
1SMM (3)COMP 633 - Prins

• Reference material for this lecture
– OpenMP Tutorial
– Intel_Cilk++ Programmers Guide

COMP 633 - Parallel Computing

Lecture 8
September 14, 2021

SMM (3)
Shared Memory Parallel Programming

2SMM (3)COMP 633 - Prins

Topics

• Nested parallelism in OpenMP and other frameworks
– parallel loops in OpenMP (2.0)

• implementation

– nested parallel tasks in Cilk and OpenMP (3.0)
• task graph and task scheduling
• Cilk implementation and performance bounds
• OpenMP directives and implementation

– nested data parallelism in NESL
• flattening nested parallelism into vector operations

3SMM (3)COMP 633 - Prins

Loop parallelism
• OpenMP annotation of matrix-vector product R = Mn x m · Vm

– how will it be executed?
• OpenMP will allocate all available threads to the outer loop
• Each thread will perform an approximately equal number of iterations (either 𝑛𝑛/𝑝𝑝

or 𝑛𝑛/𝑝𝑝)

– is it safe?
• each iteration of the outer loop is executed by a specific thread
• thus R[i] is not subject to concurrent updates

#pragma omp parallel for private(i,j)
for (i = 0; i < n; i++) {

R[i] = 0;

for (j = 0; j < m; j++) {
R[i] += M[i][j] * V[j];

}
}

4SMM (3)COMP 633 - Prins

Nested loop parallelism
• OpenMP annotation of matrix-vector product R = Mn x m · Vm

– how should nested parallel regions be executed?
• each thread in the outer loop becomes the master thread of a team of threads in

the inner parallel loop iterations

– how will it be executed?
• most OpenMP implementations allocate all threads to the outer loop by default
• the num_threads(t) clause specifies t threads be allocated to a parallel region

– additional consideration
• Most modern processors have short vector arithmetic units (256 or 512 bit AVX)

– accelerate the dot product in the inner loop

#pragma omp parallel for private(i)
for (i = 0; i < n; i++) {

R[i] = 0;

#pragma omp parallel for private(j) reduction(+:R[i])
for (j = 0; j < m; j++) {

R[i] += M[i][j] * V[j];
}

}

5SMM (3)COMP 633 - Prins

Irregular loop parallelism: more challenges

• sparse matrix-vector product R = MV
– sparse matrix M is represented using two 1D arrays

• A[nz], H[nz] arrays of non-zero values and corresponding column indices
• The nonzeros in S[i] describes the partitioning of A and H into n rows of

M

#pragma omp parallel for private(i)
for (i = 0; i < n; i++) {

R[i] = 0;

#pragma omp parallel for private(j) reduction(+:R[i])
for (j = S[i]; j < S[i+1]; j++) {

R[i] += A[j] * V[H[j]];
}

}

A
H

S(0) = 0 S(1) S(2) S(n-1) S(n) = nz

6SMM (3)COMP 633 - Prins

How should SPMV be executed?
• Parallelize outer loop?

– requires dynamic load balancing
• Poor performance possible when

– n is not much larger than p
– there is a large variation in number of non-zeros per row

• Parallelize inner loop?
– poor performance on “short” rows with few non-zeros

• Both loops must be fully parallelized
– to achieve runtime bounds of the sort promised by Brent’s theorem
– W(nz) = O(nz)
– S(nz) = O(lg nz)

7

Nested parallelism model (a)
• In the W-T model nested parallelism is unrestricted

– divide & conquer algorithms
• parallel quicksort, quickhull

– Other examples, e.g. histogram problem
• (lg n) reductions of size (n/lg n) run in parallel

• OpenMP recognizes nested parallelism in nested loops, but only implements
certain cases
– typically only the outermost level of parallelism is realized
– occasional support for orthogonal iteration spaces

• e.g. {1, … ,n} X {1, … ,m} treated as single iteration space of size nm
• but how to divide into p equal parts?

– OpenMP 2.0 directives
• specify allocation of threads to loops
• e.g. 16 threads total

– outermost loop: 4 threads
– nested loop: respective teams of e.g. 3, 5, 4, 4 threads

• very tedious and dependent on both problem and machine

SMM (3)COMP 633 - Prins

8

Nested parallel model (b)
• Towards the Work-Time model:

– task parallelism
• a task is some code for execution and some context for data

– inputs, outputs, private data
– dynamically generated and terminated at run time
– tasks are automatically scheduled onto threads for execution

• language support for tasks
– Cilk, Cilk Plus (MIT, Intel)

» C or C++ with tasks (and data-parallel operations in Cilk Plus)
» runtime scheduler with optimal scheduling strategy

