COMP 633 - Parallel Computing

Lecture 3
Aug 26, 31 + Sep 22021

PRAM (2)
PRAM algorithm design techniques

- Reading for next class (Sep 7): PRAM handout secn 5
- Written assignment 1 is posted, due Thu Sep 16

Topics

- PRAM Algorithm design techniques
- pointer jumping
- algorithm cascading
- parallel divide and conquer

Design Technique: Pointer Jumping

- Fast parallel processing of linked data structures
- linked lists
- Membership, reduction and prefix sum of linked lists

- graphs (adjacency lists, edge lists)
- connected components
- minimum spanning trees

Example: Finding the roots of a forest

- Input
$G=(V, E)$ a forest of directed trees
- Output
$\mathrm{s}[1: n]$ where for each vertex j,
$s[j]$ is the root of the tree containing j
- Representation of G

- in a directed tree
- the root has no parent
- every other vertex has a unique parent
$-\mathrm{V}=\{1, \ldots, n\}$
- E is defined by $s: V \rightarrow V$

- $s(u)=v \quad$ if v is parent of u in G
- $s(r)=r$ if r is a root in G
- s is represented using an array $s[1: n]$

Following a list in parallel: Pointer jumping

- Let (n, s[1..n]) be the representation of directed forest G
- Pointer jumping operation
- every vertex directs its edge to its grandparent in parallel
- also called pointer doubling

```
forall i in 1:n do
    s[i] := s[s[i]]
enddo
```


Analysis of pointer jumping

- pointer jumping halves distance to the root in s
- let d be the distance in s from vertex u to the root
- after pointer jumping distance in s from u to root is $(d / 2)$
- $S(n)=O(1)$

$$
\begin{aligned}
& \text { forall i in 1:n do } \\
& s[i]:=s[s[i]] \\
& \text { enddo }
\end{aligned}
$$

- $W(n)=O(n)$
- PRAM model
CREW

Finding roots of a forest

- pointer jumping reaches a fixed point when forest has max height ≤ 1
- vertex i is distance 1 or less from root when $s[i]=s[s[i]]$
- forest height $\leq 1 \Rightarrow s[i]=$ root of tree containing i

```
forall i in 1:n do
    while s[i] != s[s[i]] do
        s[i] := s[s[i]]
    end do
enddo
```


Problem: find distance to root in directed forest

- Construct an algorithm for the following problem
- Let (n, s[1..n]) be directed forest G
- For each vertex $1 \leq \mathrm{i} \leq \mathrm{n}$, set $\mathrm{d}[\mathrm{i}]$ to be the distance from i to the root of its tree
- Invariant: let d[i] be the distance in G from i to s[i]
- establish initially
- maintain property with each pointer doubling
- termination implies result
- Complexity

$$
\begin{aligned}
& W(n)=O(n \lg n) \\
& S(n)=O(\lg n)
\end{aligned}
$$

```
forall i in 1:n do
    d[i] := (s[i]== i)? 0 : 1
end do
for i := 1 to (lg n) do
    forall i in 1:n do
    d[i] := d[i] + d[s[i]]
    s[i] := s[s[i]]
    end do
end do
```


Design Technique: Algorithm Cascading

- Technique for improving work efficiency of an algorithm
- suppose we have
- work-inefficient but fast parallel algorithm A
- work-efficient but slow algorithm B (typically sequential)
- combine ("cascade") A and B to get best of both
"Speeding up by slowing down"

Example: histogram values in a sequence

- Input
- Sequence L[1..n] with integer values in the range $1 . . \mathrm{k}$, where $\mathrm{k}=\lg \mathrm{n}$
- Output
$-R[1 . . k]$ with $R[i]=$ \# occurrences of i in $L[1 . . n]$

L

Sequential algorithm

```
R[1:k] := 0
for i := 1 to n do
    R[L[i]] := R[L[i]] + 1
end do
```


$$
T_{s}(n)=O(N)
$$

Parallel Algorithm: First try


```
integer C[1:n,1:k]
forall i in 1:n, j in 1:k do
    C[i,j] := (L[i]==j) ? 1 : 0
end do
forall j in 1:k do
    R[k] := REDUCE(C[1:n,j], + )
end do
```

PRAM
$W(n)=O(n k)+O(n k)$
$S(n)=O(1)+O(\lg n)$
model CREW

Cascading the histogram algorithm

- partition L into m "chunks" of size $(\lg n)$
- $k=\lg n$ (assume k divides n)
- $m=n / k=n / \lg n$
- compute mini-histogram
sequentially within a chunk

$$
\begin{aligned}
& S_{\text {chunk }}=\Delta(\lg n) \\
& W_{\text {chunk }}=\Delta(\lg n)
\end{aligned}
$$

- compute all m mini-histograms in parallel

$$
\mathrm{S}_{\mathrm{all}}=\mathrm{S}_{\mathrm{chunk}}
$$

$$
W_{\text {all }}=m \cdot W_{\text {chunk }}-\overbrace{\lg n}^{n} \operatorname{lq} n=o(n) W(n)=O(n)
$$

