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Topics

• Single processor optimization
– cache optimization
– vectorization
– general remarks

• Shared-memory multiprocessors
– cache implementation

• cache coherence
• cache consistency

– shared memory implementations
• bus-based protocols
• directory-based protocols

• OpenMP thread mapping to processors
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Single-processor optimization

• Cache optimization
– locality of reference

• the unit of transfer to/from memory is a cache line (64 bytes)
• maximize utility of the transferred data 

– an array of structs?  
– a struct of arrays?

– keep in mind cache capacities
• L1 and L2 are local to the core
• L3 is local to the socket
• first touch principle for page faults

– the page frame is allocated in the physical memory attached to the socket
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Single-processor optimization
• Vectorization

– vector operations
• generated by compiler based on analysis of data structures and loops

– unrolls the loop iterations and generates vector instructions 
• dependencies between loop iterations can inhibit vectorization
• automatic vectorization generally works quite well

– icc can generate a vectorization report (see Intel Advisor: Vectorization)

• General remarks
– use  -Ofast flag for maximum analysis and optimization 

• use –O3 to retain precise floating point arithmetic
– performance tuning can be time consuming
– plan for parallelism

• minimize arrays of pointers to dynamically allocated values 
– vectorization will be slowed by having to fetch all the values serially 

• avoid mixed reads and writes of shared data in a cache line
– a write invalidate copies of the cache line held in other cores 
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Shared-memory multiprocessor implementation

• Objectives of the next few lectures
– Examine some implementation issues in shared-memory 

multiprocessors
• cache coherence
• memory consistency
• synchronization mechanisms

• Why?
– Correctness

• memory consistency (or lack thereof) can be the source of very subtle 
bugs 

– Performance
• cache coherence and synchronization mechanisms can have profound 

performance implications
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Coherence and Consistency

• Coherence
– behavior of a single memory location 
– viewed from a single processor
– read returns “most recent” written value

• Consistency
– behavior of multiple memory locations read and written by multiple 

processors
– viewed from one or more of the processors
– read may not return the “most recent” value

• What are the permitted ordering among reads and writes of several memory 
locations?
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Cache-coherent shared memory multiprocessor
• Implementations 

– shared bus
• bus may be a “slotted” ring

– scalable interconnect
• fixed per-processor bandwidth

• Effect of CPU write on local cache
– write-through policy – value is 

written to cache and to memory
– write-back policy – value written in 

cache only; memory updated 
upon cache line eviction

• Effect of CPU write on remote cache
– update – remote value is modified
– invalidate – remote value 

is marked invalid
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Bus-Based Shared-Memory protocols
• “Snooping” caches

– Ci caches memory operations from Pi
– Ci monitors all activity on bus due to Ch (h ≠ i )

• Update protocol with write-through cache
– between proc Pi and cache Ci

• read-hit from Pi resolved from Ci
• read-miss from Pi resolved from memory 

and inserted in Ci
• write (hit or miss) from Pi updates Ci and 

memory [write-through]

– between cache Ci and cache Ch
• if Ci writes a memory location cached at Ch, 

then Ch is updated with new value

– consequences
• every write uses the bus
• doesn’t scale
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Bus-Based Shared-Memory protocols

• Invalidation protocol with write-back cache
– Cache blocks can be in one of three states:

• INVALID — The block does not contain valid data
• SHARED — The block is a current copy of memory data 

– other copies may exist in other caches
• EXCLUSIVE — The block holds the only copy of the correct data

– memory may be incorrect, no other cache holds this block

– Handling exclusively-held blocks
• Processor events

– cache is block “owner”
» reads and writes are local

• Snooping events
– on detecting a read-miss or write-miss from 

another processor to an exclusive block
» write-back block to memory
» change state to shared (on ext read-miss) or invalid (on ext write-miss)
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Invalidation protocol:  example
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Implementation:  FSM per cache line

• Action in response to CPU event

Excl

Invalid Shared

Eviction

CPU read

CPU read
Place read-miss on bus

CPU read
CPU write

Excl

Invalid Shared
Write-miss for this block

• Action in response to bus 
event
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Scalable shared memory:  directory-based protocols

• The Stanford DASH multiprocessor
– Processing clusters are connected via a scalable network

• Global memory is distributed equally among clusters

– Caching is performed using an ownership protocol
• Each memory block has a “home” processing cluster 
• At each cluster, a directory tracks the location & state of each cached 

block whose home is on the cluster 
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• Directories track location & state 
of all cache blocks 
– 16 clusters
– 16 MB cluster memories
– 16 byte cache blocks
– 2+ MB storage overhead per 

directory
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• Caching is based on an ownership model
– invalid, shared, & exclusive states

• Home cluster is the owner for all its 
invalid and shared blocks

• Any one cache can own the only copy of  
a exclusive block
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Cache coherence in DASH:  Read miss

• Check local cluster caches first...
– If found and SHARED then copy
– If found and EXCL then make SHARED and copy

• If not found consult desired block’s home directory
– If SHARED or UNCACHED then block is sent to requestor
– If EXCL then request is forwarded to cluster where block is cached.  Remote 

cluster makes block SHARED and sends copy to requestor

• To make a block SHARED
– Send copy to owning cluster
– mark SHARED
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• Writing processor must first become block’s owner

• If block is cached at requesting processor and block is...
– EXCL, then write can proceed
– SHARED, then home directory must invalidate all copies and convert to EXCL

• If block is not cached locally but is cached on the cluster 
– a local block transfer is performed (invalidating local copies)
– home directory is updated to EXCL if the state was SHARED
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• If block is not cached on local cluster then block’s home directory is 
contacted

• If block is...
– UNCACHED — Block is marked EXCL and sent to requestor
– SHARED — Block is marked as EXCL and messages sent to caching 

clusters to invalidate their copies
– EXCL — Request is forwarded to caching cluster.  There the block is 

invalidated and forwarded to requestor
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Intel cache coherence (skylake)
– basically a directory-based protocol like DASH with 2 or 4 clusters
– each package (socket) is a cluster with p cores distributed across two 

slotted rings
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Intel physical organization
– up to 4 sockets
– up to 28 cores per socket 
– up to 56 thread contexts (28 threads and 28 hyperthreads)

CC-NUMA (1)COMP 633  - Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 3

thread context
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Mapping OpenMP threads to hardware (1)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality
– KMP_AFFINITY = “granularity=fine,compact”

0 1 2 3 4 5 6 7 OpenMP thread-id

Note: we use a fictional 
machine with 2 sockets and 
4 cores with hyperthreads

to illustrate these mappings 

Nearby threads-ids tend to share more lower-level cache
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Mapping OpenMP threads to hardware (2)

CC-NUMA (1)COMP 633  - Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth without data locality
– KMP_AFFINITY = “granularity=fine,scatter”

0 4 2 6 1 5 3 7 OpenMP thread id
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Mapping OpenMP threads to hardware (3)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality and equal thread progress
– KMP_AFFINITY = “granularity=fine,compact,1,0”
– OMP_NUM_THREADS = 4

0 4 1 5 2 6 3 7 OpenMP thread id
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Mapping OpenMP threads to hardware (4)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth and equal thread progress
– KMP_AFFINITY = “granularity=fine,scatter”
– OMP_NUM_THREADS = 4

0 4 2 6 1 5 3 7 OpenMP thread
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