
1PRAM (3)COMP 633 - Prins - FA2020

COMP 633 - Parallel Computing

Lecture 4
Thu Sep 2, 2021

PRAM (3)
PRAM algorithm design techniques

Presenter
Presentation Notes
Announcements: office hours, piazza, email is the best way to reach me, update on accounts (external students pick up account after class)

2PRAM (3)COMP 633 - Prins - FA2020

Topics

• Parallel connected components algorithm
– representation of undirected graph and components
– Illustration of symmetry breaking technique

• We will skip material on Euler tour representation of trees
– section 3.4 of PRAM handout (not assigned)

Presenter
Presentation Notes
Representation is key to many PRAM algs

3PRAM (3)COMP 633 - Prins - FA2020

Algorithm Design Technique: Symmetry breaking
• Technique used to distinguish between identical-looking elements

– graph: all vertices look similar when inspected in parallel
– labeling to break symmetry

• create local differences to be exploited by parallel algorithms
– deterministic, e.g. based on memory address
– random, breaking symmetry on average

• Sample problem
– finding connected components of an undirected graph

Presenter
Presentation Notes
Problem for parallel algorithms trying to find “structure” in parallel. Hard to quickly relate many local views. Various techniques to break symmetry.

4PRAM (3)COMP 633 - Prins - FA2020

Connected components: definitions

• Undirected graph G = (V, E)
– Undirected edge (u, v) connects vertices u and v
– Path from v1 to vk is a sequence of vertices (v1, ..., vk)

with (vi, vi+1) ∈ E

• Connected subgraph
– subset of V with a path between all pairs of vertices

• Connected component (CC)
– maximal connected subgraph

• Finding connected components: sequential complexity
– lower bound

• must examine all V and E
• TS(V, E) = Ω(|V| + |E|)

– upper bound
• use DFS and marking
• TS(V, E) = O(|V| + |E|)

Presenter
Presentation Notes
Applications: in general, identify subgraphs that share some property (relatedness). object segmentation in image processing (contour), 2D and 3D analysis magnetism from ising spin seq CC: use adjacency list representation. pick an unmarked vertex and perform DFS marking one component. Then scan for a remaining unmarked vertex and repeat. (skip if we have not covered Euler tours) In parallel: what about ET to enumerate DFS? Can’t -- these are not connected trees.

5PRAM (3)COMP 633 - Prins - FA2020

Connected Components Algorithm: representation

• Input: undirected graph G = (V,E) with n vertices, m edges
– vertices V: integers in the range 1 .. n
– edges E: length m sequence of (u,v) pairs

• each edge in G represented by one pair only

• Auxiliary graph: directed forest H = (V, P)
– vertices V are the vertices of G
– edges: each vertex u has exactly one outgoing edge (u, P[u])

• u is a root if u = P[u]
• no cycles other than self-cycle at a root
• P defines a set of directed trees in H
• a tree with height ≤ 1 is a rooted star

– interpretation of a tree in H
• P[u] = v ⇒ (u and v are in same component of G)

– each tree is a (not necessarily maximal)
connected subgraph of G

Presenter
Presentation Notes
Auxiliary directed forest H superimposed on G. Edges in P indicate that u and P[u] are in the same component. Each directed tree exists entirely within a component of G. Contract and merge trees to discover the maximal connected components.

6PRAM (3)COMP 633 - Prins - FA2020

• (u, v) is a live edge if
– u and v are in rooted stars in H
– (u, v) is an edge in G
– P[u] ≠ P[v]

• rooted stars joined by a live edge (u,v)
can be merged

P[P[u]] := P[v]

• which merge when multiple choices available?
– arbitrary

• how to prevent long chains and/or cycles
as a result of merging
– symmetry breaking via random mate
– pointer doubling step restores rooted

star property
• when done?

– when no live edges remain

Merging trees in H

live live

live

G edge

live edge

H edge

rooted
star

S1

S2 S3

Presenter
Presentation Notes
Idea: Keep trees as rooted stars, so can find their roots easily. Merge trees when there are live edges between them. Example: three live edges, six possible merges. Live edges drive the merge, so must be careful. S1 can merge to S2 or S3. S2 could merge to S1 via lower edge, S3 via upper edge.If two different stars connected by an edge in G, then the stars should be merged. Which merges? Any will do. What if we create a cycle or a long sequence of merges, then we can’t find root quickly any more. e.g. S1 -> S2 -> S3 -> S1 in example. So prevent long chains using symmetry breaking strategy (TB shown), and retain star property with constant steps. Keep going until no stars can be merged.Why doesn’t this work: always merge to higher numbered (or lower numbered) root? Long chains?

7PRAM (3)COMP 633 - Prins - FA2020

Parallel CC: random mate

• Basic idea
– assign random label from the set {M,F} to each rooted star
– merge rooted stars of opposite label connected by a live edge

• asymmetry – merge roots M to F direction only
• cannot generate merge chains of length > 1 or cyclic chains

– compress trees to rooted stars

M F M F

live edge merge roots
M to F only

compress paths

Presenter
Presentation Notes
sexist, sorry. While M merges to F root, it cannot be the case that F is merging to another root because only M to F merges allowed. Random mate resolves merge direction and prevents long chains, and hence cycles. So then compress to rooted tree only needs a single pointer doubling step.

