COMP 633 - Parallel Computing

Lecture 8
September 14, 2021

SMM (3)
Shared Memory Parallel Programming

- Reference material for this lecture
 - OpenMP Tutorial
 - Intel_Cilk++ Programmers Guide
Topics

- Nested parallelism in OpenMP and other frameworks
 - parallel loops in OpenMP (2.0)
 - implementation
 - nested parallel tasks in Cilk and OpenMP (3.0)
 - task graph and task scheduling
 - Cilk implementation and performance bounds
 - OpenMP directives and implementation
 - nested data parallelism in NESL
 - flattening nested parallelism into vector operations
Loop parallelism

• OpenMP annotation of matrix-vector product $R = M^n \times m \cdot V^m$

```c
#pragma omp parallel for private(i,j)
for (i = 0; i < n; i++) {
    R[i] = 0;
    for (j = 0; j < m; j++) {
        R[i] += M[i][j] * V[j];
    }
}
```

– how will it be executed?
 • OpenMP will allocate all available threads to the outer loop
 • Each thread will perform an approximately equal number of iterations (either n/p or m/p)

– is it safe?
 • each iteration of the outer loop is executed by a specific thread
 • thus $R[i]$ is not subject to concurrent updates
Nested loop parallelism

- OpenMP annotation of matrix-vector product $R = M^{nxm} \cdot V^{m}$

```c
#pragma omp parallel for private(i)
for (i = 0; i < n; i++) {
    R[i] = 0;
    #pragma omp parallel for private(j) reduction(+:R[i])
    for (j = 0; j < m; j++) {
        R[i] += M[i][j] * V[j];
    }
}
```

- how should nested parallel regions be executed?
 - each thread in the outer loop becomes the master thread of a team of threads in the inner parallel loop iterations

- how will it be executed?
 - most OpenMP implementations allocate all threads to the outer loop by default
 - the `num_threads(t)` clause specifies t threads be allocated to a parallel region

- additional consideration
 - Most modern processors have short vector arithmetic units (256 or 512 bit AVX)
 - accelerate the dot product in the inner loop
Irregular loop parallelism: more challenges

- **sparse** matrix-vector product $R = MV$
 - *sparse* matrix M is represented using two 1D arrays
 - $A[nz], H[nz]$ arrays of non-zero values and corresponding column indices
 - The nonzeros in $S[i]$ describes the partitioning of A and H into n rows of M

```
#pragma omp parallel for private(i)
for (i = 0; i < n; i++) {
    R[i] = 0;
#pragma omp parallel for private(j) reduction(+:R[i])
    for (j = S[i]; j < S[i+1]; j++) {
    }
}
```
How should SPMV be executed?

• Parallelize outer loop?
 – requires dynamic load balancing
 • Poor performance possible when
 – n is not much larger than p
 – there is a large variation in number of non-zeros per row

• Parallelize inner loop?
 – poor performance on “short” rows with few non-zeros

• Both loops must be fully parallelized
 – to achieve runtime bounds of the sort promised by Brent’s theorem
 – $W(nz) = O(nz)$
 – $S(nz) = O(lg nz)$
In the W-T model nested parallelism is unrestricted
 - divide & conquer algorithms
 • parallel quicksort, quickhull
 - Other examples, e.g. histogram problem
 • \((\lg n)\) reductions of size \((\frac{n}{\lg n})\) run in parallel

OpenMP recognizes nested parallelism in nested loops, but only implements certain cases
 - typically only the outermost level of parallelism is realized
 - occasional support for orthogonal iteration spaces
 • e.g. \(\{1, \ldots, n\} \times \{1, \ldots, m\}\) treated as single iteration space of size \(nm\)
 • but how to divide into \(p\) equal parts?
 - OpenMP 2.0 directives
 • specify allocation of threads to loops
 • e.g. 16 threads total
 - outermost loop: 4 threads
 - nested loop: respective teams of e.g. 3, 5, 4, 4 threads
 • very tedious and dependent on both problem and machine
Nested parallel model (b)

- Towards the Work-Time model:
 - task parallelism
 - a task is some code for execution and some context for data
 - inputs, outputs, private data
 - dynamically generated and terminated at run time
 - tasks are automatically scheduled onto threads for execution

