
1Shared Memory Multiprocessors  (1)COMP 633  - Prins

COMP 633  - Parallel Computing

Lecture 6  
Tue Sep 7, 2021

SMM (1)
Memory Hierarchies and Shared Memory



2Shared Memory Multiprocessors  (1)COMP 633  - Prins

Topics

• Memory systems
– organization
– caches and the memory hierarchy
– influence of the memory hierarchy on algorithms 

• Shared memory systems
– Taxonomy of actual shared memory systems

• UMA, NUMA, cc-NUMA



3Shared Memory Multiprocessors  (1)COMP 633  - Prins

Recall PRAM shared memory system

• PRAM model
– assumes access latency is constant, regardless of value of p or the 

size of memory
– simultaneous reads permitted under CR model and simultaneous 

writes permitted under CW model

• Physically impossible to realize
– processors and memory occupy physical 

space
• speed of light limitations

– CR / CW must be reduced to ER / EW
• requires Ω(lg p) time in general case

p

shared memory

1 2 • • •
processors

( )( )31mpL +Ω=
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Anatomy of a processor ↔ memory system
• Performance parameters of Random Access Memory (RAM)

– latency L
• elapsed time from presentation of memory address to arrival of data

– address transit  time
– memory access time tmem

– data transit time

– bandwidth W
• number of values (e.g. 64 bit words) delivered to processor per unit time

– simple implementation W ~ 1/L

Processor Memory
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Processor vs. memory performance

• The memory “wall”
– Processors compute faster than memory delivers data

• increasing imbalance  𝑡𝑡arith ≪ 𝑡𝑡mem
• ≪
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Improving memory system performance

– Decrease latency L to memory
• speed of light is a limiting factor

– bring memory closer to processor

– Decrease memory access time by using 2D memory layout
• access time ∝ s½ (VLSI)

– Use different memory technologies
• DRAM (Dynamic RAM) 1 transistor 

per stored bit
– High density, low power, low cost,

but long access time
• SRAM (Static RAM) 6 transistors

per stored bit
– Short access time, but low density,

high power, and high cost.
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Improving memory system performance (1)
• Decrease latency using cache memory

– low latency access to frequently used values, high latency for the remaining  
values

– Example 
• 90% of references are to cache with latency L1

• 10% of references are to memory with latency L2

• average latency is 0.9L1 + 0.1L2

Processor MemoryCache
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Improving memory system performance (2)
• Increase bandwidth W

– multiport (parallel access) memory
• multiple reads, multiple exclusive writes per memory cycle

– High cost, very limited scalability

– “blocked” memory
• memory supplies block of size b containing requested word

– supports spatial locality in cache access

Processor MemoryCache

Processor Register file

b
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• Increase bandwidth W (contd)
– pipeline memory requests

• requires independent memory references

– interleave memory 
• problem:  memory access is limited by tmem

• use m separate memories (or memory banks)
• W ~  m / L if references distribute over memory banks

Improving memory system performance (2)
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Latency hiding
• Amortize latency using a pipelined interleaved memory system

– k independent references in Ω(L + k ⋅ tproc ) time 
• O(L/k) amortized (expected) latency per reference

• Where do we get independent references?
– out-of-order execution of independent load/store operations

• found in most modern performance-oriented processors
• partial latency hiding:  k ~  2 - 10 references outstanding

– vector load/store operations
• small vector units (AVX512) 

– vector length 2-8 words (Intel Xeon)
– partial latency hiding 

• high-performance vector units (NEC SX-9, SX-Aurora)
– vector length k = L / tproc (128 - 256 words)
– crossbar network to highly interleaved memory (~ 16,000 banks) 
– full latency hiding:  amortized memory access at processor speed

– multithreaded operation
• independent execution threads with individual hardware contexts

– partial latency hiding:  2-way hyperthreading (Intel)
– full latency hiding: 128-way threading with high-performance memory (Cray MTA)
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Implementing the PRAM
• How close can we come to O(1) latency PRAM memory in practice?

– requires processor to memory 
network

• latency L = sum of
– twice network latency
– memory cycle time
– serialization time for CR, CW

• L increases with m, p
– L too large with current technology

– examples 
• NYU Ultracomputer (1987), IBM RP3 (1991), SBPRAM (1999)

– logarithmic depth combining network eliminates memory contention time for 
CR, CW

» Ω(lg p) latency in network is prohibitive

M1 M2 M3 Mm-1 Mm• • •

P2 PpP1 • • •

Network
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Implementing PRAM – a compromise
• Using latency hiding with a high-performance memory system

– implements p⋅k processor EREW PRAM slowed down by a factor of k
• use m ≥ p (tmem / tproc ) memory banks to match memory reference rate of p 

processors
• total latency 2L for k = L / tproc independent random references at each processor
• O(tproc) amortized latency per reference at each processor

– unit latency degrades in the presence of concurrent reads/writes

– Bottom line:  doable but very expensive and only limited scaling in p

M1 M2 M3 Mm-1 Mm• • •

P2 PpP1 • • •

Network
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Memory systems summary

• Memory performance
– Latency is limited by physics
– Bandwidth is limited by cost

• Cache memory:  low latency access to some values
– caching frequently used values

• rewards temporal locality of reference
– caching consecutive values

• rewards spatial locality of reference
– decrease average latency

• 90 fast references, 10 slow references:  effective latency = 0.9L1 + 0.1L2

• Parallel memories
– 100 independent references ≈ 100 fast references
– relatively expensive
– requires parallel processing

