
COMP 633 - Parallel Computing

Lecture 9
September 16, 2021

SMM (4)

OpenMP Case Study:
The Barnes-Hut N-body Algorithm

Shared Memory Multiprocessing (4)COMP 633 - Prins

2Shared Memory Multiprocessing (4)

Topics

• Case study: the Barnes-Hut algorithm
– Study an important method in scientific computing

» efficient n-body simulation with long range forces

– Investigate parallelization and implementation in a shared memory
multiprocessor

» expression and management of parallelism
» memory hierarchy tuning

COMP 633 - Prins

3Shared Memory Multiprocessing (4)

N-body simulations: self-gravitating systems

COMP 633 - Prins

4Shared Memory Multiprocessing (4)

• Simulate the evolution of a system
of n bodies over time
– Pairwise interaction of bodies

» force f(i,j) on body i due to body j
» total force f(i) on body i due to all

bodies
» acceleration of body i via f = ma

– Numerical integration of body velocities
and positions

» timestep ∆t

• Non-negligible long-range forces
– for uniformly distributed bodies in 3D, total

force due to all bodies at a given distance
r is constant

» cannot ignore contribution of
distant bodies

• Examples
– astrophysics (gravity)
– molecular dynamics (electrostatics)

the basic simulation algorithm:

while (t < tFinal) do

forall 1 ≤ i ≤ n do

〈 compute force f(i) on body i 〉
end

〈 update velocity and position of all bodies 〉
t = t + ∆t

end

The n-body simulation problem

Direct approach:
O(n²) interactions per time-step

∑
≠

=

−
⋅

⋅
⋅−=

ij

ij

ji

ij

ji

jifif

rr

mm
Gjif

),()(

),(2
pp

Ex: Gravitation 𝑟𝑟𝑖𝑖𝑖𝑖 = 𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑖𝑖

COMP 633 - Prins

5Shared Memory Multiprocessing (4)

Reducing the number of interactions
Exploit combined effect of “distant” bodies

Earth

Andromeda

Center of
mass c

Total mass
M

d

r

Formally
• Monopole approximation of the force

on the earth due to interaction with all
masses in the Andromeda galaxy

• Monopole approximation saves work if
it can be reused with multiple bodies

• Accuracy of approximation improves
with

– increasing r
– decreasing d
– order of the approximation

» Monopole, dipole, quadropole, …
– uniformity of body distribution

3
earthearth

earth
)()(

r
MmGbf cp −

−≈

Vulcan

r’

d’

apply this idea recursively:
 determines control-structure

 requires hierarchical decomposition of space

COMP 633 - Prins

6Shared Memory Multiprocessing (4)

Hierarchical decomposition of space

an adaptive quadtree

COMP 633 - Prins

an octree decomposition

3D

a quadtree2D

7Shared Memory Multiprocessing (4)

The Barnes-Hut algorithm
stepSystem():

// P(i) is coordinates and mass of body i
T := makeTree(P(1:n))

forall 1 ≤ i ≤ n do

f(i) = gravCalc(P(i),T)

〈 update velocities and positions 〉

function gravCalc(body p,treenode q)

if (“q is a leaf”) then
〈return body-body interaction (p,q) 〉

else

if (“p is distant enough from q”) then

〈return body-cell interaction (p,q) 〉
else

forall q’∈ nonemptyChildren(q) do

accumulate gravCalc(p,q’)

〈return accumulated interaction〉
end if

end if

interaction in the case of gravitation:

body-body interaction: use masses of
bodies and distance between them.

body-cell interaction: use mass of body
and mass of cell and distance between body
and center of mass of cell.

force is additive; individual contributions can
be accumulated.

222

2

)()()(

,,

qpqpqppq

pq

qp

pq

qp

pq

qp

pq

qp

zzyyxxr

r
zz

r
yy

r
xx

r

mm
GF

−+−+−=

 −−−

⋅
⋅

⋅=

COMP 633 - Prins

8Shared Memory Multiprocessing (4)

The Barnes-Hut algorithm - Performance issues
stepSystem(P(1:n))

-- P(1:n) is sequence of bodies

T := makeTree(P(1:n))

forall 1 ≤ i ≤ n do

f(i) := gravCalc(P(i),T)

〈update velocities and positions〉

function gravCalc(p,q)

if (“q is a leaf”) then
〈return body-body interaction〉

else

if (“p is distant enough from q”) then

〈return body-cell interaction〉
else

forall q’∈ nonemptyChildren(q) do

accumulate gravCalc(p,q’)

〈return accumulated interaction〉
end if

end if

Parallelism
nested parallelism

• over bodies
• over recursively divided cells

load balance
different number of interactions
for different bodies

Locality
nearby bodies interact with similar set
of nodes in tree

COMP 633 - Prins

9Shared Memory Multiprocessing (4)

Constructing the tree

function insert(p,T)

if empty(T) then

〈 return p as singleton tree 〉
else

〈 determine child S of T in which p belongs 〉
S’ := insert(p,S)

〈 return T with S replaced by S’ 〉
endif

• Small fraction f of the total work
– but sequential tree construction

can limit overall speedup
» Amdahl’s law: SP < 1/f

• Computing monopole
approximation for each cell

– Post-order traversal of tree
» At leaves, monopole coincides

with single body
» At interior nodes, monopole is

weighted sum of all children’s
monopoles

function makeTree(P(1:n))

for i := 1 to n do

T := insert(P(i),T)

〈 compute monopole approximation at each node 〉

COMP 633 - Prins

10

• when is a cell “distant enough”?