 - language support for tasks
 - Cilk, Cilk Plus (MIT, Intel)
 » C or C++ with tasks (and data-parallel operations in Cilk Plus)
 » runtime scheduler with optimal scheduling strategy
 - OpenMP 3.0
 » C, C++, Fortran with tasks

- nested data parallelism
 - generalization of data parallelism
 - implemented in NESL (NEested Sequence Language)
 - functional language with sequence construction functions (forall)
 - nested sequence construction corresponds to nested parallelism
 - compile-time flattening transformation to convert nested sequence operations to simple data-parallel vector operations
Task parallelism: Cilk

- Cilk fibonacci program
 - Cilk = C + \{cilk, spawn, sync\}
 - cilk declares a procedure to be executable as a task
 - spawn starts a cilk task that executes concurrently with creator
 - sync waits for all tasks spawned in current procedure to complete

```cilk
int fib (int n)
{
    if (n < 2) return n;
    else
    {
        int x, y;
        x = spawn fib(n-1);
        y = spawn fib(n-2);
        sync;
        return (x+y);
    }
}
```

Task dependence graph
CILK runtime task scheduler

• Task dependence graph unfolds dynamically
 – typically far more tasks ready to run than threads available
 – potential blow-up in space

• Scheduling strategy
 – each thread maintains a local double-ended queue of tasks ready to run
 • shallow and deep ends refer to relative positions of tasks in dependence graph
 – if queue is nonempty
 • execute ready task at the deepest level in the queue
 • corresponds to sequential execution order, generally friendly to memory hierarchy
 – if queue is empty
 • steal a task at shallowest level of the queue in some randomly chosen other thread

ready task queues

shallow end

P1 P2 P3

processors

deep end

fib(4) fib(3) fib(2)
fib(1) fib(1) fib(0)
fib(1) fib(0)
Cilk execution properties

- Task execution order is parallel depth-first
 - serial order at each processor
 - good fit for parallel memory hierarchy
 - space bound: \(\text{Space}_p(n) = \text{Space}_1(n) + pS(n) \)

- Global execution time follows bounds determined by Brent’s theorem
 - \(T_p(n,p) = O\left(\frac{W(n)}{p} + S(n) \right) \)

- Efficiency
 - work-first principle (busy processors keep working)
 - minimizes interference with useful progress
 - work-stealing principle
 - idle processors steal tasks towards high end of current DAG
 - these tasks are expected to unfold into larger portions of the complete DAG
Sparse matrix-vector product in Cilk++

• Does this solve our problem?

```c++
double A[nz], V[n], R[n];
int H[nz], S[n+1];

void sparse_matvec() {
    for (int i = 0; i < n; i++) {
        R[i] = cilk_spawn dot_product(S[i], S[i+1]);
    }
    cilk_synch;
}

double dot_product(int j1, int j2) {
    cilk::reducer_opadd<double> sum;
    for (int j = j1; j < j2; j++) {
        cilk_spawn sum += A[j] * V[H[j]];
    }
    cilk_synch;
    return sum.get_value();
}
```
Task creation in loops with Cilk++

- *cilk_for* creates a set of tasks using recursive division of the iteration space

```cpp
double A[nz], V[n], R[n];
int H[nz], S[n+1];

void sparse_matvec() {
    cilk_for (int i = 0; i < n; i++) {
        R[i] = dot_product(S[i], S[i+1]);
    }
}

double dot_product(int j1, int j2) {
    cilk::reducer_opadd<double> sum;
    cilk_for (int j = j1; j < j2; j++) {
        sum += A[j] * V[H[j]];
    }
    return sum.get_value();
}
```
Divide and conquer algorithms with Cilk

cilk void mergesort(int A[], int n) {
 if (n <= 1)
 return
 else {
 spawn mergesort(&A[0], n/2);
 spawn mergesort(&A[n/2], n/2);
 }
 sync;
 merge(&A[0], n/2, &A[n/2], n/2);
}

W(n) =

S(n) =

Why well-suited to the memory hierarchy?
Mergesort Example with Tasks

Using two threads:
Thread 0
Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0
Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks

