
COMP 633 - Parallel Computing

Lecture 5
Sep 2, 2021

PRAM (4)
The relative power of different PRAM models

PRAM (4)COMP 633 - Prins

2PRAM (4)COMP 633 - Prins

Topics
• Comparison of PRAM models

– relative performance of EREW, CREW, and CRCW models
• separated by lower bounds for key problems
• related by simulation results

• Restricted CR/CW models

• Abstract computational complexity classes
– inherently sequential problems?

• Work-Time and PRAM model
– advantages
– disadvantages

3PRAM (4)COMP 633 - Prins

Comparison of PRAM memory models
• Some specific problems illustrate asymptotic advantage of CR and CW

– Assume p processor PRAM (so not WT model)

– Copy problem
• given scalar y in shared memory, create vector R[1:p] with R[i] = y for 1 ≤ i ≤ p

EREW: TC (p) = Θ(lg p)
CREW, CRCW: TC (p) = Θ(1)

– Maximum problem (comparison-based)
• given X[1:p] in shared memory, find maximum value m in X

EREW, CREW: TC (p) = Θ(lg p)
arbitrary CRCW: TC (p) = Θ(lg lg p)
max-combining CRCW: TC (p) = Θ(1)

• These problems illustrate that
EREW < CREW < arbitrary CRCW < combining CRCW

where A < B means that some problem can be solved asymptotically faster using
model B than using model A

Presenter
Presentation Notes
we will look at two problems to illustrate the effect of different models. Note we are descending to PRAM model. Comparison based => unit time comparison of values cf. bit model. Also note that we have big theta, so we are interested in lower bounds and upper bounds, which is always challenging since quantifying over all algorithms, known or unknown. Don’t try to explain any bound that we didn’t dervice yet.

4PRAM (4)COMP 633 - Prins

Power of concurrent reads: Copy problem
• EREW Upper bound: O(lg p) time

– how?
• EREW Lower bound: Ω(lg p) time

– consider a step consisting of an EREW PRAM read and write
operation.

• step 1
– at the start of step 1, only one copy of the value y exists
– Only one processor can read it and write it back to a new location

• step 2
– at the start of step 2, two copies of the value exist
– two processors can each read one value simultaneously and write it back

simultaneously to distinct locations
• step (lg p)

– at most 2(lg p)-1 = p/2 copies exist, p/2 processors copy them
simultaneously yielding p copies.

• therefore Ω(lg p) steps are needed for p processors to read a single
value

• CREW upper and lower bound: Θ(1) time
– trivial

Presenter
Presentation Notes
Upper bound using parallel prefix. EREW lower bound. Asymptotically best performance when value is replicated a constant number k times per step. In handout we generalize to choosing k as a function of p gives k(\lg_k p) time, and this is minimized when k = \Theta(1). Once we see that k is a constant, we see that k = 2 is the best choice.

5PRAM (4)COMP 633 - Prins

CRCW fast maximum - WT formulation
Input: X[1:n]
Output: m =

Auxiliary: B[1:n]

forall i in 1 : n do
B[i] := 1

enddo

forall (i,j) in {1..n} × {1..n} do
if X[i] < X[j] then

B[i] := 0
endif

enddo

forall i in 1 : n do
if B[i] = 1 then

m := X[i]
endif

enddo

max
i∈1:n

X[i]

Power of concurrent writes: Maximum problem

• Find maximum m of sequence X =
<x1, ..., xn>
– EREW algorithm:

• S(n) = Θ(lg n) , W(n) = Θ(n)
– CRCW algorithm

• S(n) =
• W(n) =

1
7
3

1 7 3 4

4

X
X

B

Presenter
Presentation Notes
Why (lg n) step complexity for max under EREW model? This comes from lower bound for non-trivial functions such as boolean-OR over n values in EREW model (non-trivial means that any of the n input values can determine the value of the result: for max consider all –inf inputs, any single changed input determines result). The argument is similar to the EREW copy propagation, but now is analyzed from the point of view of the fan-in tree to compute the output value, given that any of the n input values can determine the result (as is the case for max and boolean-OR). Only a single write of the result can take place in the last, step, hence we can have at most a constant number of sub-results the step before, etc. leading to (lg n) steps. CRCW: S(n) = O(1), W(n) = O(n^2) (!!) Fast, but not work efficient.

