PRAM (2)
PRAM algorithm design techniques

- Reading for next class (Thu Aug 29): PRAM handout secns 3.6, 4.1
- Written assignment 1 is posted, due Tue Sep 10
 - work together with another student in the class and turn in joint solution
 - (or turn in solo solution if you prefer)
Topics

- PRAM Algorithm design techniques
 - pointer jumping
 - algorithm cascading
 - parallel divide and conquer
Design Technique: Pointer Jumping

- Fast parallel processing of linked data structures
 - linked lists
 - Membership, reduction and prefix sum of linked lists

- graphs (adjacency lists, edge lists)
 - connected components
 - minimum spanning trees
Example: Finding the roots of a forest

- **Input**
 \(G = (V,E) \) a forest of directed trees

- **Output**
 \(s[1:n] \) where for each vertex \(j \),
 \(s[j] \) is the root of the tree containing \(j \)

- **Representation of \(G \)**
 - in a directed tree
 - the root has no parent
 - every other vertex has a unique parent
 - \(V = \{1, \ldots, n\} \)
 - \(E \) is defined by \(s: V \rightarrow V \)
 - \(s(u) = v \) if \(v \) is parent of \(u \) in \(G \)
 - \(s(r) = r \) if \(r \) is a root in \(G \)
 - \(s \) is represented using an array \(s[1:n] \)
Following a list in parallel: Pointer jumping

- Let \((n, s[1..n])\) be the representation of directed forest \(G\)
- Pointer jumping operation
 - every vertex directs its edge to its grandparent in parallel
 - also called \textit{pointer doubling}

\[
\text{forall } i \text{ in } 1:n \text{ do } \\
s[i] := s[s[i]] \\
\text{endo}
\]
Analysis of pointer jumping

- pointer jumping halves distance to the root in s
 - let d be the distance in s from vertex u to the root
 - after pointer jumping distance in s from u to root is $\lfloor d/2 \rfloor$

- $S(n) =$

- $W(n) =$

- PRAM model

```plaintext
forall i in 1:n do
    s[i] := s[s[i]]
endo
```
Pointer jumping in a forest

Initial Forest

after 1 doubling

after 2 doublings

All vertices point to the root of their tree
Finding roots of a forest

- pointer jumping reaches a fixed point when forest has max height ≤ 1
 - vertex i is distance 1 or less from root when $s[i] = s[s[i]]$

- forest height $\leq 1 \Rightarrow s[i] = \text{root of tree containing } i$

```plaintext
forall i in 1:n do
  while $s[i] \neq s[s[i]]$ do
    $s[i] := s[s[i]]$
  end do
enddo
```
Problem: find distance to root in directed forest

• Construct an algorithm for the following problem
 – Let \((n, s[1..n])\) be directed forest \(G\)
 – For each vertex \(1 \leq i \leq n\), set \(d[i]\) to be the distance from \(i\) to the root of its tree

• Invariant: let \(d[i]\) be the distance in \(G\) from \(i\) to \(s[i]\)
 – establish initially
 – maintain property with each pointer doubling
 – termination implies result

• Complexity
 \[W(n) = \]
 \[S(n) = \]

```plaintext
forall i in 1:n do
  d[i] := (s[i] == i) ? 0 : 1
end do
for i := 1 to (lg n) do
  forall i in 1:n do
    d[i] := d[i] + d[s[i]]
    s[i] := s[s[i]]
  end do
end do
```
Design Technique: Algorithm Cascading

• Technique for improving work efficiency of an algorithm
 – suppose we have
 • work-inefficient but fast parallel algorithm A
 • work-efficient but slow algorithm B (typically sequential)
 – combine ("cascade") A and B to get best of both

 “Speeding up by slowing down”
Example: histogram values in a sequence

- **Input**
 - Sequence \(L[1..n] \) with integer values in the range 1..k, where \(k = \lg n \)

- **Output**
 - \(R[1..k] \) with \(R[i] = \# \) occurrences of \(i \) in \(L[1..n] \)

Sequential algorithm

\[
\begin{align*}
R[1:k] & := 0 \\
\text{for } i & := 1 \text{ to } n \text{ do} \\
& \quad R[L[i]] := R[L[i]] + 1 \\
\text{end do}
\end{align*}
\]

\[T_s(n) = \]
Parallel Algorithm: First try

\[C_{i,j} = \begin{cases} 1, & \text{if } L_i = j \\ 0, & \text{otherwise} \end{cases} \]

\[R_j = \sum_{i=1}^{n} C_{i,j} \]

\[
\begin{array}{cccc}
3 & 1 & 1 & 3 \\
2 & 3 & 1 & 3 \\
\end{array}
\]

\[
\text{integer } C[1:n,1:k] \\
\text{forall } i \text{ in } 1:n, j \text{ in } 1:k \text{ do} \\
\quad C[i,j] := (L[i]==j) ? 1 : 0 \\
\text{end do} \\
\text{forall } j \text{ in } 1:k \text{ do} \\
\quad R[k] := \text{REDUCE}(C[1:n,j], +) \\
\text{end do}
\]