Thread 0

Thread 1
Mergesort Example with Tasks
Mergesort Example with Tasks

Thread 0

Thread 1
A better parallel sort using Cilk

cilk void sort(int A[], int n) {
 if (n < 100)
 sort sequentially
 else {
 spawn sort(&A[0], n/2);
 spawn sort(&A[n/2], n/2);
 }
 sync;
 merge(&A[0], n/2, &A[n/2], n/2);
}

cilk void merge(int A[], int na, int B[], int nb) {
 if (na < 100 || nb < 100)
 merge sequentially
 else {
 int m = binary_search(B, A[na/2]);
 spawn merge(A, na/2, B, m);
 spawn merge(&A[na/2], na/2, &B[m], nb - m);
 }
 sync;
}
OpenMP 3.0 includes tasks

- Tasks consist of statements or code blocks
 – basic constructs are `task` and `taskwait`

- Works in C, C++, Fortran, supported by many compilers

```c
int fib(int n)
{
    int x, y;

    if (n < 2)
        return n;
    else {
        #pragma omp task
        x = fib(n-1);
        #pragma omp task
        y = fib(n-2);

        #pragma omp taskwait
        return (x+y);
    }
}
```
Scheduling OpenMP Tasks: the Basic Rules

• In general, a task may begin execution on any thread in the team
 – OpenMP does not prescribe a task scheduling strategy
 • generally uses “help first” strategy to create more ready tasks
 – queue the spawned task, and keep going on the parent
 – leads to breadth first evaluation order
 • if(<cond>) forces task execution execution when <cond> evaluates to true

 – Tied tasks are started on an arbitrary thread and then run to completion in that thread. They can be suspended only at a task spawn or when waiting on a lock.

 – Untied tasks can suspend at any point and may resume on any thread in the team (permits pre-emption – not generally safe)

 – barriers in OpenMP require completion of all outstanding tasks generated by the team of threads encountering the barrier
Scope of variables

• Variables can be shared, threadprivate, or (task) private
 – Shared variables can be accessed concurrently by all tasks
 – Threadprivate variables can be accessed safely within a thread by tied tasks
 – Private variables can only be accessed by the owning task

• Examples where threadprivate variables help
 – Fast summation
 – Dynamic memory allocation
Task parallelism - summary

- Cilk
 - only on Intel systems (and now phased out!)
 - work-first scheduling, generally good for locality
 - cilk_for helps parallelize loops more effectively

- Open-MP
 - scheduling strategy is not prescribed, generally help-first,
 - not quite as cache-friendly as work-first
 - locality aware schedulers try to schedule tasks on the socket where they were spawned
 - helps increase last-level cache locality

- General
 - task parallelism is well suited to divide & conquer algorithms and irregular parallelism
 - but has higher overheads than pure loop-level parallelization
 - generally insensitive to variation in processor speeds
 - can effectively use hyperthreads and is oblivious to OS interruptions
Nested data parallelism

- Dependence graph reveals available parallelism
 - nodes: computations
 - edges: dependencies
 - dynamic unfolding of graph in execution
 - nested data-parallel loops yield series/parallel graphs

```plaintext
FORALL (i = 1,4)
  WHERE C(i) DO
    FORALL (j = 1,i) DO
      G(i,j)
    END FORALL
  ELSEWHERE
    H(i)
  END WHERE
END FORALL
```
Flattening execution strategy

- Each node in the spawn tree is part of a data-parallel operation
 - *flattening* transforms program to a sequence of simple data-parallel operations
 - data-parallel operations have low computational intensity so require high performance parallel memory systems
 - each data-parallel operation is optimally executed using all processors

```
FORALL  (i = 1,4)
  WHERE  C(i) DO
    FORALL  (j = 1,i) DO
      G(i,j)
    END FORALL
  ELSEWHERE
    H(i)
  END WHERE
END FORALL
```
NESL: Sparse matrix-vector product

\[R = MV \] where \(V, R \in \mathbb{R}^n \) and \(M \in \mathbb{R}^{n \times n} \) and \(M \) has \(nz \) nonzeros