– OpenMP 3.0
» C, C++, Fortran with tasks

– nested data parallelism
• generalization of data parallelism
• implemented in NESL (NEsted Sequence Language)

– functional language with sequence construction functions (forall)
– nested sequence construction corresponds to nested parallelism
– compile-time flattening transformation to convert nested sequence operations to

simple data-parallel vector operations

SMM (3)COMP 633 - Prins

9SMM (3)COMP 633 - Prins

Task parallelism: Cilk

• Cilk fibonacci program
– Cilk = C + {cilk, spawn, sync}
– cilk declares a procedure to be executable as a task
– spawn starts a cilk task that executes concurrently with creator
– sync waits for all tasks spawned in current procedure to complete

cilk int fib (int n)
{

if (n < 2) return n;
else
{

int x, y;

x = spawn fib(n-1);
y = spawn fib(n-2);

sync;

return (x+y);
}

}

fib(4)

fib(3)

fib(2)

fib(1)

fib(2)

fib(1)fib(1)

fib(0)

fib(0)

Task dependence graph

10SMM (3)COMP 633 - Prins

CILK runtime task scheduler
• Task dependence graph unfolds dynamically

– typically far more tasks ready to run than threads available
– potential blow-up in space

• Scheduling strategy
– each thread maintains a local double-ended queue of tasks ready to run

• shallow and deep ends refer to relative positions of tasks in dependence graph
– if queue is nonempty

• execute ready task at the deepest level in the queue
• corresponds to sequential execution order, generally friendly to memory hierarchy

– if queue is empty
• steal a task at shallowest level of the queue in some randomly chosen other

thread

fib(4)

fib(3)

fib(2)

fib(1)

fib(2)

fib(1)fib(1)

fib(0)

fib(0)

fib(4)

fib(3)

fib(2)

fib(1)

fib(2)

fib(1)fib(1)

fib(0)

fib(0)P1 P2 P3

shallow end

deep end

processors

ready
task

queues

11SMM (3)COMP 633 - Prins

Cilk execution properties

• Task execution order is parallel depth-first
– serial order at each processor
– good fit for parallel memory hierarchy
– space bound: Spacep(n) = Space1(n) + pS(n)

• Global execution time follows bounds determined by Brent’s theorem
– Tp(n,p) = O(W(n)/p + S(n))

• Efficiency
– work-first principle (busy processors keep working)

• minimizes interference with useful progress
– work-stealing principle

• idle processors steal tasks towards high end of current DAG
– these tasks are expected to unfold into larger portions of the complete DAG

12SMM (3)COMP 633 - Prins

Sparse matrix-vector product in Cilk++

• Does this solve our problem?

double A[nz], V[n],R[n];
int H[nz], S[n+1];

void sparse_matvec() {
for (int i = 0; i < n; i++) {

R[i] = cilk_spawn dot_product(S[i],S[i+1]);
}
cilk_synch;

}

double dot_product(int j1, int j2) {
cilk::reducer_opadd<double> sum;
for (int j = j1; j < j2; j++) {

cilk_spawn sum += A[j] * V[H[j]];
}
cilk_synch;
return sum.get_value();

}

13SMM (3)COMP 633 - Prins

Task creation in loops with Cilk++

• cilk_for creates a set of tasks using recursive division of the iteration
space

double A[nz], V[n],R[n];
int H[nz], S[n+1];

void sparse_matvec() {
cilk_for (int i = 0; i < n; i++) {

R[i] = dot_product(S[i],S[i+1]);
}

}

double dot_product(int j1, int j2) {
cilk::reducer_opadd<double> sum;
cilk_for (int j = j1; j < j2; j++) {

sum += A[j] * V[H[j]];
}
return sum.get_value();

}

14SMM (3)COMP 633 - Prins

Divide and conquer algorithms with Cilk
cilk void mergesort(int A[], int n) {

if (n <= 1)
return

else {
spawn mergesort(&A[0], n/2);
spawn mergesort(&A[n/2], n/2);

}
sync;
merge(&A[0], n/2, &A[n/2], n/2);

}

W(n) =

S(n) =

Why well-suited to the memory hierarchy?