PRAM
\[
W(n) = \\
S(n) = \\
\text{model}
\]
Cascading the histogram algorithm

- partition L into m “chunks” of size (lg n)
 - k = lg n (assume k divides n)
 - m = n / k = n / lg n

- compute mini-histogram sequentially within a chunk
 \[S_{\text{chunk}} = \]
 \[W_{\text{chunk}} = \]

- compute all m mini-histograms in parallel
 \[S_{\text{all}} = S_{\text{chunk}} \]
 \[W_{\text{all}} = m \cdot W_{\text{chunk}} \]

- combine histograms by summing
 \[S_{\text{combine}} = \]
 \[W_{\text{combine}} = \]

```plaintext
integer C[1:m, 1:k]
forall i in 1:m, j in 1:k do
    C[i, j] := 0
end do
forall i in 1:m do
    for j := 1 to k do
        C[i, L[(i-1)k+j]] += 1
    end do
end do
forall j in 1:k do
    R[k] := REDUCE(C[1:m, j], +)
end do
W(n) = S(n) =
PRAM model?
```
Parallel Divide and Conquer

• To solve problem instance P using parallel divide-and-conquer
 – divide P into subproblems (possibly in parallel)
 – apply D&C recursively to each subproblem in parallel
 – combine subsolutions to produce solution (possibly in parallel)

• Example: sorting
 – mergesort
 • combining
 – subproblems: left/right half of array
 – sort each subproblem
 – merge results
 – quicksort
 • partitioning
 – subproblems: values less than pivot, values greater than or equal to pivot
 – sort each subproblem
 – concatenate results
Parallel Mergesort (parallel divide and conquer)

- Assume parallel EREW merge \((A, B)\) for \(|A| = |B| = O(n)\) with
 \[
 W_{\text{merge}}(n) = O(n) \\
 S_{\text{merge}}(n) = O(\lg n)
 \]

```plaintext
mergesort(V[1:n]) = 
if n \leq 1 then S[1:n] := V[1:n] 
else
  m := n/2 
  
  { 
    R[1:m] = mergesort V[1:m] 
    \|
    R[m+1:n] = mergesort V[m+1:n] 
  } 
  S[1:n] := merge( R[1:m], R[m+1:n] ) 
endif
return S[1:n]
```
Parallel Mergesort (forall)

- Assume parallel EREW merge(A, B) for |A| = |B| = O(n) with

 \[W_{\text{merge}}(n) = O(n) \]

 \[S_{\text{merge}}(n) = O(\log n) \]

\[
\text{mergesort}(V[1:n]) = \\
\text{if} \quad n \leq 1 \quad \text{then} \quad S[1:n] := V[1:n] \\
\text{else} \quad m := n/2 \\
\hspace{1em} \text{forall} \ i \ \text{in} \ 0:1 \ \text{do} \\
\hspace{2em} R[i*m+1 : (i+1)*m] = \text{mergesort} \ V[i*m+1 : (i+1)*m] \\
\hspace{1em} \text{end do} \\
\hspace{1em} S[1:n] := \text{merge}(R[1:m], R[m+1:2*m]) \\
\text{endif} \\
\text{return} \ S[1:n]
\]

\[S_{\text{mergesort}}(n) = \]

\[W_{\text{mergesort}}(n) = \]
Parallel Quicksort

- Assume parallel EREW $\text{partition}(A, p)$ for $|A| = O(n)$ with

 $W_{\text{partition}}(n) = O(n)$

 $S_{\text{partition}}(n) = O(\lg n)$

```plaintext
quicksort(V[1:n]) =
if n ≤ 1 then S[1:n] := V[1:n]
else
  p := V[ random(1:n) ]
  R[1:n], m := partition (V[1:n], p)
  h[0:2] := [0, m, n]
  forall i in 0:1 do
    S[h(i)+1 : h(i+1)] = quicksort R[h(i)+1 : h(i+1)]
  end do
end if
return S[1:n]
```

