COMP 633 - Parallel Computing

Lecture 3
Aug 26, 31 + Sep 2 2021

PRAM (2)
PRAM algorithm design techniques

• Reading for next class (Sep 7): PRAM handout secn 5
• Written assignment 1 is posted, due Thu Sep 16
Topics

• PRAM Algorithm design techniques
 – pointer jumping
 – algorithm cascading
 – parallel divide and conquer
Design Technique: Pointer Jumping

- Fast parallel processing of linked data structures
 - linked lists
 - Membership, reduction and prefix sum of linked lists
 - graphs (adjacency lists, edge lists)
 - connected components
 - minimum spanning trees
Example: Finding the roots of a forest

- **Input**

 \(G = (V, E) \) a forest of directed trees

- **Output**

 \(s[1:n] \) where for each vertex \(j \),

 \(s[j] \) is the root of the tree containing \(j \)

- **Representation of \(G \)**

 - in a directed tree

 - the root has no parent

 - every other vertex has a unique parent

 - \(V = \{1, \ldots, n\} \)

 - \(E \) is defined by \(s: V \rightarrow V \)

 - \(s(u) = v \) if \(v \) is parent of \(u \) in \(G \)

 - \(s(r) = r \) if \(r \) is a root in \(G \)

 - \(s \) is represented using an array \(s[1:n] \)
Following a list in parallel: Pointer jumping

- Let \((n, s[1..n])\) be the representation of directed forest \(G\)
- Pointer jumping operation
 - every vertex directs its edge to its grandparent in parallel
 - also called *pointer doubling*

```plaintext
forall i in 1:n do
    s[i] := s[s[i]]
enddo
```

Following a list in parallel:

- Before pointer doubling:
 - \(s\) points to its children

- Following pointer doubling:
 - \(s\) points to its grandparents
Analysis of pointer jumping

- pointer jumping halves distance to the root in s
 - let d be the distance in s from vertex u to the root
 - after pointer jumping distance in s from u to root is $\left\lfloor \frac{d}{2} \right\rfloor$

- $S(n) = O(1)$

- $W(n) = O(n)$

- PRAM model

```plaintext
forall i in 1:n do
  s[i] := s[s[i]]
endo
```

Diagram

```
s -> s' -> s' -> s' -> s'
```

```
s -> s, s' -> s' -> s', s' -> s'
```
Initial Forest

Pointer jumping in a forest

after 1 doubling

after 2 doublings

All vertices point to the root of their tree
Finding roots of a forest

- Pointer jumping reaches a fixed point when forest has max height ≤ 1
 - Vertex i is distance 1 or less from root when $s[i] = s[s[i]]$

- Forest height ≤ 1 $\Rightarrow s[i] = \text{root of tree containing } i$

```plaintext
forall i in 1:n do
  while s[i] != s[s[i]] do
    s[i] := s[s[i]]
  end do
enddo
```
Problem: find distance to root in directed forest

- Construct an algorithm for the following problem
 - Let (n, s[1..n]) be directed forest G
 - For each vertex 1 ≤ i ≤ n, set d[i] to be the distance from i to the root of its tree

- Invariant: let d[i] be the distance in G from i to s[i]
 - establish initially
 - maintain property with each pointer doubling
 - termination implies result

- Complexity
 \[W(n) = O(n \log n) \]
 \[S(n) = O\left(\log n \right) \]

```plaintext
forall i in 1:n do
  d[i] := (s[i]== i)? 0 : 1
end do

for i := 1 to (\log n) do
  forall i in 1:n do
    d[i] := d[i] + d[s[i]]
    s[i] := s[s[i]]
  end do
end do
```
Design Technique: Algorithm Cascading

- Technique for improving work efficiency of an algorithm
 - suppose we have
 - work-inefficient but fast parallel algorithm A
 - work-efficient but slow algorithm B (typically sequential)
 - combine ("cascade") A and B to get best of both

 "Speeding up by slowing down"
Example: histogram values in a sequence

- **Input**
 - Sequence L[1..n] with integer values in the range 1..k, where k = lg n

