COMP 633 - Parallel Computing

Lecture 4
August 30, 2018

PRAM (3)
PRAM algorithm design techniques

• Reading for next class
 – PRAM handout section 5
Topics

• Parallel connected components algorithm
 – representation of undirected graph and components
 – Illustration of symmetry breaking technique

• We will skip material on Euler tour representation of trees
 – skip section 3.4 of PRAM handout
Algorithm Design Technique: Symmetry breaking

• Technique used to distinguish between identical-looking elements
 – graph: all vertices look similar when inspected in parallel
 – labeling to break symmetry
 • create local differences to be exploited by parallel algorithms
 – deterministic, e.g. based on memory address
 – random, breaking symmetry on average

• Sample problem
 – finding connected components of an undirected graph
Connected components: definitions

- **Undirected graph** $G = (V, E)$
 - Undirected edge (u, v) connects vertices u and v
 - **Path** from v_1 to v_k is a sequence of vertices $(v_1, ..., v_k)$ with $(v_i, v_{i+1}) \in E$

- **Connected subgraph**
 - subset of V with a path between all pairs of vertices

- **Connected component (CC)**
 - maximal connected subgraph

- **Finding connected components: sequential complexity**
 - lower bound
 - must examine all V and E
 - $T_S(V, E) = \Omega(|V| + |E|)$
 - upper bound
 - use DFS and marking
 - $T_S(V, E) = O(|V| + |E|)$
Connected Components Algorithm: representation

• **Input:** undirected graph \(G = (V,E) \) with \(n \) vertices, \(m \) edges
 - vertices \(V \): integers in the range 1 .. \(n \)
 - edges \(E \): length \(m \) sequence of \((u,v)\) pairs
 • each edge in \(G \) represented by one pair only

• **Auxiliary graph:** directed forest \(H = (V, P) \)
 - vertices \(V \) are the vertices of \(G \)
 - edges: each vertex \(u \) has exactly one outgoing edge \((u, P[u])\)
 • \(u \) is a root if \(u = P[u] \)
 • no cycles other than self-cycle at a root
 • \(P \) defines a set of directed trees in \(H \)
 • a tree with height \(\leq 1 \) is a rooted star
 - interpretation of a tree in \(H \)
 • \(P[u] = v \) \(\Rightarrow \) \((u \text{ and } v \text{ are in same component of } G)\)
 • each tree is a (not necessarily maximal) connected subgraph of \(G \)
Merging trees in H

- (u, v) is a *live edge* if
 - u and v are in *rooted stars* in H
 - (u, v) is an edge in G
 - $P[u] \neq P[v]$

-rooted stars joined by a live edge (u,v) can be *merged*
 $$P[P[u]] := P[v]$$

- which merge when multiple choices available?
 - arbitrary
- how to prevent long chains and/or cycles as a result of merging
 - symmetry breaking via random mate
 - pointer doubling step restores rooted star property

- when done?
 - when no live edges remain
Parallel CC: random mate

- **Basic idea**
 - assign random gender in \{M,F\} to each rooted star
 - merge rooted stars of **opposite gender** connected by a live edge
 - asymmetry – merge roots M to F direction only
 - cannot generate merge chains or cyclic merges
 - compress trees to rooted stars
Parallel CC: progress

- Initial configuration of H
 - every vertex is its own connected subgraph
 - $P[v] = v$
- Each step may merge one or more rooted trees in H
- Termination when no live edges remain
Non-determinism due to concurrent writes

- What if a rooted M star has live edges to multiple rooted F stars?
 - concurrent write resolution determines result
Random mate CC: code

Input: $G = (V, E)$ with $|V| = n$, $|E| = m$

Output: $P[1:n]$, with $(P[u] = P[v]) \iff (u$ and v in same component of G)

Auxiliary: $g[1:n]$

```plaintext
forall v in V do
    P[v] := v
end do
while exist-live-edges(G) do
    forall v in V do
        gender[v] := random({M, F})
    enddo
    forall (u, v) in E do
        if gender[P[u]] = M and gender[P[v]] = F then
            P[P[u]] := P[v]
        endif
    end do
    forall v in V do
        P[v] := P[P[v]]
    end do
end do
```
Random mate CC: detecting termination

• Are there any remaining live edges?
 – An edge \((u,v)\) is live if it connects vertices in different rooted stars
 • \(P[u] \neq P[v]\)
 – Test all edges, combine results using CW
 • \(O(1)\) step complexity
 • \(O(m)\) work complexity

```plaintext
exist-live-edges(G) = 
  b := false
  forall \((u, v)\) in E do
    if \(P[u] \neq P[v]\) then b := true
  enddo
return b
```
Random mate CC: correctness

- **loop invariant**
 - H is a directed forest that includes all vertices in G
 - each tree in H is a rooted star
 - every rooted star is contained within a component of G

- **termination condition**
 - no live edges

- **correctness**: \((P[u] = P[v]) \iff (u \text{ and } v \text{ in same component of G}) \)
 - \(P[u] = P[v] \Rightarrow u, v \text{ in same component} \)
 - follows from invariant
 - \(u, v \text{ in same component} \Rightarrow P[u] = P[v] \)
 - by contradiction
 - assume \(u, v \text{ in same component} \), therefore path \(u = w_1, w_2, ..., w_n = v \text{ in G} \)
 - if \(P[u] \neq P[v] \), there must exist \((w_i, w_{i+1}) \text{ in E with } P[w_i] \neq P[w_{i+1}] \)
 - \((w_i, w_{i+1}) \text{ is live edge} \)
 - contradiction to termination
Random mate CC: complexity

• Each iteration of *while*-loop
 – $O(1)$ steps
 – $O(n+m)$ work

• Probability that at a given iteration a live root is joined to another root is at least $1/4$
 – probability(live root has gender M) = $\frac{1}{2}$
 – probability(live neighbor root has gender F) $\geq \frac{1}{2}$

• Probability that a given vertex is a live root after $5 \log n$ iterations is at most $1/n^2$

• Probability that *any* vertex is a live root after $5 \log n$ iterations is at most $1/n$

• With probability $1- (1/ n^{\alpha})$, RM will have terminated after $5\alpha \log n$ iterations
 – this is definition of “with high probability”
Random mate: summary

• Complexity
 – $O(\lg n)$ steps with high probability
 – $O((n + m) \lg n)$ work with high probability
 • not quite work-efficient

• Memory access model
 – CR in pointer doubling step
 – CW in merging step, termination detection
 • arbitrary CRCW

• Improving work-efficiency
 – eliminate edges, vertices within each supervertex at each iteration
 • factor of 2 reduction in each iteration expected, but not guaranteed
 – depends on sparsity and structure of the graph
 – $O(n + m)$ work complexity
 • step complexity is increased
 – $O(\lg^2 n)$ step complexity