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Topics

e Case study: the Barnes-Hut algorithm

— Study an important method in scientific computing
» efficient n-body simulation with long range forces

— Investigate parallelization and implementation in a shared memory
multiprocessor

» expression and management of parallelism
» memory hierarchy tuning
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N-body simulations: self-gravitating systems

)
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The n-body simulation problem

« Simulate the evolution of a system
of n bodies over time

— Pairwise interaction of bodies
» force 1(i,j) on body i due to body j

» total force f(i) on body i due to all
bodies

» acceleration of body i via f = ma

— Numerical integration of body velocities
and positions

» timestep At

* Non-negligible long-range forces

— for uniformly distributed bodies in 3D, total
force due to all bodies at a given distance
r is constant

» cannot ignore contribution of
distant bodies

 Examples

— astrophysics (gravity)
— molecular dynamics (electrostatics)
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the basic simulation algorithm:

while (t < t;,,) do
forall 1 <1 < n do
( compute force f(1) onbody 1 )
end
( update velocity and position of all bodies )
t =1t + At
end

Direct approach:
O(n?) interactions per time-step

Shared Memory Multiprocessing (4) Y ! 4




Reducing the number of interactions

Exploit combined effect of “distant” bodies Formally

y conter of « Monopole approximation of the force
S——> /massc on the earth due to interaction with all
masses in the Andromeda galaxy
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* Monopole approximation saves work if
it can be reused with multiple bodies

r

i N I
I - » Accuracy of approximation improves
with

— increasing r

— decreasing d
apply this idea recursively: — order of the approximation

» Monopole, dipole, quadropole, ...

— uniformity of body distribution

= determines control-structure

= requires hierarchical decomposition of space
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Hierarchical decomposition of space

2D a guadtree an octree decomposition

an adaptive quadtree
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The Barnes-Hut algorithm

stepSystem():
// P(1) is coordinates and mass of body i
T = makeTree(P(1:n))
forall 1 <1 < n do
f(1) = gravCalc(P(i1),T)
( update velocities and positions )

function gravCalc(body p,treenode Q)
iIT (“q isaleaf””) then
(return body-body interaction (p,q) )
else
iIT (“p isdistant enough from q’) then
(return body-cell interaction (p,q) )
else
forall g’ < nonemptyChildren(q) do
accumullate gravCalc(p,q’)
(return accumulated interaction)
end if
end if

COMP 633 - Prins Shared Memory Multiprocessing (4)

interaction in the case of gravitation:

F_g.Mp Mg
2
pq
{Xp —Xg  Yp—¥q Zp—Ig
ol Fng Fng

rpq Z\/(Xp _Xq)2 "‘(Yp _yq)2 +(Zp _Zq)z

body-body interaction: use masses of
bodies and distance between them.

body-cell interaction: use mass of body
and mass of cell and distance between body

and center of mass of cell.

force is additive; individual contributions can
be accumulated.




The Barnes-Hut algorithm - Performance issues

stepSystem(P(1:n))
-—- P(1:n) 1s sequence of bodies
T = makeTree(P(1:n))
forall 1 <1 < n do
f(1) = gravCalc(P(1),T)
(update velocities and positions)

function gravCalc(p,q)
iIT (“q isaleaf””) then
(return body-body interaction)

else
iIf (“p isdistant enough from ) then

(return body-cell interaction)
else

forall g’ nonemptyChildren(q) do

accumulate gravCalc(p,q’)
(return accumulated interaction)
end if
end if
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Parallelism
nested parallelism
e over bodies
 over recursively divided cells
load balance
different number of interactions
for different bodies

Locality
nearby bodies interact with similar set

of nodes in tree
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Constructing the tree

e Small fraction f of the total work

— but sequential tree construction
can limit overall speedup

» Amdahl's law: SP < 1/f

« Computing monopole
approximation for each cell
— Post-order traversal of tree

» At leaves, monopole coincides
with single body

» At interior nodes, monopole is
weighted sum of all children’s
monopoles
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function makeTree( P(1:n) )
for 1 := 1 to n do
T = 1nsert(P(1),T)
( compute monopole approximation at each node )

function insert(p,T)

iIT empty(T) then
( return p as singleton tree )

else
( determine child S of T in which p belongs )
S” = 1nsert(p,S)
( return T with S replaced by S’ )

endif




The acceptance criterion

« whenis a cell “distant enough”?
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primary galaxy
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original criterion used by Barnes-Hut:

E<6? = r>g
r 6

where usually

0.7<6<1.0

(one) solution: add distance between
center of mass (cm) and geometric
center of cell (c)

d
r>—+|cm-c|
0




Effects of acceptance criterion ... on runtime
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F1G. 3.— Scaling of CRAY X-MP CPU time (CPU seconds per step per particle) for spherical, isotropic Plummer models, as a function of l.hc number
of particles, for values of the clumping parameter # in the range 0 < # < 1.5. Only monopole terms have been included in the force computation.