$S_{\text{quicksort}}(n) = \ldots$

$W_{\text{quicksort}}(n) = \ldots$
Planar Convex Hull Problem

• **Input**
 – \(S = \{(x_i, y_i)\} \) set of \(n \) points in the plane
 – assume \(x_i \) distinct, \(y_i \) distinct, and no three points co-linear

• **Output**
 – tour of smallest convex polygon containing all points of \(S \)

• **Complexity**
 – \(T_S^*(n) = \Theta(n \log n) \)
Two Parallel Algorithms for Planar Convex Hull

• two divide and conquer algorithms
 – combining approach
 – partitioning approach

• combining algorithm (like mergesort)
 – assume input points presented in order of increasing x coordinate
 • can be obtained using $O(n \lg n)$ work, $O(\lg^2 n)$ step sorting algorithm
 – optimal worst case performance

• partitioning algorithm (like quicksort)
 – no assumptions about order of input points
 – suboptimal worst case performance
 – very good expected case performance
D&C algorithm via combining

1. Divide S into US, LS by line $P_1 – P_n$
2. Compute Upper Convex Path and Lower Convex Path using D&C algorithm
3. Combine UCP, LCP to construct convex hull
Construction of upper convex path

Divide

Combine (1): find upper common tangent

Combine (2): create upper convex path

Recur
Analysis (Combining algorithm)

• Upper/Lower Convex path
 – Find common tangent (UCT/LCT)
 • binary search of convex paths to find tangent points [Overmars & van Leeuwen]
 • Sequential: \(S(n) = W(n) = O(\lg n) \)

 – Connect paths
 • CREW: \(S(n) = O(1) \), \(W(n) = O(n) \)
 • EREW: \(S(n) = O(\lg n) \), \(W(n) = O(n) \)

• Convex Hull
 • \(S(n) = S(n/2) + O(\lg n) \)
 – \(S(n) = O(\lg^2 n) \)
 • \(W(n) = 2 W(n/2) + O(n) \)
 – \(W(n) = O(n \lg n) \)

 – Work-efficient, since \(T_S(n) = \Theta(n \lg n) \)
D&C algorithm via partitioning

1. Divide S into US, LS by line \(P_i-P_j \) where \(P_i, P_j \) have extremal x coordinates
2. Compute Upper Convex Path and Lower Convex Path using D&C algorithm
3. Combine UCP, LCP to construct convex hull
Construction of upper convex path

Locate point at max distance from $P_i - P_j$

Discard interior points and partition remaining points

Recur: find upper convex paths

Combine upper convex paths
Analysis (Partitioning algorithm)

• Upper/Lower Convex path for n points above baseline
 – Find point at maximum distance from baseline
 • $S(n) = O(lg n)$, $W(n) = O(n)$
 – Partition
 • $S(n) = O(lg n)$, $W(n) = O(n)$
 – Combine
 • $S(n) = O(lg n)$, $W(n) = O(n)$

• Convex Hull
 – Find extremal points for initial baseline
 • $S(n) = O(lg n)$, $W(n) = O(n)$
 – Construct UCP, LCP
 • $S(n) = \max(S(n_1), S(n_2)) + O(lg n)$
 • $W(n) = W(n_1) + W(n_2) + O(n)$
 – $n_1 + n_2 \leq n$
 – Combine paths
 • $S(n)=O(1)$, $W(n) = O(n)$
Analysis of parallel partitioning algorithm

• Analysis
 – **Expected** partition, no points eliminated
 • \(S(n) = S(n/2) + O(\lg n) \)
 - \(S(n) = O(\lg^2 n) \)
 • \(W(n) = 2 \, W(n/2) + O(n) \)
 - \(W(n) = O(n \lg n) \)
 – **Worst-case** partition, no points eliminated
 • \(S(n) = S(n - 1) + O(\lg n) \)
 - \(S(n) = O(n \lg n) \)
 • \(W(n) = W(1) + W(n - 1) + O(n) \)
 - \(W(n) = O(n^2) \)
 – **Expected** partition, random points in the unit square
 - \(S(n) = O(\lg n (\lg \lg n)) \)
 - \(W(n) = O(n \lg \lg n) \)
Reminder: Master theorem for recurrence relations

• Recurrence form

\[H(n) = aH\left(\frac{n}{b}\right) + f(n) \quad \text{where} \quad a \geq 1, b > 1 \]

\[H(1) = O(1) \]

• Solution

\[H(n) = \Theta\left(a^k\right) + \Theta\left(\sum_{i=0}^{k-1} a^i f\left(\frac{n}{b^i}\right)\right) \]

where \(k = \log_b n \)