COMP 633 - Parallel Computing

Lecture 9
September 16, 2021

SMM (4)

OpenMP Case Study:
The Barnes-Hut N-body Algorithm

Topics

e Case study: the Barnes-Hut algorithm

— Study an important method in scientific computing
» efficient n-body simulation with long range forces

— Investigate parallelization and implementation in a shared memory
multiprocessor

» expression and management of parallelism
» memory hierarchy tuning

COMP 633 - Prins Shared Memory Multiprocessing (4)

N-body simulations: self-gravitating systems

)

COMP 633 - Prins Shared Memory Multiprocessing (4)

The n-body simulation problem

« Simulate the evolution of a system
of n bodies over time

— Pairwise interaction of bodies
» force 1(i,j) on body i due to body j

» total force f(i) on body i due to all
bodies

» acceleration of body i via f = ma

— Numerical integration of body velocities
and positions

» timestep At

* Non-negligible long-range forces

— for uniformly distributed bodies in 3D, total
force due to all bodies at a given distance
r is constant

» cannot ignore contribution of
distant bodies

 Examples

— astrophysics (gravity)
— molecular dynamics (electrostatics)

COMP 633 - Prins

Ex: Gravitation r;; = ||pi —Pj”

Mi-Mj Pi—Pj

f('!J):_G r2 .
Ij 1)
()= 1.)
ji

the basic simulation algorithm:

while (t < t;,,) do
forall 1 <1 < n do
(compute force f(1) onbody 1)
end
(update velocity and position of all bodies)
t =1t + At
end

Direct approach:
O(n?) interactions per time-step

Shared Memory Multiprocessing (4) Y ! 4

Reducing the number of interactions

Exploit combined effect of “distant” bodies Formally

y conter of « Monopole approximation of the force
S——> /massc on the earth due to interaction with all
masses in the Andromeda galaxy

[]
Earth ¢ Total mass
° + ° M
[] []

*| Andromeda

f (bearth) ~ — G mearth M (E:eal‘th - C)
r

o Vulcan

* Monopole approximation saves work if
it can be reused with multiple bodies

r

i N I
I - » Accuracy of approximation improves
with

— increasing r

— decreasing d
apply this idea recursively: — order of the approximation

» Monopole, dipole, quadropole, ...

— uniformity of body distribution

= determines control-structure

= requires hierarchical decomposition of space

COMP 633 - Prins Shared Memory Multiprocessing (4)

Hierarchical decomposition of space

2D a guadtree an octree decomposition

an adaptive quadtree

COMP 633 - Prins Shared Memory Multiprocessing (4)

The Barnes-Hut algorithm

stepSystem():
// P(1) is coordinates and mass of body i
T = makeTree(P(1:n))
forall 1 <1 < n do
f(1) = gravCalc(P(i1),T)
(update velocities and positions)

function gravCalc(body p,treenode Q)
iIT (“q isaleaf””) then
(return body-body interaction (p,q))
else
iIT (“p isdistant enough from q’) then
(return body-cell interaction (p,q))
else
forall g’ < nonemptyChildren(q) do
accumullate gravCalc(p,q’)
(return accumulated interaction)
end if
end if

COMP 633 - Prins Shared Memory Multiprocessing (4)

interaction in the case of gravitation:

F_g.Mp Mg
2
pq
{Xp —Xg Yp—¥q Zp—Ig
ol Fng Fng

rpq Z\/(Xp _Xq)2 "‘(Yp _yq)2 +(Zp _Zq)z

body-body interaction: use masses of
bodies and distance between them.

body-cell interaction: use mass of body
and mass of cell and distance between body

and center of mass of cell.

force is additive; individual contributions can
be accumulated.

The Barnes-Hut algorithm - Performance issues

stepSystem(P(1:n))
-—- P(1:n) 1s sequence of bodies
T = makeTree(P(1:n))
forall 1 <1 < n do
f(1) = gravCalc(P(1),T)
(update velocities and positions)

function gravCalc(p,q)
iIT (“q isaleaf””) then
(return body-body interaction)

else
iIf (“p isdistant enough from) then

(return body-cell interaction)
else

forall g’ nonemptyChildren(q) do

accumulate gravCalc(p,q’)
(return accumulated interaction)
end if
end if

COMP 633 - Prins

Parallelism
nested parallelism
e over bodies
 over recursively divided cells
load balance
different number of interactions
for different bodies