• problem: detonating galaxy anomaly

Shared Memory Multiprocessing (4)

The acceptance criterion

Earth

Andromeda

Center θ
of mass

d

r

original criterion used by Barnes-Hut:

where usually

(one) solution: add distance between
center of mass (cm) and geometric
center of cell (c)

θ
θ dr

r
d

>≡<

primary galaxy

secondary galaxy

(3D) 3~

(2D) 2~

d

d

0.17.0 ≤≤θ

|| ccmdr −+>
θθ<≈ 7.0

2d
d

Center
of mass

r

d

COMP 633 - Prins

11Shared Memory Multiprocessing (4)

Effects of acceptance criterion … on runtime

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

COMP 633 - Prins

12Shared Memory Multiprocessing (4)

Effects of acceptance criterion … on accuracy

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

1% accuracy sufficient for most astrophysical simulations. Different techniques with better
error control necessary for other systems (fast multipole methods).

COMP 633 - Prins

13Shared Memory Multiprocessing (4)

Effect of body distribution … on total work

Plummer distributionUniform distribution

For fixed n
• uniform distributions generate high interaction work (shallow trees)
• non-uniform distributions generate higher tree construction and lower interaction work

COMP 633 - Prins

14Shared Memory Multiprocessing (4)

Complexity of Barnes-Hut

• Tree building
– cost of tree construction depends on particle distribution

» cost of body insertion ∝ distance to root
» for a uniform distribution of n particles, sequential construction of the tree is O(n log n) time

– In a simulation, tree could be maintained rather than reconstructed each time step

• Force calculation (uniform distribution of bodies in 2D)
– consider computing the force acting on a body in the lower right corner
– if θ = 1.0 the 3 undivided top-level squares will satisfy the acceptance criterion
– The remaining square does not satisfy the criterion, hence we

descend into the next level
– each level of the tree incurs a constant amount of

work while descending along the path to the lower right corner
– for a uniform distribution of n bodies, the length of the path is

O(log4 n)
– computing the forces on n bodies is O(n log n) work
– non-uniform distribution more difficult to analyze

• Accuracy and complexity are difficult to control

COMP 633 - Prins

15Shared Memory Multiprocessing (4)

Implementation issues - parallelization

• parallelization of the force computation loop:

SUBROUTINE stepSystem()

CALL makeTree()

!$OMP PARALLEL DO SCHEDULE(GUIDED,4)

DO i = 1, n

CALL gravCalc(i,root)

END DO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

〈integrate velocities and positions〉
!$OMP END PARALLEL DO

END SUBROUTINE stepSystem

• observations:
– force computation scales reasonably up to 16 processors
– dynamic scheduling important
– single processor performance not impressive

1 2 4 8 16
tree construction 25.759 27.444 29.028 24.334 26.066
force computation 1568.854 809.294 416.174 196.997 120.664
speedup 1.00 1.94 3.77 7.96 13.00

0
200
400
600
800

1000
1200
1400
1600
1800

se
c

Processors

Results on O2000 (evans) for 1M particles

COMP 633 - Prins

16Shared Memory Multiprocessing (4)

Implementation issues - tuning of gravCalc (1)

• performance analysis of gravCalc shows
– poor cache reuse (90% L1 and 88% L2)
– poor use of floating point units
– poor reuse of subexpressions
compiler can’t generate good code?

• manual tuning of gravCalc
– inline computation of acceptance criterion
– inline computation of interaction
– reuse distance vector (body-cell)
– fuse loops
significant performance improvement!

• observations:
– 2.5 times faster
– good scaling
– better use of FPUs and better prediction
cache reuse (93% L1 and 94% L2) still bad

RECURSIVE SUBROUTINE gravCalc(p,q)
IF (“q is a body”) THEN

〈compute body-body interaction; accumulate〉
ELSE

IF (“p is distant enough from q”) THEN
〈compute body-cell interaction; accumulate〉

ELSE
DO q’ ∈ nonemptyChildren(q)

CALL gravCalc(p,q’)
END DO

END IF
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

600

700

Processors

se
c

tree construction 19.066 17.878 19.527 15.323 13.686

force computation 639.961 315.785 164.764 79.049 44.678

speedup 1.00 2.03 3.88 8.10 14.32

1 2 4 8 16

COMP 633 - Prins

17Shared Memory Multiprocessing (4)

Implementation issues - tuning of gravCalc (2a)

• how can we improve cache reuse?
– neighboring bodies in space will most likely interact with the same cells and

bodies!

