,FH)
m  := #BL
forall i in 1:n do

A[i] := if (i ≤ m) then BL[i] else BH[i–m]endif
enddo

enddo
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Complexity measures for W-T algorithms

• Asymptotic time complexity measures
– (optimal) sequential time complexity Ts(n)
– parallel time complexity Tc(n,p)

• Speedup
– definition

– limitation

• Average available parallelism
– definition  
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Objectives in the design of W-T algorithms

• Goal 1: construct work efficient algorithms
– a W-T algorithm is work efficient if  W(n) = Θ(Ts(n))

– work-inefficient parallel algorithms have limited appeal on a PRAM 
with a fixed number of processors p
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Objectives in the design of W-T algorithms

• Goal 2: minimize step complexity
– get optimal speedup using AAP(n) = Ts(n) / S(n) processors

– when S(n) is decreased, AAP(n) is increased
• with fixed problem size

– can use more processors to get greater speedup
• with fixed number of processors

– reach optimal speedup at smaller problem size
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• Widely developed body of techniques

• Ignores scheduling, communication and synchronization
– “easiest” parallel programming

• Source-level complexity metrics
– Work and step complexity
– related to running time via Brent’s theorem

• Good place to start
– many “real-world” algorithms can be derived starting from W-T 

algorithms

W-T model advantages
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