
1CUDA GPU programmingCOMP 633 - Prins

COMP 633 - Parallel Computing

Lecture 13
September 30, 2021

Computational Accelerators

2CUDA GPU programmingCOMP 633 - Prins

Evolution of high-performance computing
• Long-standing market forces have shaped modern HPC systems

– constructed using commodity CPUs (mostly)

• Recent market forces
– Server farms

• large memory, more cores, more I/O
– Gaming

• GPUs for real-time graphics
– Cell phones

• Signal processing hardware:
– compression, computational photography

• Computational accelerators emerge from GPUs
– 2007: Nvidia Compute Unified Device Architecture GPU (CUDA)
– 2009: IBM/Toshiba/Sony Cell Broadband Engine (Cell BE) PlayStation 3
– 2010: Intel Larrabee (DOA) → Many Integrated Cores (MIC) → Xeon Phi

3

HPC retrospective

CUDA GPU programmingCOMP 633 - Prins

• Nvidia Tesla V100
• released 2017
• 7 TF/s with 5120 ALUs

and 32GB of memory on a
single die

• ASCI white
• 2001 top supercomputer in

the world
• 4.9TF/s using 8192

processors and 6 TB of
memory, occupying the
space of 2 basketball courts
and weighing over 100 tons.

4

CPU and GPU are designed very differently

CPU
Low latency cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
ontrol

GPU
High throughput cores

Chip

Compute Unit
Cache/Local Mem

Registers

SIMD
Unit

Threading

5

CPUs: Latency-minimizing design
– Powerful ALU

– Reduced operation latency
– Large caches

– Convert long latency memory
accesses to short latency cache
accesses

– Sophisticated control
– Instruction dependency analysis and

superscalar operation
– Branch prediction for reduced branch

latency
– Data forwarding for reduced data

latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

6

GPUs: Throughput-maximizing design
– Small caches

– High bandwidth main memory
– Energy efficient ALUs

– A large number of high latency,
ALUs heavily pipelined for high
throughput

– Simple control
– No branch prediction
– No data forwarding

– Requires large number of threads
to tolerate latencies

– Threading logic
– Thread state

DRAM

GPU

7

Performance Growth: GPU vs. CPU

CUDA GPU programmingCOMP 633 - Prins

Performance scaling has encountered
major limitations
• cannot increase clock frequency
• cannot increase power
• can increase transistor count

8CUDA GPU programmingCOMP 633 - Prins

Using accelerators in HPC systems
• Accelerators

– generic term for compute-intensive attached devices

• Barriers
– not general purpose, only good for some problems
– difficult to program
– interface to host system can be a bottleneck
– low precision arithmetic (this is now a feature!)

• Incentives
– cheap
– increasingly general-purpose and simpler to program
– improving host interfaces and performance
– IEEE double precision
– very high compute and local memory performance

• They are being used!
– NSC China Tianhe-2: 48,000 Intel Xeon Phi
– ORNL USA Summit: 27,600 Nvidia Tesla V100

• Current trends
– Simplified access from host
– Improved integration of multiple GPUs
– Low- and mixed-precision FP arithmetic

9CUDA GPU programmingCOMP 633 - Prins

Host and accelerator interface

Host system diagram
(Phaedra)

accelerators

Nvidia Titan V100

Intel Xeon Phi 5110P

(dual socket Intel Xeon E5 v3)

16 GB/s
bidirectional

10CUDA GPU programmingCOMP 633 - Prins

• GPU
– device is a set of N (1 - 84)

streaming multiprocessors (SM)

– each SM executes one or more
blocks of threads

– each SM has M (1 - 4) sets of 32
SIMD processors

– at each clock cycle, a SIMD
processor executes a single
instruction on a group of 32
threads called a warp

– total of N * M * 32 arithmetic
operations per clock

• Volta V100 N=80, M=2
up to 5120 SP floating point
operations per clock

Nvidia GPU organization

Device

SM N-1

SM 1

SM 0

Instruction
Unit

Proc 0 …Proc 1 Proc 31

… …

Instruction
Unit

Proc 0 …Proc 1 Proc 31

M

11

Volta V100 chip organization

– up to 84 SMs
– shared L2 cache (6MB)
– interfaces: 8 memory controllers, 6 NVLink intfcs, PCIe host intfc

CUDA GPU programmingCOMP 633 - Prins

SM

12

Volta V100 SM organization
• 64 single‐precision FP32 arithmetic units
• 32 double‐precision FP64 arithmetic units
• 64 integer arithmetic units
• 16 special function units
• 8 tensor cores (4 x 4 matrix multiply)
• 32 load/store units

• 64K registers
– allocated across threads

• 128KB data cache / shared memory
– L1 cache
– user-allocated shared memory

• 4 warps can be running concurrently
– up to 2 instructions per warp

concurrently

CUDA GPU programmingCOMP 633 - Prins

13CUDA GPU programmingCOMP 633 - Prins

• Host memory

• Device memory
– shared between N multiprocessors
– global, constant, and texture

memory (4-32 GB total)
– can be accessed by host

• Shared Memory
– shared by SIMD processors
– R/W shared memory and L1 cache
– R/O constant/texture cache

