COMP 633 - Parallel Computing

Lecture 2 August 24, 2021

PRAM (1): The PRAM model and its complexity measures

First class summary

- In this course we study how to speed up large computational problems using parallel computing
 - in theory and in practice
- We study various parallel programming models
 - Initially we consider a theoretical model, the Parallel Random Access Machine (PRAM)
 - study algorithms and their asymptotic complexity
 - Subsequently we focus on practical models and their implementation on current hardware
 - shared memory multiprocessors, accelerators, and distributed memory clusters
 - examine execution model, hardware operation, programming constructs, performance analysis
 - illustrate principles using various case studies

Topics today

- PRAM model
 - execution model
 - programming model
- Work-Time model
 - programming model
 - complexity metrics
 - Brent's theorem: translation to PRAM programs
- Parallel prefix algorithm
 - derivation
 - applications

PRAM model of parallel computation

- PRAM = Parallel Random Access Machine
 - p processors
 - shared memory
 - each processor has a unique identity 1 ≤ *i* ≤ p
 - synchronous PRAM model
 - Single Instruction, Multiple Data (SIMD)
 - each processor may be active (✓) or inactive (×)
 - each instruction is executed by active processors only
 - each instruction completes in unit time

PRAM program

- PRAM program
 - sequential program

endif

- expressions involving processor id *i* have a unique value in each processor
 - *i* can be used as an array index

```
X[i] := 10 * i
```

conditionals specify active processors

```
if odd(i) then
          X[i] := X[i] + X[i+1]
endif

if i \le 2 then
          X[i] := 1
else
          X[i] := -1
```


Concurrent memory access - Read

- Concurrent reads (CR)
 - all readers of a given location see the same value

```
X[i] := y

X[i] := B[\lceil i/2 \rceil]
```

value of y read concurrently by all p processors the first p/2 elements of B are read concurrently by two processors

- Eliminating bounded-degree concurrent reads
 - replace x[i] := B[[i/2]] with

```
if odd(i) then
    X[i] := B[ \[ i/2 \] ]
endif
if even(i) then
    X[i] := B[ \[ i/2 \] ]
endif
```


concurrent read is eliminated but number of steps is doubled

Concurrent memory access - Write

- Concurrent writes (CW)
 - final value depends on the arbitration policy among writes to the same destination:
 - Arbitrary CW
 - nondeterministic choice among values written
 - Common CW
 - processors that write a value to the same destination must write the same value, else error
 - Priority CW
 - value written by processor with lowest processor id
 - Combining Write
 - all values combined using a specified associative operation (e.g. "+")
- Example (p = 6)

Concurrent writes:

- Let B[1:p] be an array of boolean values and define $c = B_1 \vee B_2 \vee ... \vee B_p$
 - use p processors and concurrent writes to compute c in a constant number of steps
 - a) with combining CW

b) with a CW policy other than combining CW (which?)

Concurrent memory access

- PRAM variants
 - EREW, CREW, ERCW, CRCW
 - differ in performance, not expressive power
 - EREW < CREW < CRCW
 - loosely reflect difficulty of model implementation
- The following are considered EREW
 - references to
 - processor id i
 - number of processors p
 - problem size n
 - references to local variables

```
local h; h := 2*i + 1; X[h] := X[i]
```

expression evaluation is synchronous, e.g.

```
X[i] := X[i] + X[i+1] is EREW
```


A PRAM program

- Simple problem: vector addition
 - given V,W vectors of length n
 - compute Z = V + W
- PRAM program
 - constructed to operate with arbitrary
 - problem size n
 - number of processors p
 - work to be performed must explicitly be "scheduled" across processors
 - time complexity with p procs
 - $T_c(n,p) =$
 - PRAM model?

Input: V[1:n], W[1:n] in shared memory *Output*: Z[1:n] in shared memory

```
local integer h, k

for h := 1 to \lceil n/p \rceil do

k := (h-1) \cdot p + i
if k \le n then
Z[k] := V[k] + W[k]
endif
```

enddo

Work-Time paradigm

- W-T parallel programming model
 - high-level PRAM programming model
 - specifies available parallelism
 - no explicit scheduling of parallelism over processors
 - simplifies algorithm presentation and analysis
 - W-T programs can be mechanically translated to PRAM programs

W-T program

- sequential program
- forall construct
 - specification of available parallelism
 - number of processors is not a parameter of the model!