15

Mergesort Example with Tasks

Thread 0

Thread 1

Using two threads:

SMM (3)COMP 633 - Prins

16

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

17

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

18

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

19

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

20

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

21

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

22

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

23

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

24

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

25

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

26

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

27

Mergesort Example with Tasks

Thread 0

Thread 1

SMM (3)COMP 633 - Prins

28SMM (3)COMP 633 - Prins

A better parallel sort using Cilk
cilk void sort(int A[], int n) {

if (n < 100)
sort sequentially

else {
spawn sort(&A[0], n/2);
spawn sort(&A[n/2], n/2);

}
sync;
merge(&A[0], n/2, &A[n/2], n/2);

}

cilk void merge(int A[], int na, int B[], int nb) {
if (na < 100 || nb < 100)

merge sequentially
else {

int m = binary_search(B, A[na/2]);
spawn merge(A, na/2, B, m);
spawn merge(&A[na/2], na/2, &B[m], nb – m);

}
sync;

}

31

OpenMP 3.0 includes tasks

• Tasks consist of statements or code blocks
– basic constructs are task and taskwait

• Works in C, C++, Fortran, supported by many compilers

int fib(int n){
int x, y;

if (n < 2)
return n;

else {
#pragma omp task

x = fib(n-1);
#pragma omp task

y = fib(n-2);

#pragma omp taskwait

return (x+y);
}

}

SMM (3)COMP 633 - Prins

32

Scheduling OpenMP Tasks: the Basic Rules

• In general, a task may begin execution on any thread in the team
– OpenMP does not prescribe a task scheduling strategy

• generally uses “help first” strategy to create more ready tasks
– queue the spawned task, and keep going on the parent
– leads to breadth first evaluation order

• if(<cond>) forces task execution execution when <cond> evaluates to true

– Tied tasks are started on an arbitrary thread and then run to
completion in that thread. They can be suspended only at a task
spawn or when waiting on a lock.

– Untied tasks can suspend at any point and may resume on any
thread in the team (permits pre-emption – not generally safe)

– barriers in OpenMP require completion of all outstanding tasks
generated by the team of threads encountering the barrier

SMM (3)COMP 633 - Prins

33

Scope of variables

• Variables can be shared, threadprivate, or (task) private
– Shared variables can be accessed concurrently by all tasks
– Threadprivate variables can be accessed safely within a thread by

tied tasks
– Private variables can only be accessed by the owning task

• Examples where threadprivate variables help
– Fast summation
– Dynamic memory allocation

SMM (3)COMP 633 - Prins

34

Task parallelism - summary
• Cilk

– only on Intel systems (and now phased out!)
– work-first scheduling, generally good for locality
– cilk_for helps parallelize loops more effectively

• Open-MP
– scheduling strategy is not prescribed, generally help-first,

• not quite as cache-friendly as work-first
– locality aware schedulers try to schedule tasks on the socket where they

were spawned
• helps increase last-level cache locality

• General
– task parallelism is well suited to divide & conquer algorithms and

irregular parallelism
• but has higher overheads than pure loop-level parallelization

– generally insensitive to variation in processor speeds
• can effectively use hyperthreads and is oblivious to OS interruptions

SMM (3)COMP 633 - Prins

35SMM (3)COMP 633 - Prins

C C C C

H H

G G G G G G

FORALL (i = 1,4)
WHERE C(i) DO

FORALL (j = 1,i) DO
G(i,j)

END FORALL
ELSEWHERE

H(i)
END WHERE

END FORALL

Nested data parallelism

• Dependence graph reveals available parallelism
– nodes: computations
– edges: dependencies
– dynamic unfolding of graph in execution

• nested data-parallel loops yield series/parallel graphs

36SMM (3)COMP 633 - Prins

Flattening execution strategy

• Each node in the spawn tree is part of a data-parallel operation
– flattening transforms program to a sequence of simple data-parallel

operations
• data-parallel operations have low computational intensity so require high

performance parallel memory systems
– each data-parallel operation is optimally executed using all

processors

FORALL (i = 1,4)
WHERE C(i) DO

FORALL (j = 1,i) DO
G(i,j)

END FORALL
ELSEWHERE

H(i)
END WHERE

END FORALL

S1

S2

S3

C C C C

H H

G G G G G G

37SMM (3)COMP 633 - Prins

NESL: Sparse matrix-vector product

• Nested sequence representation of M
– Each row is represented by a

sequence of pairs
• (non-zero value a, column index h)

– M is a sequence of m row
representations

• Nested parallel algorithm (NESL)

MatVect(M,V) =
[R in M:

sum([(a,h) in R: a * V[h]])
]

a sparse matrix

M =
[
[(1.0,1), (0.4,3), (0.55,4)],
[(1.0,2), (0.15,9), (0.18,187)],

. . .
[(0.2,3850), (1.0,4165)]

]

𝑅𝑅 = 𝑀𝑀𝑀𝑀 where 𝑉𝑉,𝑅𝑅 ∈ ℝ𝑛𝑛 and 𝑀𝑀 ∈ ℝ𝑛𝑛×𝑛𝑛 and 𝑀𝑀 has 𝑛𝑛𝑛𝑛 nonzeros

38SMM (3)COMP 633 - Prins

Flattening
• Compile-time elimination of nested data parallelism

– Flattening theorem
• Let F be a set of basic data parallel operations on sequences
• Let L(F) be a nested data-parallel programming language over F
• For any program P in L(F), flattening yields a program P’ in L(F + F’) such that

– P and P’ compute the same function
– P’ contains no nested data-parallel constructs
– no additional work is introduced and no available parallelism is lost, i.e.

