
• Reading 
– Patterson & Hennesey, Computer Architecture (2nd Ed.) secn 8.6 – a 

condensed treatment of consistency models

COMP 633  - Parallel Computing

Lecture 12  
September 23, 2021

CC-NUMA (2)
Memory Consistency

CC-NUMA (2)COMP 633  - Prins



2CC-NUMA (2)COMP 633  - Prins

Coherence and Consistency

• Memory coherence
– behavior of a single memory location M
– viewed from one or more processors
– informally

• all writes to M are seen in the same order by all processors

• Memory consistency
– behavior of multiple memory locations read and written by multiple 

processors
– viewed from one or more processors
– informally

• concerned with the order in which writes on different locations may be seen



3CC-NUMA (2)COMP 633  - Prins

Coherence of memory location x
• Defined by three properties   (assume x = 0 initially)

(a)

(b)

(c)

P1:        W(x,1)                    1 = R(x)

no intervening write of x
by P1 or other processor

P1:        W(x,1) 
P2:                                      1 = R(x)

sufficiently large 
interval and no 
other write of x

P1:        W(x,1)                   a = R(x)
P2:        W(x,2)                   a = R(x)         
P3:                                      a = R(x)

a ∈ {1,2} 
and has same value at all processors

sufficiently large 
interval and no other writes of x

time



4CC-NUMA (2)COMP 633  - Prins

Consistency Models

• The consistency problem 
– Performance motivates replication

• Keep data in caches close to processors

– Replication of read-only blocks is easy
• No consistency problem

– Replication of written blocks is hard
• In what order do we see different write operations?
• Can we see different orders when viewed from different processors?

– Fundamental trade-offs
• Programmer-friendly models perform poorly



5CC-NUMA (2)COMP 633  - Prins

Consistency Models

• The importance of a memory consistency model

initially A = B = 0 

P1 P2
A := 1;             B := 1;

if (B == 0) if (A == 0) 

... P1 “wins” ... P2 “wins”

– P1 and P2 may both win in some consistency models!
• Violates our (simplistic) mental model of the order of events

• Some consistency models
• Strict consistency
• Sequential consistency
• Processor consistency
• Release consistency



6CC-NUMA (2)COMP 633  - Prins

Strict Consistency

• Uniprocessor memory semantics 
– Any read of memory location x returns the value stored by the most 

recent write operation to x
• Natural, simple to program

P1:     W(x, 1)

P2:                         1 = R(x)

P1:      W(x, 1)

P2:                     0 = R(x)     1 = R(x)

Strictly Consistent Not Strictly Consistent



7CC-NUMA (2)COMP 633  - Prins

Strict Consistency

• Implementable in a real system? 
– Requires...

• absolute measure of time (i.e., global time)
• slow operation else violation of theory of relativity!

– Claim: Not what we really wanted (or needed) in the first place!
• Bad to have correctness depend on relative execution speeds

Remote
MemoryP1 P2

Write

(1 km apart)

Read

(1 m apart)



8CC-NUMA (2)COMP 633  - Prins

Sequential Consistency

• Mapping concurrent operations into a single total ordering 
– The result of any execution is the same as if

• the operations of each processor were performed in sequential order and 
are interleaved in some fashion to define the total order

– Example

P1: W(x, 1)

P2:                1 = R(x)   1 = R(x)

Both executions are sequentially consistent

P1:  W(x, 1)

P2:                 0 = R(x)   1 = R(x)



9CC-NUMA (2)COMP 633  - Prins

Sequential Consistency:  Example

• Earlier in time does not imply earlier in the merged sequence
– is the following sequence of observations sequentially consistent?
– what is the value of y?

P1:  W(x, 1) ? = R(y)

P2:                 W(y, 2) 

P3:                              2 = R(y)   0 = R(x)   1 = R(x)



10CC-NUMA (2)COMP 633  - Prins

Processor Consistency

• Concurrent writes by different processors on different variables may be 
observed in different orders
– there may not be a single total order of operations observed by all 

processors
• Writes from a given processor are seen in the same order at all other 

processors
– writes on a processor are “pipelined”

P1:   W(x, 1)      0 = R(y)                           1 = R(y)

P2:    W(y,1)                         0 = R(x)        1 = R(x)

P3:                     1 = R(x)      0 = R(y)        1 = R(y)

P4:                     0 = R(x)      1 = R(y)        1 = R(x)