- combine histograms by summing

$$
\begin{aligned}
& S_{\text {combine }}=O(\lg n) \\
& \mathrm{W}_{\text {combine }}=O(n)
\end{aligned}
$$

$$
S(n)=O(\lg n)
$$

integer $C[1: m, 1: k]$
forall i in $1: m, j$ in $1: k$ do $C[i, j]:=0$
end do
forall i in $1: m$ do
for $j:=1$ to k do
Ci, L[(i-1)k+j]] += 1
end do
end do
forall j in $1: k$ do
$\operatorname{R[k]}:=\operatorname{REDUCE}(C[1: m, j],+)$
end do

PRAM model? EREW

Parallel Divide and Conquer

- To solve problem instance P using parallel divide-and-conquer
- divide P into subproblems (possibly in parallel)
- apply D\&C recursively to each subproblem in parallel
- combine subsolutions to produce solution (possibly in parallel)
- Example: sorting
- mergesort
- combining
- subproblems: left/right half of array
- sort each subproblem
- merge results
- quicksort
- partitioning
- subproblems: values less than pivot, values greater than or equal to pivot
- sort each subproblem
- concatenate results

Parallel Mergesort (parallel divide and conquer)

- Assume parallel EREW merge (A, B) for $|\mathrm{A}|=|\mathrm{B}|=\mathrm{O}(\mathrm{n})$ with

$$
\begin{aligned}
& W_{\text {merge }}(n)=O(n) \\
& S_{\text {merge }}(n)=O(\lg n)
\end{aligned}
$$

```
mergesort(V[1:n]) =
if n \leq 1 then S[1:n] := V[1:n]
else
    m := n/2
    {
        R[1:m] = mergesort V[1:m]
        ||
        R[m+1:n] = mergesort V[m+1:n]
    }
    S[1:n] := merge( R[1:m], R[m+1:n] )
endif
return S[1:n]
```

Mergesort complexity (figure)

Parallel Mergesort (forall)

- Assume parallel EREW merge (A, B) for $|A|=|B|=O(n)$ with

$$
\begin{aligned}
& W_{\text {merge }}(n)=O(n) \\
& S_{\text {merge }}(n)=O(\lg n) ~ e x i s t s \text {, but hard }
\end{aligned}
$$

```
mergesort(V[1:n]) =
if n \leq 1 then S[1:n] := V[1:n]
else
    m := n/2
    forall i in 0:1 do
        R[i*m+1 : (i+1)*m] = mergesort V[i*m+1 : (i+1)*m]
    end do
    S[1:n] := merge( R[1:m], R[m+1:2*m] )
endif
return S[1:n]
```

$$
\begin{aligned}
S_{\text {mergesort }}(n) & =o\left(\lg ^{2} n\right) \\
W_{\text {mergesort }}(n) & =O(n \lg n)
\end{aligned}
$$

Parallel Quicksort

- Assume parallel EREW partition (A, p) for $|A|=O(n)$ with

$$
\begin{aligned}
& W_{\text {partition }}(n)=O(n) \\
& S_{\text {partition }}(n)=O(\lg n)
\end{aligned}
$$

```
quicksort(V[1:n]) =
if n < 1 then S[1:n] := V[1:n]
else
    p := V[ random(1:n) ]
    R[1:n], m := partition (V[1:n], p)
    h[0:2] := [0, m, n]
    forall i in 0:1 do
        S[h(i)+1 : h(i+1)] = quicksort R[h(i)+1 : h(i+1)]
    end do
end if
return S[1:n]
```

$$
\begin{aligned}
& \mathrm{S}_{\text {quicksort }}(n)=S\left(\frac{n}{2}\right)+0(\lg n)=0\left(\lg ^{2} n\right) \\
& W_{\text {quicksort }}(n)=2 W\{n / z)+0(n \lambda=0(n \lg n)
\end{aligned}
$$

Quicksort complexity (figure)

$$
O(\lg n / 2) \quad O(n)
$$

Best case: $\mathrm{W}(\mathrm{n})=2 \mathrm{~W}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n}) \rightarrow \mathrm{W}(\mathrm{n})=\mathrm{O}(n \lg n)$

$$
S(n)=S(n / 2)+O(\lg n) \rightarrow S(n)=O\left(\lg ^{2} n\right)
$$

General case: unpredictable number and size of subproblems

Worst case: W(n) $=O\left(n^{2}\right), S(n)=O(n \lg n)$

Planar Convex Hull Problem

- Input
$-S=\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right\}$ set of n points in the plane
- assume x_{i} distinct, y_{i} distinct, and no three points co-linear
- Output
- tour of smallest convex polygon containing all points of S
- Complexity
- $T_{s}^{*}(n)=\Theta(n \lg n)$

