

COMP 633 - Parallel Computing

Lecture 4 Thu Sep 2, 2021

PRAM (3) PRAM algorithm design techniques

Topics

- Parallel connected components algorithm
 - representation of undirected graph and components
 - Illustration of symmetry breaking technique
- We will skip material on Euler tour representation of trees
 - section 3.4 of PRAM handout (not assigned)

Algorithm Design Technique: Symmetry breaking

- Technique used to distinguish between identical-looking elements
 - graph: all vertices look similar when inspected in parallel
 - labeling to break symmetry
 - create local differences to be exploited by parallel algorithms
 - deterministic, e.g. based on memory address
 - random, breaking symmetry on average
- Sample problem
 - finding connected components of an undirected graph

Connected components: definitions

- Undirected graph G = (V, E)
 - Undirected edge (u, v) connects vertices u and v
 - Path from v_1 to v_k is a sequence of vertices $(v_1, ..., v_k)$ with $(v_i, v_{i+1}) \in E$
- Connected subgraph
 - subset of V with a path between all pairs of vertices
- Connected component (CC)
 - maximal connected subgraph
- Finding connected components: sequential complexity
 - lower bound
 - must examine all V and E
 - $T_{S}(V, E) = \Omega(|V| + |E|)$
 - upper bound
 - use DFS and marking
 - $T_{S}(V, E) = O(|V| + |E|)$

Connected Components Algorithm: representation

- Input: <u>undirected</u> graph G = (V, E) with *n* vertices, *m* edges
 - vertices V: integers in the range 1 .. n
 - edges E: length m sequence of (u, v) pairs
 - each edge in *G* represented by one pair only
- Auxiliary graph: <u>directed</u> forest H = (V, P)
 - vertices V are the vertices of G
 - edges: each vertex u has exactly one outgoing edge (u, P[u])
 - *u* is a root if *u* = *P*[*u*]
 - no cycles other than self-cycle at a root
 - P defines a set of directed trees in H
 - a tree with height ≤ 1 is a rooted star
 - interpretation of a tree in H
 - $P[u] = v \implies (u \text{ and } v \text{ are in same component of } G)$
 - each tree is a (not necessarily maximal) connected subgraph of G

Merging trees in H

- (*u*, *v*) is a *live edge* if
 - u and v are in rooted stars in H
 - (*u, v*) is an edge <u>in *G*</u>
 - $-P[u] \neq P[v]$
- rooted stars joined by a live edge (u,v) can be *merged*

P[P[u]] := P[v]

- which merge when multiple choices available?
 - arbitrary
- how to prevent long chains and/or cycles as a result of merging
 - symmetry breaking via random mate
 - pointer doubling step restores rooted star property
- when done?
 - when no live edges remain

Parallel CC: random mate

- Basic idea
 - assign random label from the set {M,F} to each rooted star
 - merge rooted stars of opposite label connected by a live edge
 - asymmetry merge roots M to F direction only
 - cannot generate merge chains of length > 1 or cyclic chains
 - compress trees to rooted stars

Parallel CC: progress

- Initial configuration of H
 - every vertex is its own connected subgraph
 - P[v] = v
- Each step may merge one or more rooted trees in H
- Termination when no live edges remain

Non-determinism due to concurrent writes

- What if a rooted M star has live edges to multiple rooted F stars?
 - concurrent write resolution determines result

Random mate CC: code

```
Input: G = (V, E) with |V| = n, |E| = m
Output: P[1:n], with (P[u] = P[v]) \Leftrightarrow (u \text{ and } v \text{ in same component of } G)
Auxiliary: g[1:n]
forall v in V do
  P[v] := v
end do
while exist-live-edges(G) do
   forall v in V do
       gender[v] := random({M, F})
   enddo
   forall (u, v) in E do
       if label[P[u]] = M and label[P[v]] = F then
           P[P[u]] := P[v]
       endif
   end do
   forall v in V do
      P[v] := P[P[v]]
   end do
end do
```

Random mate CC: detecting termination

- Are there any remaining live edges?
 - An edge (u,v) is live if it connects vertices in different rooted stars
 - P[u] ≠ P[v]
 - Test all edges, combine results using CW
 - O(1) step complexity
 - O(m) work complexity

```
exist-live-edges(G) =
   b := false
   forall (u, v) in E do
        if P[u] ≠ P[v] then b := true
   enddo
   return b
```

Random mate CC: correctness

- loop invariant
 - H is a directed forest that includes all vertices in G
 - each tree in H is a rooted star
 - every rooted star is contained within a component of G
- termination condition
 - no live edges
- correctness: $(P[u] = P[v]) \Leftrightarrow (u \text{ and } v \text{ in same component of } G)$
 - $P[u] = P[v] \Rightarrow u,v$ in same component
 - follows from invariant
 - u,v in same component \Rightarrow P[u] = P[v]
 - by contradiction
 - assume u,v in same component, therefore path $u = w_1$, w_2 ,..., $w_n = v$ in G
 - if $P[u] \neq P[v]$, there must exist (w_i, w_{i+1}) in E with $P[w_i] \neq P[w_{i+1}]$
 - $(w_{i}% ^{\prime},w_{i+1})$ is live edge
 - contradiction to termination

Random mate CC: complexity

- Each iteration of while-loop
 - O(1) steps
 - O(*n*+*m*) work
- Probability that at a given iteration a live root is joined to another root is at least 1/4
 - probability(live root has label M) = $\frac{1}{2}$
 - probability(live neighbor root has label F) \geq $\frac{1}{2}$
- Probability that a given vertex is a live root after 5 lg *n* iterations is at most $1/n^2$
- Probability that <u>any</u> vertex is a live root after 5 lg *n* iterations is at most 1/*n*
- With probability 1- (1/ n^{α}), RM will have terminated after 5 α lg *n* iterations
 - this is definition of "with high probability"

Random mate: summary

- Complexity
 - O(lg *n*) steps with high probability
 - $O((n + m) \lg n)$ work with high probability
 - not quite work-efficient
- Memory access model
 - CR in pointer doubling step
 - CW in merging step, termination detection
 - arbitrary CRCW
- Improving work-efficiency
 - eliminate edges, vertices within each supervertex at each iteration
 - factor of 2 reduction in each iteration expected, but not guaranteed
 - depends on sparsity and structure of the graph
 - O(n + m) work complexity
 - step complexity is increased
 - O(lg² n) step complexity