• SIMD register memory
– set of 32-bit registers

CUDA memory hierarchy
Device

SM N-1

SM 1

SM 0

Device memory

Shared memory and L1 cache

Instruction
Unit

Proc 0

Registers

…Proc 1

Registers

Proc 31

Registers

Constant
Cache

Texture
Cache

Global, constant, texture data
Host

memory

Registers

Shared Memory

Device memory

Host memory

14CUDA GPU programmingCOMP 633 - Prins

CUDA Control Hierarchy

• A CUDA context consists of streams
– A stream is a sequence of kernels

• kernels execute in sequence
• kernels share device memory
• different streams may run

concurrently

– A kernel is a grid of blocks
• blocks share device memory
• blocks are scheduled across SMs

and run concurrently

– A block is a collection of threads that
• may access shared memory
• can synchronize execution
• are executed as a set of warps

– A warp is 32 SIMD threads
• Multiple warps may be active

concurrently

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Stream

15CUDA GPU programmingCOMP 633 - Prins

Execution Model

• A grid consists of multiple blocks
– each block has a 1D, 2D, or 3D Block ID
– a block is assigned to an SM
– multiple blocks are required to fully utilize all SMs

• more blocks per grid are better

• Each block consists of multiple threads
– each thread has a 1D, 2D, or 3D Thread ID
– threads are executed concurrently SIMD style one warp at a time
– hardware switches between warps on any stall (e.g. load)
– multiple threads are required to keep hardware busy

• 64 - 1024 threads can be used to hide latency

• Each warp consists of 32 threads
– execution of a warp is like the synchronous CRCW PRAM model

16

Compute capability

Feature Kepler
GK180

Maxwell
GM200

Pascal
GP100

Volta
GV100

Compute Capability 3.5 5.2 6.0 7.0

Threads / Warp 32 32 32 32

Max Warps / SM 64 64 64 64

Max Threads / SM 2048 2048 2048 2048

Max Thread Blocks / SM 16 32 32 32

Max 32-bit Registers / SM 65536 65536 65536 65536

Max Registers / Block 65536 32768 65536 65536

Max Registers / Thread 255 255 255 255

Max Thread Block Size 1024 1024 1024 1024

FP32 Cores / SM 192 128 64 64

Ratio of SM Regs to FP32 Cores 341 512 1024 1024

Shared Memory Size / SM 16/32/48 KB 96KB 64KB config 96KB

CUDA GPU programmingCOMP 633 - Prins

17

Comparison of Nvidia Tesla GPUs

CUDA GPU programmingCOMP 633 - Prins

18CUDA GPU programmingCOMP 633 - Prins

CUDA Application Programming Interface

• The cuda API is an extension to the C programming language
– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:
• A common component for host and device codes providing

– built-in vector types and a
– subset of the C runtime library

• A host component to control and access CUDA devices
• A device component providing device-specific functions

• Tools for cuda
– nvcc compiler

• runs cuda compiler on .cu files, and gcc on other files
– nvprof profiler

• reports on device performance including host-device transfers

19CUDA GPU programmingCOMP 633 - Prins

Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

CUDA C Language Extensions: Type Qualifiers

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

20CUDA GPU programmingCOMP 633 - Prins

Language Extensions: Built-in Variables

• dim3 gridDim;

– Dimensions of the grid in blocks
• dim3 blockDim;

– Dimensions of the block in # threads
• dim3 blockIdx;

– Block index within the grid
• dim3 threadIdx;

– Thread index within the block

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

21CUDA GPU programmingCOMP 633 - Prins

CUDA Function Declarations

Executed on
the:

Only callable from
the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device host

__host__ float HostFunc() host host

• __global__ defines a kernel function
– Must return void

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

22CUDA GPU programmingCOMP 633 - Prins

• A kernel function must be called with an execution configuration:
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

• Any call to a kernel function is asynchronous in the host from CUDA
1.0 on, explicit synchronization needed to await completion

Calling a Kernel Function

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

23

Host and device memory

• Separate address spaces (compute capability <6.0)
– cudaMemCopy to move data back and forth

• Unified address space (compute capability >= 6.0)
– host and device “page” out of a single address space

• Tesla V100 has compute capability 7.0

CUDA GPU programmingCOMP 633 - Prins

24

A simple example

• single block, with N threads
– also need to allocate and initialize A and B, return C
– easiest with unified memory model

• How large can the vectors be?

• What kind of performance could we expect?
CUDA GPU programmingCOMP 633 - Prins

	COMP 633 - Parallel Computing��Lecture 13 �September 30, 2021��Computational Accelerators
	Evolution of high-performance computing
	HPC retrospective
	CPU and GPU are designed very differently
	CPUs: Latency-minimizing design
	GPUs: Throughput-maximizing design
	Performance Growth: GPU vs. CPU
	Using accelerators in HPC systems
	Host and accelerator interface
	Nvidia GPU organization
	Volta V100 chip organization
	Volta V100 SM organization
	CUDA memory hierarchy
	CUDA Control Hierarchy
	Execution Model
	Compute capability
	Comparison of Nvidia Tesla GPUs
	CUDA Application Programming Interface
	CUDA C Language Extensions: Type Qualifiers
	Language Extensions: Built-in Variables
	CUDA Function Declarations
	Calling a Kernel Function
	Host and device memory
	A simple example