WT program for vector addition

Programming notation for the W-T framework

- standard sequential programming notation
 - statements
 - assignment
 - statement composition
 - alternative construct (if ... then ... else ...)
 - repetitive construct (for, while)
 - expressions
 - arithmetic and logical functions
 - variable reference
 - (recursive) function and procedure invocation
- forall statement
 - specifies statement T may be executed simultaneously for each value of i in D
 - no restriction on T
 - can be a sequence of statements
 - can invoke (recursive) functions
 - can be another (nested) forall statement

forall i in D do
statement T depending on i enddo

W-T complexity metrics

- Work complexity W(n)
 - total number of operations performed (as a function of input size n)
- Step complexity S(n)
 - number of parallel steps required (as a function of input size n)
 - assuming unbounded parallelism
- Inductively defined over constructs of W-T programming notation

W-T complexity measures: simple example

```
forall i in 2:n-1 do

R[i] := (R[i-1] + R[i] + R[i+1])/3
enddo
```


Work and Step Complexity of the forall construct

How to define work and time complexity of the forall construct?

```
P: forall i in D do

body T depending on i

enddo
```

- assume we can determine W(T_i) and S(T_i) for each i in D
 - W(P) =
 - S(P) =

W-T complexity measures: vector summation

• let $n = 2^k$

```
forall i in 1:n/2 do

S[i] := S[2i - 1] + S[2i]
enddo
```


$$n = 4, k = 2$$

W-T complexity measures: vector summation

- Vector summation (sum - reduction)
 - given V[1..n], $n = 2^k$
 - compute s = sum(V[1:n])
 - optimal sequential time $T_s(n) = \Theta(n)$

Complexity

$$W(n) =$$

$$S(n) =$$

```
Input: V[1:n] vector of integers, n = 2^k
Output: s = sum(V[1:n])
P1: forall i in 1:n do
        B[i] := V[i]
   enddo
P2: for h := 1 to k do
        forall i in 1:n/2h do
             B[i] := B[2i-1]+B[2i]
        enddo
   enddo
P3: s := B[1]
```

PRAM model needed?

Brent's theorem and $T_c(n,p)$

- Brent's theorem schedules a W-T program for a p-processor PRAM
 - idea
 - simulate each parallel step in W-T program using p processors
 - the work W_i(n) to be performed in step i can be completed using p processors in time $\left| \frac{W_i(n)}{n} \right|$
 - bound concurrent runtime $T_c(n,p)$ of resultant PRAM program
 - by summing over all S(n) steps

$$T_{c}(n,p) = \sum_{i=1}^{S(n)} \left\lceil \frac{W_{i}(n)}{p} \right\rceil \leq \sum_{i=1}^{S(n)} \left(\left\lfloor \frac{W_{i}(n)}{p} \right\rfloor + 1 \right) \leq \left\lfloor \sum_{i=1}^{S(n)} \frac{W_{i}(n)}{p} \right\rfloor + S(n) = \left\lfloor \frac{W(n)}{p} \right\rfloor + S(n)$$

$$\left\lceil \frac{W(n)}{p} \right\rceil = \left\lceil \sum_{i=1}^{S(n)} \frac{W_i(n)}{p} \right\rceil \leq \sum_{i=1}^{S(n)} \left\lceil \frac{W_i(n)}{p} \right\rceil = T_c(n, p)$$

COMP 633 - Prins PRAM (1)

Scheduling W-T vector summation algorithm

W-T vector summation algorithm *Input*: V[1:n] vector of integers, $n = 2^k$ Output: s = sum(V[1:n])P1: forall i in 1:n do B[i] := V[i]enddo P2: for h := 1 to k do forall i in 1:n/2h do B[i] := B[2i-1] + B[2i]enddo enddo P3:s := B[1]

```
PRAM vector summation algorithm
Input: V[1:n] vector of integers, n = 2^k
Output: s = sum(V[1:n])
p > 0 processor PRAM; processor index i
local integer j, r;
P1: for j := 1 to \lfloor n/p \rfloor do
       r := (j-1) \cdot p + i
       if r \le n then B[r] := V[r] endif
    enddo
P2: for h := 1 to k do
       for j := 1 to \lceil (n/2^h)/p \rceil do
           r := (j-1) \cdot p + i
           if r \le n/2^h then
                B[r] := B[2r-1]+B[2r]
           endif
       enddo
    enddo
P3: if i \le 1 then s := B[1] endif
```

