
• Reading for next time
– Memory consistency models tutorial (sections 1-6, pp 1 -17)

COMP 633 - Parallel Computing

Lecture 10
September 21, 2021

CC-NUMA (1)
CC-NUMA implementation

CC-NUMA (1)COMP 633 - Prins

2

Topics

• Single processor optimization
– cache optimization
– vectorization
– general remarks

• Shared-memory multiprocessors
– cache implementation

• cache coherence
• cache consistency

– shared memory implementations
• bus-based protocols
• directory-based protocols

• OpenMP thread mapping to processors

CC-NUMA (1)COMP 633 - Prins

3

Single-processor optimization

• Cache optimization
– locality of reference

• the unit of transfer to/from memory is a cache line (64 bytes)
• maximize utility of the transferred data

– an array of structs?
– a struct of arrays?

– keep in mind cache capacities
• L1 and L2 are local to the core
• L3 is local to the socket
• first touch principle for page faults

– the page frame is allocated in the physical memory attached to the socket

CC-NUMA (1)COMP 633 - Prins

4

Single-processor optimization
• Vectorization

– vector operations
• generated by compiler based on analysis of data structures and loops

– unrolls the loop iterations and generates vector instructions
• dependencies between loop iterations can inhibit vectorization
• automatic vectorization generally works quite well

– icc can generate a vectorization report (see Intel Advisor: Vectorization)

• General remarks
– use -Ofast flag for maximum analysis and optimization

• use –O3 to retain precise floating point arithmetic
– performance tuning can be time consuming
– plan for parallelism

• minimize arrays of pointers to dynamically allocated values
– vectorization will be slowed by having to fetch all the values serially

• avoid mixed reads and writes of shared data in a cache line
– a write invalidate copies of the cache line held in other cores

CC-NUMA (1)COMP 633 - Prins

5CC-NUMA (1)COMP 633 - Prins

Shared-memory multiprocessor implementation

• Objectives of the next few lectures
– Examine some implementation issues in shared-memory

multiprocessors
• cache coherence
• memory consistency
• synchronization mechanisms

• Why?
– Correctness

• memory consistency (or lack thereof) can be the source of very subtle
bugs

– Performance
• cache coherence and synchronization mechanisms can have profound

performance implications

6CC-NUMA (1)COMP 633 - Prins

Coherence and Consistency

• Coherence
– behavior of a single memory location
– viewed from a single processor
– read returns “most recent” written value

• Consistency
– behavior of multiple memory locations read and written by multiple

processors
– viewed from one or more of the processors
– read may not return the “most recent” value

• What are the permitted ordering among reads and writes of several memory
locations?

7CC-NUMA (1)COMP 633 - Prins

Cache-coherent shared memory multiprocessor
• Implementations

– shared bus
• bus may be a “slotted” ring

– scalable interconnect
• fixed per-processor bandwidth

• Effect of CPU write on local cache
– write-through policy – value is

written to cache and to memory
– write-back policy – value written in

cache only; memory updated
upon cache line eviction

• Effect of CPU write on remote cache
– update – remote value is modified
– invalidate – remote value

is marked invalid

• • •M1 C1

P1

M2 C2

P2

Mp Cp

Pp

• • •

M1

C1

P1

M2

C2

P2

Mk

Cp

Pp

• • •

8CC-NUMA (1)COMP 633 - Prins

Bus-Based Shared-Memory protocols
• “Snooping” caches

– Ci caches memory operations from Pi
– Ci monitors all activity on bus due to Ch (h ≠ i)

• Update protocol with write-through cache
– between proc Pi and cache Ci

• read-hit from Pi resolved from Ci
• read-miss from Pi resolved from memory

and inserted in Ci
• write (hit or miss) from Pi updates Ci and

memory [write-through]

– between cache Ci and cache Ch
• if Ci writes a memory location cached at Ch,

then Ch is updated with new value

– consequences
• every write uses the bus
• doesn’t scale

• • •

M1

C1

P1

M2

C2

P2

Mk

Cp

Pp

• • •

9CC-NUMA (1)COMP 633 - Prins

Bus-Based Shared-Memory protocols

• Invalidation protocol with write-back cache
– Cache blocks can be in one of three states:

• INVALID — The block does not contain valid data
• SHARED — The block is a current copy of memory data

– other copies may exist in other caches
• EXCLUSIVE — The block holds the only copy of the correct data

– memory may be incorrect, no other cache holds this block

– Handling exclusively-held blocks
• Processor events

– cache is block “owner”
» reads and writes are local

• Snooping events
– on detecting a read-miss or write-miss from

another processor to an exclusive block
» write-back block to memory
» change state to shared (on ext read-miss) or invalid (on ext write-miss)

• • •

M1

C1

P1

M2

C2

P2

Mk

Cp

Pp

• • •

10CC-NUMA (1)COMP 633 - Prins

Invalidation protocol: example

P1 P3 x1P2

x1

Shared

P1 P3 x1

x1

P2

x1

SharedShared

P1 P3 x1

x2

P2

x1

InvalidExcl

W

R
P1 P3 x1

x3

P2

x1

InvalidExcl

W

P1 P3 x3

x3 x3

P2

x1

InvalidShared

R

Shared

P1 P3 x3

x3 x3

P2

x4

ExclInvalid

W

Invalid

R

11CC-NUMA (1)COMP 633 - Prins

Implementation: FSM per cache line

• Action in response to CPU event

Excl

Invalid Shared

Eviction

CPU read

CPU read
Place read-miss on bus

CPU read
CPU write

Excl

Invalid Shared
Write-miss for this block

• Action in response to bus
event

12CC-NUMA (1)COMP 633 - Prins

Scalable shared memory: directory-based protocols

• The Stanford DASH multiprocessor
– Processing clusters are connected via a scalable network