Locality
nearby bodies interact with similar set

of nodes in tree

Shared Memory Multiprocessing (4)

Constructing the tree

e Small fraction f of the total work

— but sequential tree construction
can limit overall speedup

» Amdahl's law: SP < 1/f

« Computing monopole
approximation for each cell
— Post-order traversal of tree

» At leaves, monopole coincides
with single body

» At interior nodes, monopole is
weighted sum of all children’s
monopoles

COMP 633 - Prins

Shared Memory Multiprocessing (4)

function makeTree(P(1:n))
for 1 := 1 to n do
T = 1nsert(P(1),T)
(compute monopole approximation at each node)

function insert(p,T)

iIT empty(T) then
(return p as singleton tree)

else
(determine child S of T in which p belongs)
S” = 1nsert(p,S)
(return T with S replaced by S’)

endif

The acceptance criterion

« whenis a cell “distant enough”?

Earth

—
¢ Center 0
| — of mass

o<

 problem: detonating

°| Andromeda

galaxy anomaly

~

Center
of mass

§<

A\

~d+/2 (2D)
~d+/3(3D)

5

secondary galaxy

d
——==0.7<0
dvz s

COMP 633 - Prins

primary galaxy

Shared Memory Multiprocessing (4)

original criterion used by Barnes-Hut:

E<6? = r>g
r 6

where usually

0.7<6<1.0

(one) solution: add distance between
center of mass (cm) and geometric
center of cell (c)

d
r>—+|cm-c|
0

Effects of acceptance criterion ... on runtime

0.025"_ I I 7 0.0025
6=0! ®9=01 /g=0.2
;o /
[/
[/
1 / /
0.020 Jr-‘ / ;'f] 0.0020
[/
rlf
; L / 2
= ! / =
E 0.015 I ,‘.I’ / — g 0.0015
- !I ® / A a
&] s 4 L
o ! / 7~ @
o ‘l =2
% / / /"‘ ./ =03 @
W -~ — -
2 0.010 Ay y 5 2 0.0010
5} e/ / e Q
0.005 0.0005
0 | | | 0 I | |
3.0 35 4.0 45 5.0 3.0 3.5 4.0 4.5 5.0
L0g1g N LDg10 N

F1G. 3.— Scaling of CRAY X-MP CPU time (CPU seconds per step per particle) for spherical, isotropic Plummer models, as a function of l.hc number
of particles, for values of the clumping parameter # in the range 0 < # < 1.5. Only monopole terms have been included in the force computation.

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

COMP 633 - Prins Shared Memory Multiprocessing (4) @ 11

Effects of acceptance criterion ... on accuracy

2.0 — 71 T T T T T T 1
= 10F
5 N=
; o ™7 N = 16,384
% TSN =32768
- ~TO —
o
Q
|
20+ =
4p I T

0 02 04 06 08 1.0 1.2 14 16 1.8 2.0
0

FiG. 6.—Magnitude of the ypical error (in percent) in the tree force computation, relative to a direct sum. as a function of @, for selected values of the
particle number N. The calculations have assumed spherical, isotropic Plummer models with softening parameter #= (), and only monopole terms have
been included in the force computations.

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

1% accuracy sufficient for most astrophysical simulations. Different techniques with better
error control necessary for other systems (fast multipole methods).

COMP 633 - Prins Shared Memory Multiprocessing (4)

Effect of body distribution ... on total work

Uniform distribution Plummer distribution

e

For fixed n
 uniform distributions generate high interaction work (shallow trees)
» non-uniform distributions generate higher tree construction and lower interaction work

COMP 633 - Prins Shared Memory Multiprocessing (4)

Complexity of Barnes-Hut

* Tree building

cost of tree construction depends on particle distribution
» cost of body insertion o« distance to root
» for a uniform distribution of n particles, sequential construction of the tree is O(n log n) time

In a simulation, tree could be maintained rather than reconstructed each time step

* Force calculation (uniform distribution of bodies in 2D)

consider computing the force acting on a body in the lower right corner
if 6 = 1.0 the 3 undivided top-level squares will satisfy the acceptance criterion