Performance of translated W-T program

- Count steps needed to perform the additions
 - Brent's theorem predicts

$$T_c(n,p) = O\left(\left\lfloor \frac{n-1}{p} \right\rfloor + \lg n\right)$$

counts for various p

$$\frac{p}{p=1} \frac{T_c(n,p)}{(n-1)/p}$$

$$p > n \qquad \lg n$$

$$p = 3, n = 2^k, k \text{ even } \approx \lfloor (n-1)/p \rfloor + \frac{1}{2} \lg n$$

- Upper bound is tight (for this program)
- translation retains EREW model

```
PRAM vector summation algorithm
```

```
Input: V[1:n] vector of integers, n = 2^k
Output: s = sum(V[1:n])
p > 0 processor PRAM; processor index i
```

```
local integer j, r;
P1: for j := 1 to \[ n/p \] do
    r := (j-1) \cdot p + i
    if r \le n then B[r] := V[r] endif
enddo
```

```
P2: for h := 1 to k do

for j := 1 to \[ (n/2^h)/p \] do

r := (j-1) • p + i

if r ≤ n/2^h then

B[r] := B[2r-1] + B[2r]

endif

enddo
```

P3: if $i \le 1$ then s := B[1] endif

enddo

Parallel prefix-sum

- Prefix sum
 - Input
 - Sequence X of $n = 2^k$ elements, binary associative operator +
 - Output
 - Sequence S of $n = 2^k$ elements, with $S_i = x_1 + ... + x_i$
 - Example:
 - X = [1, 4, 3, 5, 6, 7, 0, 1]
 - S = [1, 5, 8, 13, 19, 26, 26, 27]
 - $-T_{S}(n) = \Theta(n)$
- Uses of prefix sum
 - efficient parallel implementation of sequential "scan" through consecutive actions
 - ex: Given series of bank transactions T[1:n], with T[i] positive or negative, and T[1] the opening deposit > 0
 - Was the account ever overdrawn?
 - explicit or implicit component of many parallel algorithms

Prefix sum algorithm

Recursive solution

- Xi stands for X[i] and Xij stands for X[i]+X[i+1]+... +X[j]

W-T complexity

-
$$W(n) = W(\frac{n}{2}) + O(n), W(1) = O(1) \implies ?$$

-
$$S(n) = S(\frac{n}{2}) + O(1), S(1) = O(1) \Rightarrow ?$$

COMP 633 - Prins PRAM (1)

Parallel prefix sum algorithm – WT model

Input: X[1..n] vector of integers

Output: S[1..n]

```
S: X11 X12 X13 X14

Z: X12 X14

Y: X12 X34

X: X1 X2 X3 X4
```

```
par_prefix_sum( X[1..n] ) =
   var Y[1..n/2], Z[1..n/2], S[1..n];
   S[1] := X[1];
   if n > 1 then
      forall 1 \le i \le n/2 do
         Y[i] := X[2i-1] + X[2i]
      enddo
      Z[1..n/2] := par_prefix_sum(Y[1..n/2]);
      forall 2 \le i \le n do
         if even(i) then
            S[i] := Z[i/2]
         else
            S[i] := Z[(i-1)/2] + X[i]
         endif
      enddo
   endif
   return S[1..n]
```

Balanced trees in arrays

- Balanced Tree Ascend / Descend
 - Key idea
 - view input data as balanced binary tree
 - sweep tree up and/or down
 - "Tree" not a data structure but a control structure (e.g., recursion)

Example

vector summation

In-place prefix sum

- + ascend phase
- --- → + descend phase
- retained value
 - S(n)
 - W(n)
 - Space

PRAM model

In-place prefix-sum algorithm – WT model


```
Input: X[1..n] vector of values, n = 2^k
Output: S[1..n] vector of prefix sums
parallel_prefix_sum( X[1..n] ) =
   forall i in 1:n do
       S[i] := X[i]
   enddo
   for h = 1 to k do
       forall i in 1:n/2h do
           S[2^{h}i] := S[2^{h}i - 2^{h-1}] + S[2^{h}i]
       enddo
   enddo
   for h = k downto 1
       forall i in 2:n/2^{h-1} do
          if odd(i) then
              S[2^{h-1}i] := S[2^{h-1}i - 2^{h-1}] + S[2^{h-1}i]
          endif
       enddo
   enddo
```