8PRAM (3)COMP 633 - Prins - FA2020

Parallel CC: progress

• Initial configuration of H
– every vertex is its own connected subgraph
– P[v] = v

• Each step may merge one or more rooted trees in H
• Termination when no live edges remain

(1) (2) (3) (4)

Presenter
Presentation Notes
How come only one merge in step (2)? Random mate disqualified other possible merges. Dark green is new rooted star

9PRAM (3)COMP 633 - Prins - FA2020

Non-determinism due to concurrent writes

• What if a rooted M star has live edges to multiple rooted F stars?
– concurrent write resolution determines result

F M F

or

Presenter
Presentation Notes
Random mate does not make problem deterministic. There may still be live edges to multiple eligible rooted stars.

10PRAM (3)COMP 633 - Prins - FA2020

Random mate CC: code
Input: G = (V, E) with |V| = n, |E| = m
Output: P[1:n], with (P[u] = P[v]) ⇔ (u and v in same component of G)
Auxiliary: g[1:n]

forall v in V do
P[v] := v

end do
while exist-live-edges(G) do

forall v in V do
gender[v] := random({M, F})

enddo
forall (u, v) in E do

if label[P[u]] = M and label[P[v]] = F then
P[P[u]]:=P[v]

endif
end do
forall v in V do

P[v] := P[P[v]]
end do

end do

Presenter
Presentation Notes
How do we know that (u,v) is a live edge? u and v have different labels at the root, hence have different roots. so (u,v) is live.each iteration has W(n)=O(n + m), S(n) = O(1) CRCW CR on P[u] when u has multiple edges and on pointer doubling, CW on p[p[u]] being merged to different stars.Note relabeling of genders on every iteration, to prevent getting stuck early.

11PRAM (3)COMP 633 - Prins - FA2020

Random mate CC: detecting termination

• Are there any remaining live edges?
– An edge (u,v) is live if it connects vertices in different rooted stars

• P[u] ≠ P[v]

– Test all edges, combine results using CW
• O(1) step complexity
• O(m) work complexity

exist-live-edges(G) =
b := false
forall (u, v) in E do

if P[u] ≠ P[v] then b := true
enddo
return b

Presenter
Presentation Notes
W(n)=O(m), S(n)=O(1) CRCW,

12PRAM (3)COMP 633 - Prins - FA2020

Random mate CC: correctness

• loop invariant
– H is a directed forest that includes all vertices in G
– each tree in H is a rooted star
– every rooted star is contained within a component of G

• termination condition
– no live edges

• correctness: (P[u] = P[v]) ⇔ (u and v in same component of G)
– P[u] = P[v] ⇒ u,v in same component

• follows from invariant
– u,v in same component ⇒ P[u] = P[v]

• by contradiction
– assume u,v in same component, therefore path u = w1 , w2 ,...., wn = v in G
– if P[u] ≠ P[v], there must exist (wi,wi+1) in E with P[wi] ≠ P[wi+1]
– (wi , wi+1) is live edge
– contradiction to termination

Presenter
Presentation Notes
w_i are nodes w_1 = u, w_n = v

13PRAM (3)COMP 633 - Prins - FA2020

Random mate CC: complexity
• Each iteration of while-loop

– O(1) steps
– O(n+m) work

• Probability that at a given iteration a live root is joined to another root is at least
1/4
– probability(live root has label M) = ½
– probability(live neighbor root has label F) ≥ ½

• Probability that a given vertex is a live root after 5 lg n iterations is at most 1/n2

• Probability that any vertex is a live root after 5 lg n iterations is at most 1/n

• With probability 1- (1/ nα), RM will have terminated after 5α lg n iterations
– this is definition of “with high probability”

Presenter
Presentation Notes
prob that live root survives an iteration < ¾. Prob that live root survives k iterations < (3/4)^k. For what value of k is (3/4)^k = 1/n^2?k lg (3/4) = lg 1/n^2; k = (-2/lg (3/4)) lg n ~ 4.81 lg n < 5 lg n. Similar analysis shows this holds for (1/n)^alpha.

14PRAM (3)COMP 633 - Prins - FA2020

Random mate: summary
• Complexity

– O(lg n) steps with high probability
– O((n +m) lg n) work with high probability

• not quite work-efficient

• Memory access model
– CR in pointer doubling step
– CW in merging step, termination detection

• arbitrary CRCW

• Improving work-efficiency
– eliminate edges, vertices within each supervertex at each iteration

• factor of 2 reduction in each iteration expected, but not guaranteed
– depends on sparsity and structure of the graph
– O(n + m) work complexity

• step complexity is increased
– O(lg2 n) step complexity

	COMP 633 - Parallel Computing��Lecture 4 �Thu Sep 2, 2021�� PRAM (3) �PRAM algorithm design techniques
	Topics
	Algorithm Design Technique: Symmetry breaking
	Connected components: definitions
	Connected Components Algorithm: representation
	Merging trees in H
	Parallel CC: random mate
	Parallel CC: progress
	Non-determinism due to concurrent writes
	Random mate CC: code
	Random mate CC: detecting termination
	Random mate CC: correctness
	Random mate CC: complexity
	Random mate: summary