The remaining square does not satisfy the criterion, hence we
descend into the next level

each level of the tree incurs a constant amount of
work while descending along the path to the lower right corner

for a uniform distribution of n bodies, the length of the path is
O(log, n)

computing the forces on n bodies is O(n log n) work
non-uniform distribution more difficult to analyze

e Accuracy and complexity are difficult to control

COMP 633 - Prins Shared Memory Multiprocessing (4) @ 14
b

Implementation issues - parallelization

e parallelization of the force computation loop:

SUBROUTINE stepSystem()
CALL makeTree()

Results on 02000 (evans)for 1M particles

1$OMP PARALLEL DO SCHEDULE(GUIDED,4) 1800
DO i =1,n 1000 1=
CALL gravCalc(i,root) 1288 \
END DO o 1000 N\
1$OMP END PARALLEL DO & 800 \\
1$OMP PARALLEL DO 600
(integrate velocities and positions) 400 T
1$OMP END PARALLEL DO 200 . N N " 3
END SUBROUTINE stepSystem 0 1 2 4 8 16
—— tree construction 25.759 27.444 29.028 24.334 26.066
==l=m force computation| 1568.854 | 809.294 | 416.174 | 196.997 | 120.664
speedup 1.00 1.94 3.77 7.96 13.00
e observations:
Processors

— force computation scales reasonably up to 16 processors

— dynamic scheduling important
— single processor performance not impressive

COMP 633 - Prins Shared Memory Multiprocessing (4)

Implementation issues - tuning of gravCalc (1)

» performance analysis of gravCalc shows
— poor cache reuse (90% L1 and 88% L2)
— poor use of floating point units
— poor reuse of subexpressions
compiler can’t generate good code?

 manual tuning of gravCalc
— inline computation of acceptance criterion
— inline computation of interaction
— reuse distance vector (body-cell)
— fuse loops

significant performance improvement!

* observations:
— 2.5 times faster
— good scaling
— better use of FPUs and better prediction

cache reuse (93% L1 and 94% L2) still bad

COMP 633 - Prins

RECURSIVE SUBROUTINE gravCalc(p,q)
IF (““q isabody”) THEN
(compute body-body interaction; accumulate)
ELSE
IF (“p isdistant enough from q>) THEN
(compute body-cell interaction; accumulate)
ELSE
DO g” € nonemptyChildren(q)
CALL gravCalc(p,q’)
END DO
END IF
END IF
END SUBROUTINE gravCalc

Results on 02000 (evans) for 1M particles

700

600 \\
500 \
400
[&]
& 300 AW
200 \\'\
100 ::
0
1 2 4 8 16
—&— tree construction 19.066 17.878 19.527 15.323 13.686
—8—force computation | 639.961 | 315.785 | 164.764 | 79.049 44.678
speedup 1.00 2.03 3.88 8.10 14.32

Shared Memory Multiprocessing (4)

Processors

S

Implementation issues - tuning of gravCalc (2a)

 how can we improve cache reuse?
— neighboring bodies in space will most likely interact with the same cells and
bodies!
» sort bodies according to some spatial order:
— precompute spatial order such as Morton order or Peano-Hilbert order

— or simply order bodies as they are encountered during a depth-first
treewalk of T

— Sorted bodies may also speed up subsequent tree rebuilding

TN~ DI DI

SIS YO D
BN CRT My e
SN AUND |) 1S
N\ <X \ amill
TR\ = il Vade
ST NS WnT4 11

Morton order Peano-Hilbert order Tree order

COMP 633 - Prins Shared Memory Multiprocessing (4)

Implementation issues - tuning of gravCalc (2b)

e Observations:

stepSystem(P(1:n))

— 30-40% increase in performance := makeTree(P(1:n))

— very good scaling
— L2 reuse now up at 99.8%
— L1 still at 93%

COMP 633 - Prins

re-order P(1:n) according to T
forall 1 <1 < n do

(1) := gravCalc(P(1),T)
(update velocities and positions)

Results on 02000 (evans) for 1M particles

600

500 \
400

300 \

sec

200 \\

100 \'\

01— \:\4

1 2 4 8 16
—&— tree construction 19.161 14.51 18.524 18.564 19.873
—8—force computation | 495.355 | 247.89 | 125.225 | 62.741 31.281
speedup 1.00 2.00 3.96 7.90 15.84
Processors

Shared Memory Multiprocessing (4) @
b

Implementation issues - tuning of gravCalc (3)

How can we improve L1 reuse?

— interact a group of bodies with a cell

or body!