6PRAM (4)COMP 633 - Prins

Work-efficient CRCW Maximum
1. Apply CRCW fast max to inputs organized into a very shallow tree

place values at leaves of doubly-logarithmic depth tree
• assume n = 22k for some k > 0, so k = lg lg n

• branching factor at level 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 is 22𝑘𝑘−𝑖𝑖(add last level k+1 with bf 2)
• apply fast maximum in parallel to all nodes in a level

• total work at each level is O(n), number of levels is O(lg lg n)
• S1(n) = O(lg lg n), W1(n) = O(n lg lg n) better but still not work efficient

2. In parallel apply sequential max to groups of (lg lg n) elements of input
• let m = n / (lg lg n)
• S2(n) = O(lg lg n), W2(n) = O(mS2(n)) = O(n)

3. Cascade (1) and (2) to construct work-efficient fast maximum
• S(n) = S1(m)+S2(n) = O(lg lg n), W(n) = W1(m)+ W2(n) = O(n)

4. CRCW PRAM-level upper bound for maximum
• Brent’s theorem with n = p: TC (p,p) = O(p/p + lg lg p) = O(lg lg p)

CRCW PRAM-level lower bound for maximum: Ω(lg lg p) [hard]

Presenter
Presentation Notes
We need to cascade to make O(1) time max work efficient, and slows it down to  (lg lg p) time. This is also a lower bound for work-efficient CRCW max, so this is an optimal result.

8PRAM (4)COMP 633 - Prins

Quantifying relative power of CR/CW
• Lower bound: from example problems

– Ω(lg p) slowdown of p-processor EREW PRAM over p-processor CREW
or CRCW PRAM

– guaranteed for some problems

• Upper bound: by simulation argument
– O(lg p) slowdown in p-proc EREW PRAM simulation of p-proc CRCW PRAM

• Depends on existence of EREW algorithm to sort p values in O(lg p) steps using p
processors [Cole]

– To simulate a single CR step using EREW PRAM
• sort all addresses being read
• identify unique addresses
• EREW read of unique addresses
• replicate (COPY) results to match number of reads (copy)

– To simulate a single CW step using EREW PRAM
• sort all (addr, new value) pairs
• implement CW resolution strategy using parallel prefix
• EREW write of surviving (addr, value) pairs

Presenter
Presentation Notes
really need to introduce segmented prefix operations, or wave hands with max-scan and an encoding of addresses and values (for arb CW resolution).

9PRAM (4)COMP 633 - Prins

PRAM shared memory system

• PRAM model
– assumes access latency is constant, regardless of value of p
– includes CR and/or CW

• Physically impossible
– processors and memory occupy finite volume p and m

• speed of light dictates increasing latency

– CR / CW must be reduced to ER / EW
• requires Ω(lg p) time in general case

p

shared memory

1 2 • • •
processors

()()31mpL +Ω=

10PRAM (4)COMP 633 - Prins

Restricted CR / CW models
• unbounded CR and CW are expensive to implement

– multi-stage combining and expansion network with lg p depth
• NYU Ultracomputer, SB-PRAM

• restricted models with more efficient implementations
– QRQW - queued read / queued write

• cost of reference proportional to number of concurrent readers / writers
– single-value broadcast

• fundamental for SIMD operation
• (simple) custom network

– concurrent write of single shared location (bit)
• fundamental for SIMD operation

– O(1) detection if any processor is enabled
• (simple) custom network: write combining via logical OR
• example: maximum problem in bit model

Presenter
Presentation Notes
bcast is kind of concurrent read. Many parallel machines (e.g. Blue gene) have custom broadcast and reduction networks

11PRAM (4)COMP 633 - Prins

Bit-serial CRCW maximum algorithm

• S(n) = O(b)
• W(n) = O(bn)

Bit-serial CRCW fast maximum
Input: X[1:n] b-bit unsigned int
Output: m =

Auxiliary: B[1:n] single-bit values
c single-bit CRCW value

forall i in 1 : n do
B[i] := 1

enddo
m := 0
for k := b-1 downto 0 do

c := 0
forall i in 1 : n do

if (B[i] & (X[i] bit k)) then
c := 1

endif
B[i] := B[i] & (c == (X[i] bit k))

enddo
(m bit k) := c

enddo

max
i∈1:n

X[i]

Presenter
Presentation Notes
Show that you can get fast algorithms using restricted model CRCW
ex: 011, 101, 100. Used in pxpl for detecting visibility of a polygon in a scene. polygon pixels projected on 2D screen, each has a z value. Pixel with z value closest to observer wins. Gets much more complicated with transparency

