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Evolution of high-performance computing
• Long-standing market forces have shaped modern HPC systems

– constructed using commodity CPUs (mostly)

• Recent market forces
– Server farms

• large memory, more cores, more I/O
– Gaming

• GPUs for real-time graphics
– Cell phones

• Signal processing hardware: 
– compression, computational photography

• Computational accelerators emerge from GPUs
– 2007:  Nvidia Compute Unified Device Architecture GPU (CUDA)
– 2009:  IBM/Toshiba/Sony Cell Broadband Engine (Cell BE)  PlayStation 3
– 2010:  Intel Larrabee (DOA) → Many Integrated Cores (MIC) → Xeon Phi
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HPC retrospective

CUDA GPU programmingCOMP 633  - Prins

• Nvidia Tesla V100 
• released 2017 
• 7 TF/s with 5120 ALUs 

and 32GB of memory on a 
single die

• ASCI white 
• 2001 top supercomputer in 

the world
• 4.9TF/s using 8192 

processors and 6 TB of 
memory, occupying the 
space of 2 basketball courts 
and weighing over 100 tons.
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CPU and GPU are designed very differently
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CPUs: Latency-minimizing design 
– Powerful ALU

– Reduced operation latency
– Large caches

– Convert long latency memory 
accesses to short latency cache 
accesses

– Sophisticated control
– Instruction dependency analysis and 

superscalar operation
– Branch prediction for reduced branch 

latency
– Data forwarding for reduced data 

latency
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GPUs: Throughput-maximizing design
– Small caches

– High bandwidth main memory
– Energy efficient ALUs

– A large number of high latency, 
ALUs heavily pipelined for high 
throughput

– Simple control
– No branch prediction
– No data forwarding

– Requires large number of threads 
to tolerate latencies

– Threading logic
– Thread state 

DRAM

GPU
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Performance Growth: GPU vs. CPU
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Performance scaling has encountered 
major limitations
• cannot increase clock frequency
• cannot increase power
• can increase transistor count
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Using accelerators in HPC systems
• Accelerators

– generic term for compute-intensive attached devices

• Barriers
– not general purpose, only good for some problems
– difficult to program
– interface to host system can be a bottleneck
– low precision arithmetic (this is now a feature!)

• Incentives
– cheap
– increasingly general-purpose and simpler to program
– improving host interfaces and performance 
– IEEE double precision
– very high compute and local memory performance

• They are being used!
– NSC China Tianhe-2: 48,000  Intel Xeon Phi 
– ORNL USA Summit: 27,600 Nvidia Tesla V100 

• Current trends
– Simplified access from host
– Improved integration of multiple GPUs
– Low- and mixed-precision FP arithmetic
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Host and accelerator interface 

Host system diagram
(Phaedra)

accelerators

Nvidia Titan V100

Intel Xeon Phi 5110P

(dual socket Intel Xeon E5 v3)

16 GB/s
bidirectional
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• GPU 
– device is a set of N (1 - 84) 

streaming multiprocessors (SM)

– each SM executes one or more 
blocks of threads

– each SM has M (1 - 4) sets of 32 
SIMD processors

– at each clock cycle, a SIMD 
processor executes a single 
instruction on a group of 32 
threads called a warp

– total of N * M * 32 arithmetic 
operations per clock

• Volta V100 N=80, M=2 
up to 5120 SP floating point 
operations per clock

Nvidia GPU organization
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Volta V100 chip organization

– up to 84 SMs
– shared L2 cache (6MB)
– interfaces:  8 memory controllers, 6 NVLink intfcs, PCIe host intfc
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SM
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Volta V100 SM organization
• 64 single‐precision FP32 arithmetic units
• 32 double‐precision FP64 arithmetic units
• 64 integer arithmetic units
• 16 special function units
• 8 tensor cores (4 x 4 matrix multiply)
• 32 load/store units

• 64K registers
– allocated across threads

• 128KB data cache / shared memory
– L1 cache
– user-allocated shared memory

• 4 warps can be running concurrently
– up to 2 instructions per warp 

concurrently
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• Host memory

• Device memory
– shared between N multiprocessors
– global, constant, and texture

memory (4-32 GB total)
– can be accessed by host

• Shared Memory 
– shared by SIMD processors
– R/W shared memory and L1 cache
– R/O constant/texture cache