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.
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Effects of acceptance criterion ... on accuracy
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FiG. 6.—Magnitude of the ypical error (in percent) in the tree force computation, relative to a direct sum. as a function of @, for selected values of the
particle number N. The calculations have assumed spherical, isotropic Plummer models with softening parameter #= (), and only monopole terms have
been included in the force computations.

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

1% accuracy sufficient for most astrophysical simulations. Different techniques with better
error control necessary for other systems (fast multipole methods).
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Effect of body distribution ... on total work

Uniform distribution Plummer distribution

e

For fixed n
 uniform distributions generate high interaction work (shallow trees)
» non-uniform distributions generate higher tree construction and lower interaction work
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Complexity of Barnes-Hut

* Tree building

cost of tree construction depends on particle distribution
» cost of body insertion o« distance to root
» for a uniform distribution of n particles, sequential construction of the tree is O(n log n) time

In a simulation, tree could be maintained rather than reconstructed each time step

* Force calculation (uniform distribution of bodies in 2D)

consider computing the force acting on a body in the lower right corner
if 6 = 1.0 the 3 undivided top-level squares will satisfy the acceptance criterion

The remaining square does not satisfy the criterion, hence we
descend into the next level

each level of the tree incurs a constant amount of
work while descending along the path to the lower right corner

for a uniform distribution of n bodies, the length of the path is
O(log, n)

computing the forces on n bodies is O(n log n) work
non-uniform distribution more difficult to analyze

e Accuracy and complexity are difficult to control
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Implementation issues - parallelization

e parallelization of the force computation loop:

SUBROUTINE stepSystem()
CALL makeTree()

Results on 02000 (evans)for 1M particles

1$OMP PARALLEL DO SCHEDULE(GUIDED,4) 1800
DO i =1,n 1000 1=
CALL gravCalc(i,root) 1288 \
END DO o 1000 N\
1$OMP END PARALLEL DO & 800 \\
1$OMP PARALLEL DO 600
(integrate velocities and positions) 400 T
1$OMP END PARALLEL DO 200 . N N " 3
END SUBROUTINE stepSystem 0 1 2 4 8 16
—— tree construction 25.759 27.444 29.028 24.334 26.066
==l=m force computation| 1568.854 | 809.294 | 416.174 | 196.997 | 120.664
speedup 1.00 1.94 3.77 7.96 13.00
e observations:
Processors

— force computation scales reasonably up to 16 processors

— dynamic scheduling important
— single processor performance not impressive
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Implementation issues - tuning of gravCalc (1)

» performance analysis of gravCalc shows
— poor cache reuse (90% L1 and 88% L2)
— poor use of floating point units
— poor reuse of subexpressions
compiler can’t generate good code?

 manual tuning of gravCalc
— inline computation of acceptance criterion
— inline computation of interaction
— reuse distance vector (body-cell)
— fuse loops

significant performance improvement!

* observations:
— 2.5 times faster
— good scaling
— better use of FPUs and better prediction

cache reuse (93% L1 and 94% L2) still bad
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RECURSIVE SUBROUTINE gravCalc(p,q)
IF (““q isabody”) THEN
(compute body-body interaction; accumulate)
ELSE
IF (“p isdistant enough from q>) THEN
(compute body-cell interaction; accumulate)
ELSE
DO g” € nonemptyChildren(q)
CALL gravCalc(p,q’)
END DO
END IF
END IF
END SUBROUTINE gravCalc

Results on 02000 (evans) for 1M particles

700

600 \\
500 \
400
[&]
& 300 AW
200 \\'\
100 ::
0
1 2 4 8 16
—&— tree construction 19.066 17.878 19.527 15.323 13.686
—8—force computation | 639.961 | 315.785 | 164.764 | 79.049 44.678
speedup 1.00 2.03 3.88 8.10 14.32
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Implementation issues - tuning of gravCalc (2a)

 how can we improve cache reuse?
— neighboring bodies in space will most likely interact with the same cells and
bodies!
» sort bodies according to some spatial order:
— precompute spatial order such as Morton order or Peano-Hilbert order

