
COMP 633 - Parallel Computing

Lecture 12
September 28, 2021

CC-NUMA (3)
Synchronization Operations

CC-NUMA (3)COMP 633 - Prins

2CC-NUMA (3)COMP 633 - Prins

Synchronizing Operations

• Examples
– locks to gain exclusive access for manipulation of shared variables
– barrier synchronization to ensure all processors have reached a

program point

• How are these efficiently implemented in a cache-coherent shared
memory multiprocessor?

3CC-NUMA (3)COMP 633 - Prins

Atomic operations in cc-numa multiprocessors

• Possible atomic machine operations
In the following, < ... > refers to atomic execution of action within the brackets,

m is a memory location, and r1, r2 are processor registers
– read and write

<r1 := m>
<m := r1>

– exchange(m,r1)
<r1, m := m, r1>

– test and set(m,r1,r2)
<if (m == r1) then m := r2>

– fetch and add(m,r1,r2)
<r2 := m + r1; m := r2>

– load-linked(r1,m) and store-conditional(m,r2)
<r1 := m>; …. ; <m := r2 or fail>

– if m is updated by another processor between the read and write, the write to m will not
be performed and the condition code cc will be set to fail

4CC-NUMA (3)COMP 633 - Prins

How implemented?
• Atomic read and write

– simple to implement, difficult to use (recall memory consistency discussion)

• Exchange, test-and-set, fetch-and-add
– require read-modify-write

• Involves some hardware-level special coherence protocol

• Load-linked (LL) / Store conditional (SC)
– LL fetches value into cache line (state = shared)
– cache-line state is monitored
– SC fails if cache line has invalid state at time of store
– Example

;; implementation of r2 := fetch-and-add(m,r1) using LL/SC
try: ll r3, m

add r3, r1, r3 ; r3 := r3 + r1
sc r3, m
bcz try ; try again if sc fails

5CC-NUMA (3)COMP 633 - Prins

Lock/unlock using atomic operations
• Exchange lock

– key holds access to the lock
• key == 0 means lock available

– to get access, a processor must exchange value 1 with key value 0
{r1 == 1}

lock: exch r1, key ; spin until zero obtained
cmpi r1, 0 ;
bne lock ;
{lock obtained}

– to release, exchange with key
{r1 == 0}

unlock: exch r1, key
{lock released}

– what is the effect of spinning on an exchange lock in a CC-NUMA machine?
• with single processor trying to obtain lock?

– key is cache-resident in EXCLUSIVE state until released by other processor
• with multiple processors trying to obtain lock?

– each exchange brings key into cache and invalidates other copies requiring O(p) cache
lines to be refreshed.

6CC-NUMA (3)COMP 633 - Prins

Improving cost of contended locks
• “Local” spinning using read-only copy of key

– avoid coherence traffic while spinning
lock: {r1 == 1}
try: lw r2, key

cmpi r2,0
bne try
{lock observed available}
exch r1, key
cmpi r1, 0
bne try
{lock obtained}

• What happens with p processors spinning?
– No coherence traffic when all processors have key in cache in “shared” state

• What happens when key is released with p processors spinning?
– key is invalidated and up to p processors observe the lock available
– up to p processors attempt an exchange

• one succeeds
• up to p-1 other processors perform an unsuccessful exch

– each exch invalidates up to p-2 local copies of key
– O(p2) cache lines moved per lock release

7CC-NUMA (3)COMP 633 - Prins

Improving cost of lock release
• LL/SC makes an improvement

– now 2p movements of cache line on release
lock: {r1 == 1}
try: ll r2, key

cmpi r2,0
bne try
{lock observed available}
sc r1, key
bz try
{lock obtained}

– basic problem
• attempt to replicate contended value across caches
• high cost when p processors contending

• Alternate approaches
– exponential backoff

• increase time to re-try with each failure
– array lock: each process spins on different cache line

8CC-NUMA (3)COMP 633 - Prins

Barrier Synchronization

• Delay p processors until all have arrived at barrier
– simple strategy

• shared variables: count, release (initially with value 0)
• in each processor

lock; count = count + 1; unlock
if (count == p) then release := 1
local spinning while release == 0

– How many cache line moves are required for p processors to pass
the barrier?

• p lock/unlock operations
• each lock and unlock may have O(p) cache line moves

– O(p2) cache line moves in the presence of contention
– Can we do better?

9CC-NUMA (3)COMP 633 - Prins

Barrier synchronization

• Barrier synchronization may have high contention on entry and on
release
– reduce contention on entry using backoff

• exponential backoff in re-attempting lock acquisition
• random delay in re-attempting lock acquisition
• both approaches improve serialization on entry to the barrier

– O(2p) cache block movements

– reduce contention on entry and exit using a combining tree
• O(1) contention in lock acquisition
• O(p) cache line movements
• O(lg p) lock acquisitions worst case delay
• more parallelism in scalable shared memory multiprocessors
• Sometimes implemented in hardware

10

Dissemination barrier

• Barrier using only atomic reads and writes
– assume p = 2k processors
– arrive[0 : p -1] has initial value zero for all elements.
– program executed by processor i

int s = 1;

for (int j = 0; j < k; j++) {

arrive[i] += 1;

while (arrive[i] > arrive[(i+s) mod p]) { /* spin */}

s = 2 * s;

}

/* barrier synchronization achieved */

CC-NUMA (3)COMP 633 - Prins

arrive[i : i+s-1 mod p] > 0

arrive[i : i+p-1 mod p] > 0

11

Dissemination barrier: example (p = 4)
int s = 1;

for (int j = 0; j < k; j++) {

arrive[i] += 1;

while (arrive[i] > arrive[(i+s) mod p]) { /* spin */}

s = 2 * s;

}

s = 4

s = 2

s = 1

CC-NUMA (3)COMP 633 - Prins

arrive[0] arrive[1] arrive[2] arrive[3]

0 0 0 0

	COMP 633 - Parallel Computing��Lecture 12 �September 28, 2021�� CC-NUMA (3) �Synchronization Operations
	Synchronizing Operations
	Atomic operations in cc-numa multiprocessors
	How implemented?
	Lock/unlock using atomic operations
	Improving cost of contended locks
	Improving cost of lock release
	Barrier Synchronization
	Barrier synchronization
	Dissemination barrier
	Dissemination barrier: example (p = 4)