- **Output**
 - R[1..k] with R[i] = # occurrences of i in L[1..n]

Sequential algorithm

\[
R[1:k] := 0
\]

\[
\text{for } i := 1 \text{ to } n \text{ do }
R[L[i]] := R[L[i]] + 1
\text{end do}
\]

\[
T_S(n) = \mathcal{O}(n)
\]
Parallel Algorithm: First try

\[C_{i,j} = \begin{cases}
1, & \text{if } L_i = j \\
0, & \text{otherwise}
\end{cases} \]

\[R_j = \sum_{i=1}^{n} C_{i,j} \]

\[\text{integer } C[1:n,1:k] \]

\[
\begin{align*}
\text{forall } i \text{ in } 1:n, j \text{ in } 1:k \text{ do} \\
& \quad C[i,j] := (L[i]==j) ? 1 : 0 \\
\text{end do} \\
\text{forall } j \text{ in } 1:k \text{ do} \\
& \quad R[k] := \text{REDUCE}(C[1:n,j], +) \\
\text{end do}
\end{align*}
\]

\[\text{PRAM} \]

\[W(n) = O(nk) + O(nk) \]

\[S(n) = O(1) + O(\log n) \]

model CREW
Cascading the histogram algorithm

- partition L into m “chunks” of size (lg n)
 - k = lg n (assume k divides n)
 - m = n / k = n / lg n
- compute mini-histogram sequentially within a chunk
 \[S_{\text{chunk}} = \Theta(\lg n) \]
 \[W_{\text{chunk}} = \Theta(\lg n) \]
- compute all m mini-histograms in parallel
 \[S_{\text{all}} = S_{\text{chunk}} \]
 \[W_{\text{all}} = m \cdot W_{\text{chunk}} = \frac{n}{\lg n} \cdot \lg n = o(n) \]
- combine histograms by summing
 \[S_{\text{combine}} = \Theta(\lg n) \]
 \[W_{\text{combine}} = \Theta(n) \]

integer \(C[1:m,1:k] \)

forall \(i \) in \(1:m \), \(j \) in \(1:k \) do
 \(C[i,j] := 0 \)
end do

forall \(i \) in \(1:m \) do
 for \(j := 1 \) to \(k \) do
 \(C[i, L[(i-1)k+j]] += 1 \)
 end do
end do

forall \(j \) in \(1:k \) do
 \(R[k] := \text{REDUCE}(C[1:m,j], +) \)
end do

\(W(n) = \Theta(n) \)
\(S(n) = \Theta(\lg n) \)

PRAM model?
Parallel Divide and Conquer

- To solve problem instance P using parallel divide-and-conquer
 - divide P into subproblems (possibly in parallel)
 - apply D&C recursively to each subproblem in parallel
 - combine subsolutions to produce solution (possibly in parallel)

- Example: sorting
 - mergesort
 - combining
 - subproblems: left/right half of array
 - sort each subproblem
 - merge results
 - quicksort
 - partitioning
 - subproblems: values less than pivot, values greater than or equal to pivot
 - sort each subproblem
 - concatenate results
Parallel Mergesort (parallel divide and conquer)

• Assume parallel EREW $\text{merge}(A, B)$ for $|A| = |B| = O(n)$ with

 $W_{\text{merge}}(n) = O(n)$
 $S_{\text{merge}}(n) = O(\lg n)$

```plaintext
mergesort(V[1:n]) =
  if  n ≤ 1  then  S[1:n] := V[1:n]
  else
    m := n/2
    {
      R[1:m]    = mergesort V[1:m]
    }||
    R[m+1:n]    = mergesort V[m+1:n]
  }
  S[1:n] := merge( R[1:m], R[m+1:n] )
endif
return S[1:n]
```
Mergesort complexity (figure)

\[\text{total} \]

\[S(n) = O(\log^2 n) \]

\[W(n) = O(n \log n) \]
Parallel Mergesort (forall)