Shared Memory Multiprocessors  (1)COMP 633  - Prins
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Simple uniprocessor memory hierarchy

• Each component is characterized by
– capacity
– block size
– (associativity)

• Traffic between components is characterized by
– access latency
– transfer rate (bandwidth)

• Example:  
– IBM RS6000/320H (ca. 1991)
Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Main memory 60 0.1
Cache 2 1
Registers 0 3

Cache

Main 
Memory

Disk

ALU

Regs
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Cache operation

• ABC cache parameters
– associativity
– block size 
– capacity

• CCC performance model
– cache misses can be

• compulsory
• capacity
• conflict block size

capacity

as
so

ci
at

iv
ity

Cache
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Cache operation:  read
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<1>        <26>             <512>
Valid        Tag Data

= MUX

Tag Index blk
<26> <8>         <6> address

data

:

associativity = 256-way
block size = 64 bytes (512b)

40-bit address

1,2,4,8 bytes
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The changing memory hierarchy

• IBM RS6000 320H - 25 MHz (1991)

• Intel Xeon 61xx [per core @3GHz] (2017)  

Cache

Main 
Memory

Disk

ALU

Regs

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Main memory 60 0.1
Cache 2 1
Registers 1 3

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
HDD 18,000,000 0.00007
SSD 300,000 0.02
Main memory 250 0.2 
L3 Cache 48 0.5
L2 Cache 12 1
L1 Cache 4 2
Registers 1 6
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Computational Intensity: a key metric limiting performance

• Computational intensity of a problem
I =     (total # of arithmetic operations required)  in flops

(size of input + size of result)             in 64-bit words

• BLAS - Basic Linear Algebra Subroutines
– Asymptotic performance limited by computational intensity

• A,B,C ∈ ℜn×n x,y ∈ ℜn a ∈ ℜ

name defn flops refs I
scale y = ax n 2n 0.5
triad y = ax + y 2n 3n 0.67
dot product x•y 2n 2n 1

Matrix-vector y = y + Ax 2n2+n n2+3n ~ 2
rank-1 update A = A + xyT 2n2 2n2+2n ~ 1

Matrix product C = C + AB 2n3 4n2 n/2

BLAS 1

BLAS 2

BLAS 3
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Effect of the memory hierarchy on execution time
• CNxN = ANxN • BNxN naïve implementation

• Machine
– simple L1 cache

• block size = 16 words
• capacity = 512 blocks
• fully associative

– main memory
• 4K pages

• Layout of A,B,C in memory
– Fortran:  column-major order

• RAM model suggests O(N3) run time
– actual time follows O(N5) growth!

Performance of naive N×N matrix multiply on an IBM RS6000/320 uniprocessor.  Time in clock cycles per multiply-add 
(note log10 scales).  Source: Alpern et al., “The Uniform Memory Hierarchy Model of Computation", Algorithmica, 1994

do i = 1,N
do j = 1,N

do k = 1,N
C(i,j) = C(i,j) + A(i,k)*B(k,j)
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Shared memory taxonomy
• Uniform Memory Access (UMA)

– Processors and memory separated by network
– All memory references cross network
– Only practical for machines with full latency hiding

• Parallel vector processors, multi-threaded processors
• Expensive, rarely available in practice

M1 M2 Mm• • •

P2 PpP1 • • •

Network
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Shared memory taxonomy
• Non-Uniform Memory Access (NUMA)

– Memory is partitioned across processors
– References are local or non-local

• Local references
– low latency

• Non-local references
– high latency

• non-local : local latency 
– large

– Examples
• BBN TC2000 (1989)

– Poor performance unless extreme care is taken in data placement

M1 P1 • • •
M2 P2 Mp Pp

Network
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Combining (N)UMA with cache memories
• Processor-local caches

– Cache all memory references
– Must reflect changes in value due to other processors in system
– Cache-misses 

• Usual:  compulsory, capacity, and conflict misses
• New:  coherence misses

• Cache-coherent UMA examples
– Conventional PC-based SMP systems

• Network is a shared bus
• Limited scaling (p ≤ 4)
• mostly extinct 

– Server-class machines
• Dual or Quad socket (single card)
• Intel Xeon or AMD EPYC (20 ≤ p ≤ 128)
• prevalent

• Cache-coherent NUMA examples
– scales to larger processor count

• SGI UltraViolet (p ~ 1024)
• rare

• • •M1 C1

P1

M2 C2

P2

Mp Cp

Pp
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Incorporating shared memory in the hierarchy
• Non-local shared memory

– can be viewed as additional level in processor-memory hierarchy

• Shared-memory parallel programming
– extension of memory hierarchy techniques
– goal:

• concurrent transfer through parallel levels

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Non-local memory 180 - 500 0.1 - 0.01
Local memory 60 0.1
Cache 2 1
Registers 0 3

Local 
Memory

Non-local
Memory

Cache Cache

Local 
Memory
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Modern shared-memory server:  Intel Xeon series

Shared Memory Multiprocessors  (1)COMP 633  - Prins
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AMD Infinity

• Speed of light inconveniently 
slow!
– miniaturize size of 

memory and processors

• Single card server
– 7 nm process technology
– 64 – 256 cores total, 
– 4 TB memory

Shared Memory Multiprocessors  (1)COMP 633  - Prins
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