Two Parallel Algorithms for Planar Convex Hull

- two divide and conquer algorithms
- combining approach
- partitioning approach
- combining algorithm (like mergesort)
- assume input points presented in order of increasing x coordinate
- can be obtained using $O(n \lg n)$ work, $O\left(\lg ^{2} n\right)$ step sorting algorithm
- optimal worst case performance
- partitioning algorithm (like quicksort)
- no assumptions about order of input points
- suboptimal worst case performance
- very good expected case performance

D\&C algorithm via combining

1. Divide S into $U S, L S$ by line $P_{1}-P_{n}$
2. Compute Upper Convex Path and Lower Convex Path using D\&C algorithm
3. Combine UCP, LCP to construct convex hull

Construction of upper convex path

Divide

Combine (1): find upper common tangent

Recur

Combine (2): create upper convex path

Analysis (Combining algorithm)

- Upper/Lower Convex path
- Find common tangent (UCT/LCT)
- binary search of convex paths to find tangent points [Overmars \& van Leeuwen]
- Sequential: $S(n)=W(n)=O(\lg n)$
- Connect paths
- CREW: $S(n)=O(1), W(n)=O(n)$
- EREW: $S(n)=O(\lg n), W(n)=O(n)$
- Convex Hull
- $S(n)=S(n / 2)+\mathrm{O}(\lg n)$
$-\mathrm{S}(\mathrm{n})=\mathrm{O}\left(\mathrm{lg}^{2} n\right)$
- $W(n)=2 W(n / 2)+O(n)$
- $W(n)=\mathrm{O}(n \lg n)$
- Work-efficient, since $T_{S}(n)=\Theta(n \lg n)$

D\&C algorithm via partitioning

1. Divide S into US, LS by line $P_{i}-P_{j}$ where P_{i}, P_{j} have extremal x coordinates
2. Compute Upper Convex Path and Lower Convex Path using D\&C algorithm
3. Combine UCP, LCP to construct convex hull

Construction of upper convex path

Locate point at max distance from $P_{i}-P_{j}$

Recur: find upper convex paths

Discard interior points and partition remaining points

Combine upper convex paths

Analysis (Partitioning algorithm)

- Upper/Lower Convex path for n points above baseline
- Find point at maximum distance from baseline
- $S(n)=O(\lg n), W(n)=O(n)$
- Partition
- $S(n)=O(\lg n), W(n)=O(n)$
- Combine
- $S(n)=O(\lg n), W(n)=O(n)$
- Convex Hull
- Find extremal points for initial baseline
- $S(n)=O(\lg n), W(n)=O(n)$
- Construct UCP, LCP
- $S(n)=\max \left(S\left(n_{1}\right), S\left(n_{2}\right)\right)+O(\lg n)$
- $W(n)=W\left(n_{1}\right)+W\left(n_{2}\right)+O(n)$

$$
-\mathrm{n}_{1}+\mathrm{n}_{2} \leq \mathrm{n}
$$

- Combine paths
- $S(n)=O(1), W(n)=O(n)$

Analysis of parallel partitioning algorithm

- Analysis
- Expected partition, no points eliminated
- $S(n)=S(n / 2)+O(\lg n)$
$-\mathrm{S}(n)=\mathrm{O}\left(\lg ^{2} n\right)$
- $\mathrm{W}(n)=2 \mathrm{~W}(n / 2)+\mathrm{O}(n)$
- $\mathrm{W}(n)=O(n \lg n)$
- Worst-case partition, no points eliminated
- $S(n)=S(n-1)+O(\lg n)$
$-S(n)=O(n \lg n)$
- $\mathrm{W}(n)=\mathrm{W}(1)+\mathrm{W}(n-1)+\mathrm{O}(n)$
$-\mathrm{W}(n)=\mathrm{O}\left(n^{2}\right)$
- Expected partition, random points in the unit square
$-S(n)=O(\lg n(\lg \lg n))$
- $\mathrm{W}(n)=\mathrm{O}(n \lg \lg n)$

Reminder: Master theorem for recurrence relations

- Recurrence form

$$
\begin{aligned}
& H(n)=a H\left(\frac{n}{b}\right)+f(n) \quad \text { where } \quad a \geq 1, b>1 \\
& H(1)=O(1)
\end{aligned}
$$

- Solution

$$
H(n)=\Theta\left(a^{k}\right)+\Theta\left(\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right)\right)
$$

where $k=\log _{b} n$

Termination condition

- What about "while" inside "forall"?
a) replace with fixed number of iterations
b) detect termination condition

```
forall i in 1:n do
    while s[i] != s[s[i]] do
    s[i] := s[s[i]]
    end do
enddo
```

let h be the max height of a tree in the forest

```
for i := 1 to lg n do
    forall i in 1:n do
        s[i] := s[s[i]]
    end do
enddo
```

(a)

```
Seq(Bool) M[1:n]
repeat
    forall i in 1:n do
        s[i] := s[s[i]]
        M[i] := (s[i] == s[s[i]])
    end do
    t := REDUCE(M[1:n], and)
until (t)
```

(b)
$W(n)=$
$W(n)=$
$S(n)=$
$S(n)=$