• Global memory is distributed equally among clusters

– Caching is performed using an ownership protocol
• Each memory block has a “home” processing cluster
• At each cluster, a directory tracks the location & state of each cached

block whose home is on the cluster

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

I I I IProcessing
cluster

13CC-NUMA (1)COMP 633 - Prins

• Directories track location & state
of all cache blocks
– 16 clusters
– 16 MB cluster memories
– 16 byte cache blocks
– 2+ MB storage overhead per

directory

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

I I I I

0 1 2 ... 1M

C
lu

st
er

B
itm

ap

0
1
2

15
x
xB

lo
ck

St
at

e
...

Cache Blocks

Directories

14CC-NUMA (1)COMP 633 - Prins

• Caching is based on an ownership model
– invalid, shared, & exclusive states

• Home cluster is the owner for all its
invalid and shared blocks

• Any one cache can own the only copy of
a exclusive block

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

I I I I

0 1 2 ... 1M

C
lu

st
er

B
itm

ap

0
1
2

15
x
xB

lo
ck

St
at

e
...

Cache Blocks

Cache coherence in DASH

15CC-NUMA (1)COMP 633 - Prins

Cache coherence in DASH: Read miss

• Check local cluster caches first...
– If found and SHARED then copy
– If found and EXCL then make SHARED and copy

• If not found consult desired block’s home directory
– If SHARED or UNCACHED then block is sent to requestor
– If EXCL then request is forwarded to cluster where block is cached. Remote

cluster makes block SHARED and sends copy to requestor

• To make a block SHARED
– Send copy to owning cluster
– mark SHARED

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

I I I I

16CC-NUMA (1)COMP 633 - Prins

• Writing processor must first become block’s owner

• If block is cached at requesting processor and block is...
– EXCL, then write can proceed
– SHARED, then home directory must invalidate all copies and convert to EXCL

• If block is not cached locally but is cached on the cluster
– a local block transfer is performed (invalidating local copies)
– home directory is updated to EXCL if the state was SHARED

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

I I I I

Cache coherence in DASH: Writes

17CC-NUMA (1)COMP 633 - Prins

• If block is not cached on local cluster then block’s home directory is
contacted

• If block is...
– UNCACHED — Block is marked EXCL and sent to requestor
– SHARED — Block is marked as EXCL and messages sent to caching

clusters to invalidate their copies
– EXCL — Request is forwarded to caching cluster. There the block is

invalidated and forwarded to requestor

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

P1 MP2 P3 P4

D

I I I I

Cache coherence in DASH: Writes

18

Intel cache coherence (skylake)
– basically a directory-based protocol like DASH with 2 or 4 clusters
– each package (socket) is a cluster with p cores distributed across two

slotted rings

CC-NUMA (1)COMP 633 - Prins

19

Intel physical organization
– up to 4 sockets
– up to 28 cores per socket
– up to 56 thread contexts (28 threads and 28 hyperthreads)

CC-NUMA (1)COMP 633 - Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 3

thread context

20

Mapping OpenMP threads to hardware (1)

CC-NUMA (1)COMP 633 - Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality
– KMP_AFFINITY = “granularity=fine,compact”

0 1 2 3 4 5 6 7 OpenMP thread-id

Note: we use a fictional
machine with 2 sockets and
4 cores with hyperthreads

to illustrate these mappings

Nearby threads-ids tend to share more lower-level cache

21

Mapping OpenMP threads to hardware (2)

CC-NUMA (1)COMP 633 - Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth without data locality
– KMP_AFFINITY = “granularity=fine,scatter”

0 4 2 6 1 5 3 7 OpenMP thread id

22

Mapping OpenMP threads to hardware (3)

CC-NUMA (1)COMP 633 - Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality and equal thread progress
– KMP_AFFINITY = “granularity=fine,compact,1,0”
– OMP_NUM_THREADS = 4

0 4 1 5 2 6 3 7 OpenMP thread id

23

Mapping OpenMP threads to hardware (4)

CC-NUMA (1)COMP 633 - Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth and equal thread progress
– KMP_AFFINITY = “granularity=fine,scatter”
– OMP_NUM_THREADS = 4

0 4 2 6 1 5 3 7 OpenMP thread

	COMP 633 - Parallel Computing��Lecture 10 �September 21, 2021�� CC-NUMA (1) �CC-NUMA implementation
	Topics
	Single-processor optimization
	Single-processor optimization
	Shared-memory multiprocessor implementation
	Coherence and Consistency
	Cache-coherent shared memory multiprocessor
	Bus-Based Shared-Memory protocols
	Bus-Based Shared-Memory protocols
	Invalidation protocol: example
	Implementation: FSM per cache line
	Scalable shared memory: directory-based protocols
	Directories
	Cache coherence in DASH
	Cache coherence in DASH: Read miss
	Cache coherence in DASH: Writes
	Cache coherence in DASH: Writes
	Intel cache coherence (skylake)
	Intel physical organization
	 Mapping OpenMP threads to hardware (1)
	 Mapping OpenMP threads to hardware (2)
	 Mapping OpenMP threads to hardware (3)
	 Mapping OpenMP threads to hardware (4)