12PRAM (4)COMP 633 - Prins

Relation of (P)RAM complexity classes

• Complexity class P
– problems with polynomial time

complexity on RAM
• W(n) = S(n) = O(nO(1)) in W-T model

• Complexity class NC
– problems in P with fast parallel

algorithms
• W(n) = O(nO(1)) polynomial work
• S(n) = O(lgO(1) n) poly-logarithmic

step complexity
– very coarse form of work-efficiency

• (P – NC)
– “inherently sequential” problems

NP

P

NC

Presenter
Presentation Notes
Before leaving PRAM, which is theoretical model, take a quick look at what is known about PRAM and abstract computational complexity. Just as we all know about the question P ?= NP in sequential computation, for us the question is whether there are “good” parallel algorithms for all polynomial time problems. NC (Nick’s Class – Nick Pippinger) is defined as the problems of P (polynomial work) that can be computed with polylogartihmic steps. Very coarse work efficiency, since we can, e.g. convert an n^2 work problem to n^5, so that wouldn’t be very practical. . The most interesting question is if P – NC is nonempty, in which case there are “inherently sequential” problems. Less useful, if P != NP, there surely are good parallel algs for NP complete problems by defn, but parallelism doesn’t make much of a dent in exponential work complexity). Just as with sequential computation, there are some fundamental open issues, but here their relevance is less clear.

13PRAM (4)COMP 633 - Prins

Inherently Sequential Problems
• Polynomial Time complete (P-complete) problems

– H is P-complete if
• H ∈ P
• for all A ∈ P, A is log-space (RAM) reducible to H

– P-complete problem
• Circuit Value Problem (CVP)

– P-complete by reduction to CVP
• maximum flow in network, CFG parsing,

(predicate logic) unification

• Can we find a fast parallel algorithm for a
P-complete problem?

– H ∈ NC and H is P-complete implies P = NC
– no luck yet

• Conjecture: (P – NC) ≠ ∅
– if true

• there exist “inherently sequential” problems
• of limited consequence due to coarse definition of NC

NP

NP-complete

P

P-complete

NC

Presenter
Presentation Notes
Just as with the question P =? NP, we can establish the notion of P-complete problems, the hardest problems in Ptime: any other problem in P can be reduced to them. Note that log-space RAM reducible roughly means polynomial work, polylog steps.

What would it mean for P-NC to be nonempty? There exist some problems that do not have log step parallel algorithms. But many of these problems are n^k work, so even a parallel n^(k-1) step algorithm could be useful in practice. So not a show stopper, but does confirm some things are hard to do very quickly in parallel.

What would it mean for P-NC to be empty? Apparently all problems would have fast parallel algorithms. But since the notion of work efficiency is so coarse, we might get a fast algorithm with polynomial greater work complexity, which is useless in practice. So not a show stopper, but would suggest that there are fast “tricks” for every practical problem. Unlikely.

14PRAM (4)COMP 633 - Prins

W-T and PRAM models - conclusions
• Strengths of W-T and PRAM models

– Ignore memory access costs
– Source-level complexity metrics simplify analysis
– Widely developed body of techniques
– W-T programs are simple and expressive

• Liabilities of W-T and PRAM models
– memory access cost is not constant in real life

• already true with RAM model
– random memory access time is Ω(|mem|1/3) in 3D space with speed of

light restrictions
– this is the reason for cache memories in modern processors

• even less accurate for PRAM model
– random memory access time is Ω((p+|mem|)1/3)
– CR / CW implementations require Ω(lg p) time with present technologies
– switching and bandwidth issues complicate situation further

15PRAM (4)COMP 633 - Prins

W-T and PRAM model - conclusions

• Liabilities of W-T and PRAM models
– Source-level complexity metrics oversimplify analysis

• given two implementations
– efficient sequential algorithm S on sequential computer
– work-efficient and fast parallel algorithm C on PRAM-like parallel computer

• for sufficiently large n, there exists p such that Tc(n,p) < Ts(n)
– parallel algorithm is guaranteed to run faster

• but p (and n) may be impractically large
– p is not a truly scalable parameter in practice

– Widely developed body of unrealistic techniques
• extensive use of asymptotically efficient but impractical building blocks

– fast and efficient sorting, efficient pointer jumping, etc.

– W-T programs may not be able to fully express efficient
implementations

• homework problem 1

	COMP 633 - Parallel Computing��Lecture 5 �Sep 2, 2021�� PRAM (4) �The relative power of different PRAM models
	Topics
	Comparison of PRAM memory models
	Power of concurrent reads: Copy problem
	Power of concurrent writes: Maximum problem
	Work-efficient CRCW Maximum
	Quantifying relative power of CR/CW
	PRAM shared memory system
	Restricted CR / CW models
	Bit-serial CRCW maximum algorithm
	Relation of (P)RAM complexity classes
	Inherently Sequential Problems
	W-T and PRAM models - conclusions
	W-T and PRAM model - conclusions