- Nested sequence representation of \(M \)
 - Each row is represented by a sequence of pairs
 - (non-zero value \(a \), column index \(h \))
 - \(M \) is a sequence of \(m \) row representations

- Nested parallel algorithm (NESL)

```python
MatVect(M, V) =
    [R in M:
        sum([a, h) in R: a * V[h] ] )
    ]
```

\(M = \)

\[
[(1.0, 1), (0.4, 3), (0.55, 4)],
[(1.0, 2), (0.15, 9), (0.18, 187)],
\ldots
[(0.2, 3850), (1.0, 4165)]
\]
Flattening

• Compile-time elimination of nested data parallelism
 – Flattening theorem
 • Let F be a set of basic data parallel operations on sequences
 • Let $L(F)$ be a nested data-parallel programming language over F
 • For any program P in $L(F)$, flattening yields a program P' in $L(F + F')$ such that
 – P and P' compute the same function
 – P' contains no nested data-parallel constructs
 – no additional work is introduced and no available parallelism is lost, i.e.
 $W_{P'}(n) = O(W_P(n))$ and $S_{P'}(n) = O(S_P(n))$
 – Example primitives F and F'

<table>
<thead>
<tr>
<th>F: $\alpha \rightarrow \beta$</th>
<th>F': Seq(α) \rightarrow Seq(β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetic opns</td>
<td>vector arithmetic opns</td>
</tr>
<tr>
<td>e.g. plus(1,1) = 2</td>
<td>e.g. plus'(V,V) = [2,4,6]</td>
</tr>
<tr>
<td>sum(V) = 6</td>
<td>sum'(W) = [1,3,6]</td>
</tr>
<tr>
<td>size(V) = 3</td>
<td>size'(W) = [1,2,3]</td>
</tr>
<tr>
<td>range(3) = [1,2,3]</td>
<td>range'(V) = [1, [1], [1,2], [1,2,3]]</td>
</tr>
<tr>
<td>index(V,3) = 3</td>
<td>index'(W,V) = [1,2,3]</td>
</tr>
<tr>
<td>dist(1,3) = [1,1,1]</td>
<td>dist'(V,V) = [1, [1], [2,2], [3,3,3]]</td>
</tr>
</tbody>
</table>
Flattening sparse matrix – vector product

F77

R = Segmented_Sum(A * V(H), S)

F90

#pragma omp parallel do
DO j = 0, nz-1
T(j) = A(j) * V(H(j))
END DO

CALL Segmented_Sum(T,nz,S,R,n)

#pragma omp parallel do
DO i = 0, n-1
R(i) = 0
#pragma omp parallel do reduction(+:R(i))
DO j = S(i), S(i+1)-1
R(i) = R(i) + A(j) * V(H(j))
ENDDO
ENDDO

A
H

S(0) = 0 S(1) S(2) S(n-1) S(n) = nz
Parallel Implementation of primitives F'

- **Goal**
 - precise load balance
 - insensitive to
 - number of subproblems
 - size of subproblems

- **Example**
 - $\text{sum'} :: \text{Seq(Seq}(\alpha)) \rightarrow \text{Seq}(\alpha)$
 - uses
 - sequential segmented sum of size n/p
 - single parallel segmented sum scan of size p
Flattening: Segmented primitives

Segmented Sum vs Nested Sum
NCSC Cray T916-4 (1 proc.)
N = 500,000
Flattening: NAS Conjugate Gradient benchmark

- Benchmark: find principal eigenvalue of random sparse linear system using power method
 - repeated use of conjugate gradient method
 - class B benchmark, $N = 75,000$, average # nz per row = 140, 96% of the work is in sparse matrix – vector product
Comparing execution strategies

- **Nested task parallelism**
 - few restrictions on program form
 - tasks must be “coarsened” to amortize scheduling overhead
 - load balanced up to granularity of tasks
 - provably good time and space bounds for strict programs
 - can maintain locality (depends on scheduling strategy)

- **Nested data parallelism**
 - restricted to data parallel programs (subset of all programs)
 - execution is sequence of vector operations
 - easily load-balanced
 - but low computational intensity
 - no run-time scheduler required
 - provably good time bounds, but space bounds are harder