11CC-NUMA (2)COMP 633  - Prins

Processor consistency 

• Typical level of consistency 
found in shared memory 
multiprocessors
– insufficient to ensure correct 

operation of many programs
• Ex:  Peterson’s mutual 

exclusion algorithm

program mutex
var enter1, enter2 : Boolean;

turn: Integer

process P1
repeat forever

enter1 := true
turn := 2
while enter2 and turn=2 do skip end
... critical section ...
enter1 := false
... non-critical section ...

end repeat
end P1;

process P2
repeat forever

enter2 := true
turn := 1
while enter1 and turn=1 do skip end
... critical section ...
enter2 := false
... non-critical section ...

end repeat
end P2;

begin
enter1, enter2, turn := false, false, 1
cobegin P1 || P2 coend

end



12CC-NUMA (2)COMP 633  - Prins

Weak Consistency

• Observation
– memory “fence”

• if all memory operations up to a checkpoint are known to have 
completed, the detailed completion order may not be of importance

– defining a checkpoint
• a synchronizing operation S issued by processor Pi

– e.g. acquiring a lock, passing a barrier, or being released from a condition 
wait

– delays Pi until all outstanding memory operations from Pi have been 
completed in other processors

• Execution rules
– synchronizing operations exhibit sequential consistency
– a synchronizing operation is a memory fence
– if Pi and Pj are synchronized then all memory operations in Pi

complete before any memory operations in Pj can start



13CC-NUMA (2)COMP 633  - Prins

Weak Consistency:  Examples

P1:     W(x, 1)   W(y, 2)            S

P2:           1 = R(x)  0 = R(y)     S 1 = R(x), 2 = R(y)

P3:           0 = R(x)  2 = R(y)     S 1 = R(x), 2 = R(y)

P1:     W(x, 1)   W(x, 2)     S

P2: S 1 = R(x)

Not weakly consistent

Weakly consistent



14CC-NUMA (2)COMP 633  - Prins

Memory consistency: processor-centric definition
• A memory consistency model defines which orderings of memory-references 

made by a processor are preserved for external observers
– Reference order defined by

• Instruction order →
• Reference type {R,W} or synchronizing operation (S)
• location referenced {a,b}

– A memory consistency model preserves some of the reference orders
• Sequential Consistency (SC), Processor consistency = Total store ordering (TSO), 

Partial store ordering (PSO), weak consistency

reference Consistency Model
order a = b a ≠ b

(coherence) SC TSO PSO weak
Ra  → Rb * * *
Ra  → Wb * * * *
Wa → Wb * * *
Wa → Rb * *

?a → S → ?b * * * * *



15CC-NUMA (2)COMP 633  - Prins

Consistency models: ordering of “writes”

• Sequential consistency
– all processors see all writes in the same order

• Processor consistency
– All processors see 

• writes from a given processor in the order they were performed (TSO) or 
in some unknown but fixed order (PSO)

• writes from different processors may be observed in varying interleavings
at different processors

• Weak consistency
– All processors see same state only after explicit synchronization



17CC-NUMA (2)COMP 633  - Prins

Memory consistency: Summary

• Memory consistency
– contract between parallel programmer and parallel processor 

regarding observable order of memory operations
• with multiple processors and shared memory, more opportunities to 

observe behavior
• therefore more complex contracts

• Where is memory consistency critical?
– fine-grained parallel programs in a shared memory

• concurrent garbage collection
• avoiding race conditions:  Java instance constructors
• constructing high-level synchronization primitives
• wait-free and lock-free programs



18CC-NUMA (2)COMP 633  - Prins

Memory consistency: Summary

• Why memory consistency contracts are difficult to use
– What memory references does a program perform?

• Need to understand the output of optimizing compilers
– In what order may they be observed?

• Need to understand the memory consistency model
– How can we construct correct parallel programs that accommodate these 

possibilities?
• Need careful thought and formal methods

• What is a parallel programmer to do, then?
– Use higher-level concurrency constructs such as loop-level parallelization 

and synchronized methods (Java)
• the synchronization inherent in these constructs enables weak 

consistency models to be used
– Use machines that provide sequential consistency

• Increasingly hard to find and invariably “slower”
– Leave fine-grained unsynchronized memory interaction to the pros


	COMP 633  -  Parallel Computing��Lecture 12  �September 23, 2021�� CC-NUMA (2) �Memory Consistency
	Coherence and Consistency
	Coherence of memory location x
	Consistency Models
	Consistency Models
	Strict Consistency
	Strict Consistency
	Sequential Consistency
	Sequential Consistency:  Example
	Processor Consistency
	Processor consistency 
	Weak Consistency
	Weak Consistency:  Examples
	Memory consistency: processor-centric definition
	Consistency models: ordering of “writes”
	Memory consistency: Summary
	Memory consistency: Summary