— walk the tree and compute forces for a set

of neighboring bodies

RECURSIVE SUBROUTINE gravCalc(set P,node Q)

IF (“q isabody”) THEN
DO p € P
(compute body-body interaction; accumulate)
END DO
ELSE
P =
DO p € P
IF (“‘p isdistant enough from q*) THEN
(compute body-cell interaction; accumulate)
ELSE
P> = P” U {p}
END IF
END DO
IF (P”.NE. &) THEN
DO g* e nonemptyChildren(q)
CALL gravCalc(P’,q”)
END DO
END IF
END IF
END SUBROUTINE gravCalc

COMP 633 - Prins

Results on 02000 (evans) for 1M particles

500
400 *\\\
300

200

sec

100

0 4 4 4 4

1 2 4 8 16

—&— tree construction 20.041 19.471 19.824 18.605 13.716

—B—force computation | 421.391 | 205.309 | 104.438 | 51.828 | 25.805

speedup 1.00 2.05 4.03 8.13 16.33

Processors

observations:

= 20-40% increase in performance

= L1 reuse now at 99.7%
(32 bodies per group)

= L2 down slightly at 96%

= ordered particles essential

Shared Memory Multiprocessing (4)] I"I' 19

Implementation issues - tuning of gravCalc (4)

Results on 02000 (evans) for 1M particles

Another technique to improve L1 reuse
400

— allow leaf-cells to contain more than 1 body o
— compute the body-body interactions in a 300
doubly nested loop. 250
é 200
150
RECURSIVE SUBROUTINE gravCalc(set P, node Q) 100
P” = ¢ 50
DO p € P 0
IF (“‘p isdistant enough from q’) THEN
(Compute body-cell interaction; accumulate) —&— tree construction 13.179 12.494 13.362 12.682 9.536
ELSE —B— force computation | 378.345 | 189.231 | 94.996 | 47.866 23.809
IF (““q isaleaf””) THEN speedup 1.00 2.00 3.98 7.90 15.89
DO p € P, g° € q Processors
(compute body-body interaction; accumulate)
END DO :
ELSE observations:
P> = P” U {p} . .
END IE = 10% increase in performance
END IF : : : :
END DO this algorithm will perform strictly more
IF (P”.NE.Q) THEN work than the previous versions! More
= cXLLEgpgcggf?(/gblc:(j)r en(a) particles per leaf potentially causes more
END DO ’ body-body interactions and fewer body-
END IF cell interactions to be computed.

END SUBROUTINE gravCalc

COMP 633 - Prins Shared Memory Multiprocessing (4)

Implementation issues - summary

« Shared memory model
— enables relatively simple parallelization of basic algorithm using OpenMP
— shared memory model critical in dynamic load balancing

e Performance tuning
— overall these optimizations lead to 4-5 times faster single-processor performance
— Linear or superlinear parallel speedup to 16 processors

— optimizing serial performance is essential for obtaining good parallel
performance

— last two optimization are instances of exposing parallelism to improve serial
performance

* Observations
— the better the performance of gravCalc the more seriously the serial tree-
construction affects the overall speedup

» when makeTree time is included in speedup
* speedup drops from 13.00 to 10.8 for p = 16 in first version
e speedup drops from 15.89 to 11.74 for p = 16 on last version

— parallel tree construction algorithms!

COMP 633 - Prins Shared Memory Multiprocessing (4)

	�COMP 633 - Parallel Computing��Lecture 9 �September 16, 2021�� SMM (4) �� OpenMP Case Study: �The Barnes-Hut N-body Algorithm�
	Topics
	N-body simulations: self-gravitating systems
	The n-body simulation problem
	Reducing the number of interactions
	Hierarchical decomposition of space
	The Barnes-Hut algorithm
	The Barnes-Hut algorithm - Performance issues
	Constructing the tree
	The acceptance criterion
	Effects of acceptance criterion … on runtime
	Effects of acceptance criterion … on accuracy
	Effect of body distribution … on total work
	Complexity of Barnes-Hut
	Implementation issues - parallelization
	Implementation issues - tuning of gravCalc (1)
	Implementation issues - tuning of gravCalc (2a)
	Implementation issues - tuning of gravCalc (2b)
	Implementation issues - tuning of gravCalc (3)
	Implementation issues - tuning of gravCalc (4)
	Implementation issues - summary