- Assume parallel EREW $\text{merge}(A, B)$ for $|A| = |B| = O(n)$ with
 \[
 W_{\text{merge}}(n) = O(n)
 \]
 \[
 S_{\text{merge}}(n) = O(\lg n)
 \]

```plaintext
mergesort(V[1:n]) =
if  n \leq 1  then  S[1:n] := V[1:n]
else
  m := n/2
  forall i in 0:1 do
    R[i*m+1 : (i+1)*m] = mergesort V[i*m+1 : (i+1)*m]
  end do
  S[1:n] := merge( R[1:m], R[m+1:2*m] )
endif
return S[1:n]
```

$S_{\text{mergesort}}(n) = O(\lg^2 n)$
$W_{\text{mergesort}}(n) = O(n \lg n)$
Parallel Quicksort

- Assume parallel EREW $\text{partition}(A, p)$ for $|A| = O(n)$ with

\[
\begin{align*}
W_{\text{partition}}(n) &= O(n) \\
S_{\text{partition}}(n) &= O(\lg n)
\end{align*}
\]

\[
\text{quicksort}(V[1:n]) =
\]
\[
\text{if } n \leq 1 \text{ then } S[1:n] := V[1:n] \text{ else }
\]
\[
p := V[\text{random}(1:n)] \\
R[1:n], m := \text{partition} (V[1:n], p) \\
h[0:2] := [0, m, n] \\
\text{forall } i \text{ in } 0:1 \text{ do}
\]
\[
S[h(i)+1 : h(i+1)] = \text{quicksort} R[h(i)+1 : h(i+1)]
\]
\[
\text{end do}
\]
\[
\text{end if}
\]
\[
\text{return } S[1:n]
\]

\[
\begin{align*}
S_{\text{quicksort}}(n) &= S\left(\frac{n}{2}\right) + O(\lg n) = O\left(\frac{n}{2} \lg^2 n\right) \\
W_{\text{quicksort}}(n) &= 2W\left(\frac{n}{2}\right) + O(n\lg n) = O(n \lg^2 n)
\end{align*}
\]
Quicksort complexity (figure)

Best case: \(W(n) = 2W(n/2) + O(n) \) \(\rightarrow \) \(W(n) = O(n \lg n) \)
\(S(n) = S(n/2) + O(\lg n) \) \(\rightarrow \) \(S(n) = O(\lg^2 n) \)

General case: unpredictable number and size of subproblems

Worst case: \(W(n) = O(n^2) \), \(S(n) = O(n \lg n) \)
Planar Convex Hull Problem

• Input
 – $S = \{(x_i, y_i)\}$ set of n points in the plane
 – assume x_i distinct, y_i distinct, and no three points co-linear

• Output
 – tour of smallest convex polygon containing all points of S

• Complexity
 – $T_{s^*}(n) = \Theta(n \lg n)$
Two Parallel Algorithms for Planar Convex Hull

- two divide and conquer algorithms
 - combining approach
 - partitioning approach

- combining algorithm (like mergesort)
 - assume input points presented in order of increasing x coordinate
 - can be obtained using $O(n \lg n)$ work, $O(\lg^2 n)$ step sorting algorithm
 - optimal worst case performance

- partitioning algorithm (like quicksort)
 - no assumptions about order of input points
 - suboptimal worst case performance
 - very good expected case performance
D&C algorithm via combining

1. Divide S into US, LS by line $P_1 – P_n$
2. Compute Upper Convex Path and Lower Convex Path using D&C algorithm
3. Combine UCP, LCP to construct convex hull
Construction of upper convex path

Divide

Combine (1): find upper common tangent

Recur

Combine (2): create upper convex path
Analysis (Combining algorithm)

• Upper/Lower Convex path
 – Find common tangent (UCT/LCT)
 • binary search of convex paths to find tangent points [Overmars & van Leeuwen]
 • Sequential: \(S(n) = W(n) = O(\log n) \)

 – Connect paths
 • CREW: \(S(n) = O(1), W(n) = O(n) \)
 • EREW: \(S(n) = O(\log n), W(n) = O(n) \)