• sort bodies according to some spatial order:
– precompute spatial order such as Morton order or Peano-Hilbert order
– or simply order bodies as they are encountered during a depth-first

treewalk of T
– Sorted bodies may also speed up subsequent tree rebuilding

Morton order Peano-Hilbert order Tree order

COMP 633 - Prins

18Shared Memory Multiprocessing (4)

Implementation issues - tuning of gravCalc (2b)

• observations:
– 30-40% increase in performance
– very good scaling
– L2 reuse now up at 99.8%
– L1 still at 93%

stepSystem(P(1:n))

T := makeTree(P(1:n))

re-order P(1:n) according to T

forall 1 ≤ i ≤ n do

f(i) := gravCalc(P(i),T)

〈update velocities and positions〉

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

600

Processors

se
c

tree construction 19.161 14.51 18.524 18.564 19.873

force computation 495.355 247.89 125.225 62.741 31.281

speedup 1.00 2.00 3.96 7.90 15.84

1 2 4 8 16

COMP 633 - Prins

19Shared Memory Multiprocessing (4)

Implementation issues - tuning of gravCalc (3)

How can we improve L1 reuse?
– interact a group of bodies with a cell

or body!
– walk the tree and compute forces for a set

of neighboring bodies

RECURSIVE SUBROUTINE gravCalc(set P,node q)
IF (“q is a body”) THEN

DO p ∈ P
〈compute body-body interaction; accumulate〉

END DO
ELSE

P’ = ∅
DO p ∈ P
IF (“p is distant enough from q”) THEN

〈compute body-cell interaction; accumulate〉
ELSE

P’ = P’ ∪ {p}
END IF

END DO
IF (P’.NE. ∅) THEN
DO q’ ∈ nonemptyChildren(q)

CALL gravCalc(P’,q’)
END DO

END IF
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

Processors

se
c

tree construction 20.041 19.471 19.824 18.605 13.716

force computation 421.391 205.309 104.438 51.828 25.805

speedup 1.00 2.05 4.03 8.13 16.33

1 2 4 8 16

observations:

 20-40% increase in performance

 L1 reuse now at 99.7%
(32 bodies per group)

 L2 down slightly at 96%

 ordered particles essential

COMP 633 - Prins

20Shared Memory Multiprocessing (4)

Implementation issues - tuning of gravCalc (4)

Another technique to improve L1 reuse
– allow leaf-cells to contain more than 1 body
– compute the body-body interactions in a

doubly nested loop.

RECURSIVE SUBROUTINE gravCalc(set P, node q)
P’ = ∅
DO p ∈ P

IF (“p is distant enough from q”) THEN
〈compute body-cell interaction; accumulate〉

ELSE
IF (“q is a leaf”) THEN

DO p ∈ P, q’ ∈ q
〈compute body-body interaction; accumulate〉

END DO
ELSE

P’ = P’ ∪ {p}
END IF

END IF
END DO
IF (P’.NE.∅) THEN

DO q’ ∈ nonemptyChildren(q)
CALL gravCalc(P’,q’)

END DO
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

50
100

150
200

250

300
350

400

Processors

se
c

tree construction 13.179 12.494 13.362 12.682 9.536

force computation 378.345 189.231 94.996 47.866 23.809

speedup 1.00 2.00 3.98 7.90 15.89

1 2 4 8 16

observations:

 10% increase in performance

this algorithm will perform strictly more
work than the previous versions! More
particles per leaf potentially causes more
body-body interactions and fewer body-
cell interactions to be computed.

COMP 633 - Prins

21Shared Memory Multiprocessing (4)

Implementation issues - summary

• Shared memory model
– enables relatively simple parallelization of basic algorithm using OpenMP
– shared memory model critical in dynamic load balancing

• Performance tuning
– overall these optimizations lead to 4-5 times faster single-processor performance
– Linear or superlinear parallel speedup to 16 processors
– optimizing serial performance is essential for obtaining good parallel

performance
– last two optimization are instances of exposing parallelism to improve serial

performance

• Observations
– the better the performance of gravCalc the more seriously the serial tree-

construction affects the overall speedup
» when makeTree time is included in speedup

• speedup drops from 13.00 to 10.8 for p = 16 in first version
• speedup drops from 15.89 to 11.74 for p = 16 on last version

– parallel tree construction algorithms!

COMP 633 - Prins

	�COMP 633 - Parallel Computing��Lecture 9 �September 16, 2021�� SMM (4) �� OpenMP Case Study: �The Barnes-Hut N-body Algorithm�
	Topics
	N-body simulations: self-gravitating systems
	The n-body simulation problem
	Reducing the number of interactions
	Hierarchical decomposition of space
	The Barnes-Hut algorithm
	The Barnes-Hut algorithm - Performance issues
	Constructing the tree
	The acceptance criterion
	Effects of acceptance criterion … on runtime
	Effects of acceptance criterion … on accuracy
	Effect of body distribution … on total work
	Complexity of Barnes-Hut
	Implementation issues - parallelization
	Implementation issues - tuning of gravCalc (1)
	Implementation issues - tuning of gravCalc (2a)
	Implementation issues - tuning of gravCalc (2b)
	Implementation issues - tuning of gravCalc (3)
	Implementation issues - tuning of gravCalc (4)
	Implementation issues - summary