WP’(n) = O(WP(n)) and SP’(n) = O(SP(n))

– Example primitives F and F’

F: α → β F': Seq(α) → Seq(β)
arithmetic opns

e.g. plus(1,1) = 2
vector arithmetic opns

e.g. plus'(V,V) = [2,4,6]
sum(V) = 6 sum'(W) = [1,3,6]
size(V) = 3 size'(W) = [1,2,3]
range(3) = [1,2,3] range'(V) = [[1], [1,2], [1,2,3]]
index(V,3)= 3 index'(W,V) = [1,2,3]
dist(1,3) = [1,1,1] dist'(V,V) = [[1], [2,2], [3,3,3]]

W = [[1], [1,2], [1,2,3]]V = [1,2,3]

39SMM (3)COMP 633 - Prins

Flattening sparse matrix – vector product

F77
F90

R = Segmented_Sum(A * V(H), S)
#pragma omp parallel do
DO j = 0, nz-1

T(j) = A(j) * V(H(j))
END DO
CALL Segmented_Sum(T,nz,S,R,n)

#pragma omp parallel do
DO i = 0, n-1

R(i) = 0
#pragma omp parallel do reduction(+:R(i))
DO j = S(i), S(i+1)-1

R(i) = R(i) + A(j) * V(H(j))
ENDDO

ENDDO

A
H

S(0) = 0 S(1) S(2) S(n-1) S(n) = nz

40SMM (3)COMP 633 - Prins

Parallel Implementation of primitives F’

• Goal
– precise load balance
– insensitive to

• number of subproblems
• size of subproblems

• Example
– sum’ :: Seq(Seq(α)) → Seq(α)
– uses

• sequential segmented
sum of size n/p

• single parallel segmented
sum scan of size p

p
parallel

n / p
sequential

41SMM (3)COMP 633 - Prins

Flattening: Segmented primitives

42SMM (3)COMP 633 - Prins

Flattening: NAS Conjugate Gradient benchmark

0

2000

4000

6000

8000

1 104

1.2 104

1.4 104

0 10 20 30 40 50 60 70

NEC SX-4/32
Cray C90/16
IBM SP2-P2SC
Cray T3E

O
ve

ra
ll

Pe
rf

or
m

an
ce

 (M
FL

O
PS

)

number of processors

• Benchmark: find principal eigenvalue of random sparse linear system using power method
– repeated use of conjugate gradient method
– class B benchmark, N = 75,000, average # nz per row = 140, 96% of the work is in

sparse matrix – vector product

43SMM (3)COMP 633 - Prins

Comparing execution strategies

• Nested task parallelism
– few restrictions on program form
– tasks must be “coarsened” to amortize scheduling overhead

• load balanced up to granularity of tasks
– provably good time and space bounds for strict programs
– can maintain locality (depends on scheduling strategy)

• Nested data parallelism
– restricted to data parallel programs (subset of all programs)
– execution is sequence of vector operations

• easily load-balanced
• but low computational intensity

– no run-time scheduler required
– provably good time bounds, but space bounds are harder

	COMP 633 - Parallel Computing��Lecture 8 �September 14, 2021�� SMM (3) �Shared Memory Parallel Programming
	Topics
	Loop parallelism
	Nested loop parallelism
	Irregular loop parallelism: more challenges
	How should SPMV be executed?
	Nested parallelism model (a)
	Nested parallel model (b)
	Task parallelism: Cilk
	CILK runtime task scheduler
	Cilk execution properties
	Sparse matrix-vector product in Cilk++
	Task creation in loops with Cilk++
	Divide and conquer algorithms with Cilk
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	Mergesort Example with Tasks
	A better parallel sort using Cilk
	OpenMP 3.0 includes tasks
	Scheduling OpenMP Tasks: the Basic Rules
	Scope of variables
	Task parallelism - summary
	Nested data parallelism
	Flattening execution strategy
	NESL: Sparse matrix-vector product
	Flattening
	Flattening sparse matrix – vector product
	Parallel Implementation of primitives F’
	Flattening: Segmented primitives
	Flattening: NAS Conjugate Gradient benchmark
	Comparing execution strategies