• Convex Hull
 • \(S(n) = S(n/2) + O(\log n) \)
 – \(S(n) = O(\log^2 n) \)
 • \(W(n) = 2 W(n/2) + O(n) \)
 – \(W(n) = O(n \log n) \)

 – Work-efficient, since \(T_S(n) = \Theta(n \log n) \)
D&C algorithm via partitioning

1. Divide S into US, LS by line P_i-P_j where P_i, P_j have extremal x coordinates
2. Compute Upper Convex Path and Lower Convex Path using D&C algorithm
3. Combine UCP, LCP to construct convex hull
Construction of upper convex path

Locate point at max distance from $P_i - P_j$

Discard interior points and partition remaining points

Recur: find upper convex paths

Combine upper convex paths
Analysis (Partitioning algorithm)

- **Upper/Lower Convex path for \(n \) points above baseline**
 - Find point at maximum distance from baseline
 - \(S(n) = O(lg n) \), \(W(n) = O(n) \)
 - Partition
 - \(S(n) = O(lg n) \), \(W(n) = O(n) \)
 - Combine
 - \(S(n) = O(lg n) \), \(W(n) = O(n) \)

- **Convex Hull**
 - Find extremal points for initial baseline
 - \(S(n) = O(lg n) \), \(W(n) = O(n) \)
 - Construct UCP, LCP
 - \(S(n) = \text{max}(S(n_1), S(n_2)) + O(lg n) \)
 - \(W(n) = W(n_1) + W(n_2) + O(n) \)
 - \(n_1 + n_2 \leq n \)
 - Combine paths
 - \(S(n) = O(1), W(n) = O(n) \)
Analysis of parallel partitioning algorithm

• Analysis
 – **Expected** partition, no points eliminated
 • $S(n) = S(n/2) + O(\lg n)$
 - $S(n) = O(\lg^2 n)$
 • $W(n) = 2W(n/2) + O(n)$
 - $W(n) = O(n \lg n)$
 – **Worst-case** partition, no points eliminated
 • $S(n) = S(n - 1) + O(\lg n)$
 - $S(n) = O(n \lg n)$
 • $W(n) = W(1) + W(n - 1) + O(n)$
 - $W(n) = O(n^2)$
 – **Expected** partition, random points in the unit square
 - $S(n) = O(\lg n (\lg \lg n))$
 - $W(n) = O(n \lg \lg n)$
Reminder: Master theorem for recurrence relations

• Recurrence form

\[H(n) = aH\left(\frac{n}{b}\right) + f(n) \quad \text{where} \quad a \geq 1, \; b > 1 \]

\[H(1) = O(1) \]

• Solution

\[H(n) = \Theta\left(a^k\right) + \Theta\left(\sum_{i=0}^{k-1} a^i f\left(\frac{n}{b^i}\right)\right) \]

where \(k = \log_b n \)
Termination condition

• What about “while” inside “forall”?
 a) replace with fixed number of iterations
 b) detect termination condition

let \(h \) be the max height of a tree in the forest

\[
\text{for } i := 1 \text { to } \lg n \text { do } \\
\text{forall } i \text { in } 1:n \text { do } \\
\quad s[i] := s[s[i]] \\
\text{end do} \\
\text{enddo}
\]

(a)

\[
\text{forall } i \text { in } 1:n \text { do } \\
\quad \text{while } s[i] != s[s[i]] \text { do } \\
\quad \quad s[i] := s[s[i]] \\
\quad \text{end do} \\
\text{enddo}
\]

(b)

Seq(Bool) \(M[1:n] \)
repeat
 for\(l \in 1:n \) do
 \quad forall\(i \in 1:n \) do
 \quad \quad s[i] := s[s[i]]
 \quad \quad M[i] := (s[i] == s[s[i]])
 \quad \text{end do}
 \quad \text{end do}
 \quad t := \text{REDUCE}(M[1:n], \text{and})
until \((t)\)