• SIMD register memory
– set of 32-bit registers

CUDA memory hierarchy
Device
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Device memory

Shared memory and L1 cache

Instruction
Unit

Proc 0

Registers
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Registers

Proc 31

Registers
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Cache

Texture
Cache

Global, constant, texture data
Host 

memory

Registers

Shared Memory

Device memory

Host memory
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CUDA Control Hierarchy

• A CUDA context consists of streams
– A stream is a sequence of kernels

• kernels execute in sequence
• kernels share device memory
• different streams may run 

concurrently

– A kernel is a grid of blocks
• blocks share device memory
• blocks are scheduled across SMs 

and run concurrently

– A block is a collection of threads that
• may access shared memory
• can synchronize execution
• are executed as a set of warps

– A warp is 32 SIMD threads 
• Multiple warps may be active 

concurrently
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Execution Model

• A grid consists of multiple blocks
– each block has a 1D, 2D, or 3D Block ID
– a block is assigned to an SM
– multiple blocks are required to fully utilize all SMs

• more blocks per grid are better

• Each block consists of multiple threads
– each thread has a 1D, 2D, or 3D Thread ID
– threads are executed concurrently SIMD style one warp at a time
– hardware switches between warps on any stall (e.g. load)
– multiple threads are required to keep hardware busy 

• 64 - 1024 threads can be used to hide latency

• Each warp consists of 32 threads
– execution of a warp is like the synchronous CRCW PRAM model



16

Compute capability

Feature Kepler 
GK180

Maxwell 
GM200

Pascal 
GP100

Volta 
GV100

Compute Capability 3.5 5.2 6.0 7.0

Threads / Warp 32 32 32 32

Max Warps / SM 64 64 64 64

Max Threads / SM 2048 2048 2048 2048

Max Thread Blocks / SM 16 32 32 32

Max 32-bit Registers / SM 65536 65536 65536 65536

Max Registers / Block 65536 32768 65536 65536

Max Registers / Thread 255 255 255 255

Max Thread Block Size 1024 1024 1024 1024

FP32 Cores / SM 192 128 64 64

Ratio of SM Regs to FP32 Cores 341 512 1024 1024

Shared Memory Size / SM 16/32/48 KB 96KB 64KB config 96KB
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Comparison of Nvidia Tesla GPUs
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CUDA Application Programming Interface

• The cuda API is an extension to the C programming language
– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:
• A common component for host and device codes providing 

– built-in vector types and a 
– subset of the C runtime library

• A host component to control and access CUDA devices
• A device component providing device-specific functions

• Tools for cuda
– nvcc compiler

• runs cuda compiler on .cu files, and gcc on other files
– nvprof profiler

• reports on device performance including host-device transfers
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Memory Scope Lifetime
__device__ __local__ int LocalVar; local thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

CUDA C Language Extensions:   Type Qualifiers

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
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Language Extensions:  Built-in Variables

• dim3 gridDim;

– Dimensions of the grid in blocks
• dim3 blockDim;

– Dimensions of the block in # threads
• dim3 blockIdx;

– Block index within the grid
• dim3 threadIdx;

– Thread index within the block

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
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CUDA Function Declarations

Executed on 
the:

Only callable from 
the:

__device__ float DeviceFunc() device device

__global__ void  KernelFunc() device host

__host__ float HostFunc() host host

• __global__ defines a kernel function
– Must return void

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
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• A kernel function must be called with an execution configuration:
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50);    // 5000 thread blocks
dim3 DimBlock(4, 8, 8);   // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

• Any call to a kernel function is asynchronous in the host from CUDA 
1.0 on, explicit synchronization needed to await completion

Calling a Kernel Function

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
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Host and device memory

• Separate address spaces (compute capability <6.0)
– cudaMemCopy to move data back and forth

• Unified address space (compute capability >= 6.0)
– host and device “page” out of a single address space

• Tesla V100 has compute capability 7.0

CUDA GPU programmingCOMP 633  - Prins
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A simple example

• single block, with N threads
– also need to allocate and initialize A and B, return C
– easiest with unified memory model

• How large can the vectors be?

• What kind of performance could we expect?
CUDA GPU programmingCOMP 633  - Prins
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