— or simply order bodies as they are encountered during a depth-first
treewalk of T

— Sorted bodies may also speed up subsequent tree rebuilding
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Morton order Peano-Hilbert order Tree order
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Implementation issues - tuning of gravCalc (2b)

e Observations:

stepSystem(P(1:n))

— 30-40% increase in performance := makeTree(P(1:n))

— very good scaling
— L2 reuse now up at 99.8%
— L1 still at 93%
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re-order P(1:n) according to T
forall 1 <1 < n do

(1) := gravCalc(P(1),T)
(update velocities and positions)

Results on 02000 (evans) for 1M particles

600

500 \
400

300 \

sec

200 \\

100 \'\

01— \:\4

1 2 4 8 16
—&— tree construction 19.161 14.51 18.524 18.564 19.873
—8—force computation | 495.355 | 247.89 | 125.225 | 62.741 31.281
speedup 1.00 2.00 3.96 7.90 15.84
Processors
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Implementation issues - tuning of gravCalc (3)

How can we improve L1 reuse?

— interact a group of bodies with a cell

or body!

— walk the tree and compute forces for a set

of neighboring bodies

RECURSIVE SUBROUTINE gravCalc(set P,node Q)

IF (“q isabody”) THEN
DO p € P
(compute body-body interaction; accumulate)
END DO
ELSE
P =
DO p € P
IF (“‘p isdistant enough from q*) THEN
(compute body-cell interaction; accumulate)
ELSE
P> = P” U {p}
END IF
END DO
IF (P”.NE. &) THEN
DO g* e nonemptyChildren(q)
CALL gravCalc(P’,q”)
END DO
END IF
END IF
END SUBROUTINE gravCalc
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Results on 02000 (evans) for 1M particles

500
400 *\\\
300

200

sec

100

0 4 4 4 4

1 2 4 8 16

—&— tree construction 20.041 19.471 19.824 18.605 13.716

—B—force computation | 421.391 | 205.309 | 104.438 | 51.828 | 25.805

speedup 1.00 2.05 4.03 8.13 16.33

Processors

observations:

= 20-40% increase in performance

= L1 reuse now at 99.7%
(32 bodies per group)

= L2 down slightly at 96%

= ordered particles essential
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Implementation issues - tuning of gravCalc (4)

Results on 02000 (evans) for 1M particles

Another technique to improve L1 reuse
400

— allow leaf-cells to contain more than 1 body o
— compute the body-body interactions in a 300
doubly nested loop. 250
é 200
150
RECURSIVE SUBROUTINE gravCalc(set P, node Q) 100
P” = ¢ 50
DO p € P 0
IF (“‘p isdistant enough from q’) THEN
(Compute body-cell interaction; accumulate) —&— tree construction 13.179 12.494 13.362 12.682 9.536
ELSE —B— force computation | 378.345 | 189.231 | 94.996 | 47.866 23.809
IF (““q isaleaf””) THEN speedup 1.00 2.00 3.98 7.90 15.89
DO p € P, g° € q Processors
(compute body-body interaction; accumulate)
END DO :
ELSE observations:
P> = P” U {p} . .
END IE = 10% increase in performance
END IF : : : :
END DO this algorithm will perform strictly more
IF (P”.NE.Q) THEN work than the previous versions! More
= cXLLEgpgcggf?(/gblc:(j)r en(a) particles per leaf potentially causes more
END DO ’ body-body interactions and fewer body-
END IF cell interactions to be computed.

END SUBROUTINE gravCalc
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Implementation issues - summary

« Shared memory model
— enables relatively simple parallelization of basic algorithm using OpenMP
— shared memory model critical in dynamic load balancing

e Performance tuning
— overall these optimizations lead to 4-5 times faster single-processor performance
— Linear or superlinear parallel speedup to 16 processors

— optimizing serial performance is essential for obtaining good parallel
performance

— last two optimization are instances of exposing parallelism to improve serial
performance

* Observations
— the better the performance of gravCalc the more seriously the serial tree-
construction affects the overall speedup

» when makeTree time is included in speedup
* speedup drops from 13.00 to 10.8 for p = 16 in first version
e speedup drops from 15.89 to 11.74 for p = 16 on last version

— parallel tree construction algorithms!
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