Scan-based primitives

- Scan operations (parallel prefix operations) can be used to implement many useful primitives
 - Suppose we are given SCAN to compute prefix sum of integer sequences

```
seq<int> SCAN(seq<int>)
```

- step complexity is $\Theta(\lg n)$
- work complexity is $\Theta(n)$
- PRAM model is EREW
- The next three examples have the same complexity as SCAN

COPY (or DISTRIBUTE)

```
seq<int> COPY(int v, int n) ){
    seq<int> V[1:n];
    V[1] = v;
    forall i in 2 : n do
        V[i] := 0;
    enddo
    return SCAN(V);
}
```

```
V = 5
n = 7
V = 5 0 0 0 0 0
Res = 5 5 5 5 5 5
```

THE

ENUMERATE

```
seq<int> ENUMERATE(seq<bool> Flag){
   seq<int> V[1:#Flag];
   forall i in 1 : #Flag do
       V[i] := Flag[i] ? 1 : 0;
   enddo
   return SCAN(V);
}
```

```
Flag = T T F T F T T V = 1 1 0 1 0 0 1 Res = 1 2 2 3 3 4
```

THE STATE OF THE S

PACK

```
seq<T> PACK(seq<T> A, seq<bool> Flag){
    seq<T> R[1:#A];
    P := ENUMERATE(Flag);
    forall i in 1 : #Flag do
        if Flag[i] then R[P[i]] := A[i] endif;
    enddo
    return R[1:P[#Flag]];
}
```

```
A =! @ # $ % ^ & Flag=T T F T F F T P = 1 2 2 3 3 3 4 R =! @ $ &
```

THE

Radix Sort

```
Input: A[1:n] with b-bit integer elements
Output: A[1:n] sorted
Auxiliary: FL[1:n], FH[1:n], BL[1:n], BH[1:n]
for h := 0 to b-1 do
     forall i in 1:n do
         FL[i] := (A[i] bit h) == 0
         FH[i] := (A[i] bit h) != 0
     enddo
     BL := PACK(A, FL)
     BH := PACK(A, FH)
     m := #BL
     forall i in 1:n do
           A[i] := if (i \le m) then BL[i] else BH[i-m]endif
     enddo
enddo
```

$$S(n) = W(n) =$$

Complexity measures for W-T algorithms

- Asymptotic time complexity measures
 - (optimal) sequential time complexity $T_s(n)$
 - parallel time complexity $T_c(n,p)$
- Speedup
 - definition

$$SP(n,p) = \frac{T_s(n)}{T_c(n,p)}$$

limitation

$$SP(n,p) = \frac{T_s(n)}{T_c(n,p)} \le \frac{T_s(n)}{W(n)/p} = \frac{pT_s(n)}{W(n)} = O(p)$$

- Average available parallelism
 - definition

$$AAP(n) = \frac{W(n)}{S(n)}$$

Objectives in the design of W-T algorithms

- Goal 1: construct work efficient algorithms
 - a W-T algorithm is work efficient if $W(n) = \Theta(T_s(n))$
 - work-inefficient parallel algorithms have limited appeal on a PRAM with a fixed number of processors p

$$\lim_{n\to\infty} SP(n,p) \leq \lim_{n\to\infty} \frac{pT_s(n)}{W(n)} = p\lim_{n\to\infty} \frac{T_s(n)}{W(n)} = 0$$

Objectives in the design of W-T algorithms

- Goal 2: minimize step complexity
 - get optimal speedup using $AAP(n) = T_s(n) / S(n)$ processors

$$SP(n, AAP(n)) = \Theta\left(\frac{T_s(n)}{T_c(n, AAP(n))}\right) = \Omega\left(\frac{T_s(n)}{\frac{T_s(n)}{AAP(n)} + S(n)}\right)$$
$$= \Omega\left(\frac{T_s(n)}{\frac{T_s(n)}{S(n) + S(n)}}\right) = \Omega(AAP(n))$$

- when S(n) is decreased, AAP(n) is increased
 - with fixed problem size
 - can use more processors to get greater speedup
 - with fixed number of processors
 - reach optimal speedup at smaller problem size

COMP 633 - Prins PRAM (1)

W-T model advantages

- Widely developed body of techniques
- Ignores scheduling, communication and synchronization
 - "easiest" parallel programming
- Source-level complexity metrics
 - Work and step complexity
 - related to running time via Brent's theorem
- Good place to start
 - many "real-world" algorithms can be derived starting from W-T algorithms

