Lecture 5
September 4, 2018

PRAM (4)
PRAM models and complexity

• Reading for Thursday
 – Memory hierarchy and cache-based systems
Topics

• Comparison of PRAM models
 – relative performance of EREW, CREW, and CRCW models
 • separated by lower bounds for key problems
 • related by simulation results

• Restricted CR/CW models

• Abstract computational complexity classes
 – inherently sequential problems?

• Work-Time and PRAM model
 – advantages
 – disadvantages
Comparison of PRAM memory models

• Some specific problems illustrate asymptotic advantage of CR and CW
 – Assume p processor PRAM (so not WT model)

 – Copy problem
 • given scalar y in shared memory, create vector R[1:p] with \(R[i] = y \) for \(1 \leq i \leq p \)

 \[
 \begin{align*}
 \text{EREW:} & \quad T_C(p) = \Theta(lg p) \\
 \text{CREW, CRCW:} & \quad T_C(p) = \Theta(1)
 \end{align*}
 \]

 – Maximum problem (comparison-based)
 • given \(X[1:p] \) in shared memory, find maximum value \(m \) in \(X \)

 \[
 \begin{align*}
 \text{EREW, CREW:} & \quad T_C(p) = \Theta(lg p) \\
 \text{arbitrary CRCW:} & \quad T_C(p) = \Theta(lg lg p) \\
 \text{max-combining CRCW:} & \quad T_C(p) = \Theta(1)
 \end{align*}
 \]

• These problems illustrate that
 \(\text{EREW} < \text{CREW} < \text{arbitrary CRCW} < \text{combining CRCW} \)

where \(A < B \) means that in model \(B \) some problems can be solved asymptotically faster than in model \(A \)
Power of concurrent reads: Copy problem

- **EREW Upper bound: O(lg p) time**
 - how?

- **EREW Lower bound: \(\Omega(lg p) \) time**
 - consider a step consisting of an EREW PRAM read and write operation.
 - **step 1**
 - at the start of step 1, only one copy of the value \(y \) exists
 - Only one processor can read it and write it back to a new location
 - **step 2**
 - at the start of step 2, two copies of the value exist
 - two processors can read them simultaneously and write them back to two new locations.
 - **step \((lg \ p)\)**
 - at most \(2^{(lg \ p) - 1} = p/2 \) copies exist, \(p/2 \) processors can copy them simultaneously yielding \(p \) copies.
 - therefore \(\Omega(lg \ p) \) steps are needed for \(p \) processors to read a single value

- **CREW upper and lower bound: \(\Theta(1) \) time**
 - trivial
Power of concurrent writes: Maximum problem

- Find maximum \(m \) of sequence \(X = <x_1, ..., x_n> \)
 - EREW algorithm:
 - \(S(n) = \Theta(\log n) \), \(W(n) = \Theta(n) \)
 - CRCW algorithm
 - \(S(n) = \)
 - \(W(n) = \)

CRCW fast maximum - WT formulation

Input: \(X[1:n] \)

Output: \(m = \max_{i \in 1:n} X[i] \)

Auxiliary: \(B[1:n] \)

forall \(i \) in 1 : n do
\[
B[i] := 1
\]
endo

do
forall \((i,j) \) in \{1..n\} \times \{1..n\} do
\[
\text{if } X[i] < X[j] \text{ then }
B[i] := 0
\]
edo
endo

do
forall \(i \) in 1 : n do
\[
\text{if } B[i] = 1 \text{ then }
m := X[i]
\]
edo
endo
Work-efficient CRCW Maximum

1. Apply CRCW fast max to inputs organized into a very shallow tree place values at leaves of doubly-logarithmic depth tree
 - assume \(n = 2^{2^k} \) for some \(k > 0 \), so \(k = \log \log n \)
 - branching factor at level \(1 \leq i \leq k \) is \(2^{2^{k-i}} \) (add last level \(k+1 \) with bf 2)
 - apply fast maximum in parallel to all nodes in a level
 - total work at each level is \(O(n) \), number of levels is \(O(\log \log n) \)
 - \(S_1(n) = O(\log \log n) \), \(W_1(n) = O(n \log \log n) \) better but still not work efficient

2. In parallel apply sequential max to groups of \((\log \log n)\) elements of input
 - let \(m = n / (\log \log n) \)
 - \(S_2(n) = O(\log \log n) \), \(W_2(n) = O(mS_2(n)) = O(n) \)

3. Cascade (1) and (2) to construct work-efficient fast maximum
 - \(S(n) = S_1(m) + S_2(n) = O(\log \log n) \), \(W(n) = W_1(m) + W_2(n) = O(n) \)

4. CRCW PRAM-level upper bound for maximum
 - Brent’s theorem with \(n = p \): \(T_C(p, p) = O(p/p + \log \log p) = O(\log \log p) \)

CRCW PRAM-level lower bound for maximum: \(\Omega(\log \log p) \) [hard]
Quantifying relative power of CR/CW

- **Lower bound: from example problems**
 - $\Omega(\lg p)$ slowdown of p-processor EREW PRAM over p-processor CREW or CRCW PRAM
 - guaranteed for some problems

