COMP 633 - Parallel Computing

Lecture 4
Thu Sep 2, 2021

PRAM (3)
PRAM algorithm design techniques
Topics

• Parallel connected components algorithm
 – representation of undirected graph and components
 – Illustration of symmetry breaking technique

• We will skip material on Euler tour representation of trees
 – section 3.4 of PRAM handout (not assigned)
Algorithm Design Technique: Symmetry breaking

• Technique used to distinguish between identical-looking elements
 – graph: all vertices look similar when inspected in parallel
 – labeling to break symmetry
 • create local differences to be exploited by parallel algorithms
 – deterministic, e.g. based on memory address
 – random, breaking symmetry on average

• Sample problem
 – finding connected components of an undirected graph
Connected components: definitions

- **Undirected graph** $G = (V, E)$
 - Undirected edge (u, v) connects vertices u and v
 - **Path** from v_1 to v_k is a sequence of vertices (v_1, \ldots, v_k) with $(v_i, v_{i+1}) \in E$

- **Connected subgraph**
 - subset of V with a path between all pairs of vertices

- **Connected component (CC)**
 - maximal connected subgraph

- **Finding connected components: sequential complexity**
 - lower bound
 - must examine all V and E
 - $T_S(V, E) = \Omega(|V| + |E|)$
 - upper bound
 - use DFS and marking
 - $T_S(V, E) = O(|V| + |E|)$
Connected Components Algorithm: representation

- **Input:** undirected graph $G = (V,E)$ with n vertices, m edges
 - vertices V: integers in the range $1 .. n$
 - edges E: length m sequence of (u,v) pairs
 - each edge in G represented by one pair only

- **Auxiliary graph:** directed forest $H = (V, P)$
 - vertices V are the vertices of G
 - edges: each vertex u has exactly one outgoing edge $(u, P[u])$
 - u is a root if $u = P[u]$
 - no cycles other than self-cycle at a root
 - P defines a set of directed trees in H
 - a tree with height ≤ 1 is a rooted star
 - interpretation of a tree in H
 - $P[u] = v \Rightarrow (u$ and v are in same component of $G)$
 - each tree is a (not necessarily maximal) connected subgraph of G
Merging trees in H

- (u, v) is a *live edge* if
 - u and v are in *rooted stars in* H
 - (u, v) is an edge in G
 - $P[u] \neq P[v]$
- rooted stars joined by a live edge (u,v) can be *merged*
 \[P[P[u]] := P[v] \]
- which merge when multiple choices available?
 - arbitrary
- how to prevent long chains and/or cycles as a result of merging
 - symmetry breaking via random mate
 - pointer doubling step restores rooted star property
- when done?
 - when no live edges remain
Parallel CC: random mate

- Basic idea
 - assign random label from the set \{M,F\} to each rooted star
 - merge rooted stars of **opposite label** connected by a live edge
 - asymmetry – merge roots M to F direction only
 - cannot generate merge chains of length > 1 or cyclic chains
 - compress trees to rooted stars

![Diagram of parallel CC: random mate](image)
Parallel CC: progress

- Initial configuration of H
 - every vertex is its own connected subgraph
 - $P[v] = v$
- Each step may merge one or more rooted trees in H
- Termination when no live edges remain
Non-determinism due to concurrent writes

- What if a rooted M star has live edges to multiple rooted F stars?
 - concurrent write resolution determines result
Random mate CC: code

Input: \(G = (V, E) \) with \(|V| = n, |E| = m\)

Output: \(P[1:n], \) with \((P[u] = P[v]) \iff (u \text{ and } v \text{ in same component of } G)\)

Auxiliary: \(g[1:n] \)

```plaintext
forall v in V do
    P[v] := v
end do
while exist-live-edges(G) do
    forall v in V do
        gender[v] := random({M, F})
    enddo
    forall (u, v) in E do
        if label[P[u]] = M and label[P[v]] = F then
            P[P[u]] := P[v]
        endif
    end do
    forall v in V do
        P[v] := P[P[v]]
    end do
end do
```
Random mate CC: detecting termination

- Are there any remaining live edges?
 - An edge \((u,v)\) is live if it connects vertices in different rooted stars
 - \(P[u] \neq P[v]\)

- Test all edges, combine results using CW
 - \(O(1)\) step complexity
 - \(O(m)\) work complexity

```plaintext
exist-live-edges(G) =
    b := false
    forall (u, v) in E do
        if P[u] \neq P[v] then b := true
    enddo
    return b
```
Random mate CC: correctness

- loop invariant
 - H is a directed forest that includes all vertices in G
 - each tree in H is a rooted star
 - every rooted star is contained within a component of G

- termination condition
 - no live edges

- correctness: \((P[u] = P[v]) \iff (u \text{ and } v \text{ in same component of } G) \)
 - \(P[u] = P[v] \Rightarrow u,v \text{ in same component} \)
 - follows from invariant
 - \(u,v \text{ in same component} \Rightarrow P[u] = P[v] \)
 - by contradiction
 - assume \(u,v \text{ in same component} \), therefore path \(u = w_1, w_2, \ldots, w_n = v \text{ in } G \)
 - if \(P[u] \neq P[v] \), there must exist \((w_i, w_{i+1}) \in E \text{ with } P[w_i] \neq P[w_{i+1}] \)
 - \((w_i, w_{i+1}) \text{ is live edge} \)
 - contradiction to termination
Random mate CC: complexity

- Each iteration of while-loop
 - $O(1)$ steps
 - $O(n+m)$ work

- Probability that at a given iteration a live root is joined to another root is at least $1/4$
 - probability(live root has label M) = $1/2$
 - probability(live neighbor root has label F) $\geq 1/2$

- Probability that a given vertex is a live root after $5 \log n$ iterations is at most $1/n^2$

- Probability that any vertex is a live root after $5 \log n$ iterations is at most $1/n$

- With probability $1 - (1/n^\alpha)$, RM will have terminated after $5\alpha \log n$ iterations
 - this is definition of “with high probability”
Random mate: summary

• Complexity
 – $O(\lg n)$ steps with high probability
 – $O((n + m) \lg n)$ work with high probability
 • not quite work-efficient

• Memory access model
 – CR in pointer doubling step
 – CW in merging step, termination detection
 • arbitrary CRCW

• Improving work-efficiency
 – eliminate edges, vertices within each supervertex at each iteration
 • factor of 2 reduction in each iteration expected, but not guaranteed
 – depends on sparsity and structure of the graph
 – $O(n + m)$ work complexity
 • step complexity is increased
 – $O(\lg^2 n)$ step complexity