- **Upper bound: by simulation argument**
 - $O(\lg p)$ slowdown in p-proc EREW PRAM simulation of p-proc CRCW PRAM
 - Depends on existence of EREW algorithm to sort p values in $O(\lg p)$ steps using p processors [Cole]
 - To simulate a single CR step using EREW PRAM
 - sort all addresses being read
 - identify unique addresses
 - EREW read of unique addresses
 - replicate (COPY) results to match number of reads (copy)
 - To simulate a single CW step using EREW PRAM
 - sort all (addr, new value) pairs
 - implement CW resolution strategy using parallel prefix
 - EREW write of surviving (addr, value) pairs
PRAM shared memory system

- **PRAM model**
 - assumes access latency is constant, regardless of value of p
 - includes CR and/or CW

- **Physically impossible**
 - processors and memory occupy finite volume p and m
 - speed of light dictates increasing latency
 \[L = \Omega((p+m)^{1/3}) \]
 - CR / CW must be reduced to ER / EW
 - requires $\Omega(\lg p)$ time in general case
Restricted CR / CW models

- unbounded CR and CW are expensive to implement
 - multi-stage combining and expansion network with $\lg p$ depth
 - NYU Ultracomputer, SB-PRAM

- restricted models with more efficient implementations
 - QRQW - queued read / queued write
 - cost of reference proportional to number of concurrent readers / writers
 - single-value broadcast
 - fundamental for SIMD operation
 - (simple) custom network
 - concurrent write of single shared location (bit)
 - fundamental for SIMD operation
 - $O(1)$ detection if any processor is enabled
 - (simple) custom network: write combining via logical OR
 - example: maximum problem in bit model
Bit-serial CRCW maximum algorithm

- \(S(n) = O(b) \)
- \(W(n) = O(bn) \)

Bit-serial CRCW fast maximum

Input: \(X[1:n] \) \(b \)-bit unsigned int

Output: \(m = \max_{i \in 1:n} X[i] \)

Auxiliary: \(B[1:n] \) single-bit values
\(c \) single-bit CRCW value

```plaintext
forall i in 1 : n do
    B[i] := 1
endo moto
m := 0
for k := b-1 downto 0 do
    c := 0
    forall i in 1 : n do
        if (B[i] & (X[i] bit k)) then
            c := 1
        endif
        B[i] := B[i] & (c == (X[i] bit k))
    enddo
    (m bit k) := c
endo
```

max \(\max_{i \in 1:n} X[i] \)
Relation of (P)RAM complexity classes

- **Complexity class P**
 - problems with polynomial time complexity on RAM
 - \(W(n) = S(n) = O(n^{O(1)}) \) in W-T model

- **Complexity class NC**
 - problems in P with fast parallel algorithms
 - \(W(n) = O(n^{O(1)}) \) polynomial work
 - \(S(n) = O(\lg^{O(1)} n) \) poly-logarithmic step complexity
 - very coarse form of work-efficiency

- **(P – NC)**
 - “inherently sequential” problems
Inherently Sequential Problems

- Polynomial Time complete (P-complete) problems
 - H is P-complete if
 - H ∈ P
 - for all A ∈ P, A is log-space (RAM) reducible to H
 - P-complete problem
 - Circuit Value Problem (CVP)
 - P-complete by reduction to CVP
 - maximum flow in network, CFG parsing, (predicate logic) unification

- Can we find a fast parallel algorithm for a P-complete problem?
 - H ∈ NC and H is P-complete implies P = NC
 - no luck yet

- Conjecture: (P – NC) ≠ ∅
 - if true
 - there exist “inherently sequential” problems
 - of limited consequence due to coarse definition of NC
W-T and PRAM models - conclusions

• Strengths of W-T and PRAM models
 – Ignore memory access costs
 – Source-level complexity metrics simplify analysis
 – Widely developed body of techniques
 – W-T programs are simple and expressive

• Liabilities of W-T and PRAM models
 – memory access cost is not constant in real life
 • already true with RAM model
 – random memory access time is $\Omega(|\text{mem}|^{1/3})$ in 3D space with speed of light restrictions
 – this is the reason for cache memories in modern processors
 • even less accurate for PRAM model
 – random memory access time is $\Omega((p+|\text{mem}|)^{1/3})$
 – CR / CW implementations require $\Omega(\lg p)$ time with present technologies
 – switching and bandwidth issues complicate situation further
W-T and PRAM model - conclusions

• Liabilities of W-T and PRAM models
 – Source-level complexity metrics oversimplify analysis
 • given two implementations
 – efficient sequential algorithm S on sequential computer
 – work-efficient and fast parallel algorithm C on PRAM-like parallel computer
 • for sufficiently large n, there exists p such that $T_c(n,p) < T_s(n)$
 – parallel algorithm is guaranteed to run faster
 • but p (and n) may be impractically large
 – p is not a truly scalable parameter in practice

 – Widely developed body of unrealistic techniques
 • extensive use of asymptotically efficient but impractical building blocks
 – fast and efficient sorting, efficient pointer jumping, etc.

 – W-T programs may not be able to fully express efficient implementations
 • homework problem 1