COMP 633 - Parallel Computing

Lecture 13
September 30, 2021

Computational Accelerators
Evolution of high-performance computing

- Long-standing market forces have shaped modern HPC systems
 - constructed using *commodity* CPUs (mostly)

- Recent market forces
 - Server farms
 - large memory, more cores, more I/O
 - Gaming
 - GPUs for real-time graphics
 - Cell phones
 - Signal processing hardware:
 - compression, computational photography

- Computational accelerators emerge from GPUs
 - 2007: Nvidia Compute Unified Device Architecture GPU (CUDA)
 - 2009: IBM/Toshiba/Sony Cell Broadband Engine (Cell BE) PlayStation 3
 - 2010: Intel Larrabee (DOA) → Many Integrated Cores (MIC) → Xeon Phi
HPC retrospective

- Nvidia Tesla V100
 - released 2017
 - 7 TF/s with 5120 ALUs and 32GB of memory on a single die

- ASCI white
 - 2001 top supercomputer in the world
 - 4.9TF/s using 8192 processors and 6 TB of memory, occupying the space of 2 basketball courts and weighing over 100 tons.
CPU and GPU are designed very differently

CPU
Low latency cores

GPU
High throughput cores

Chip

Core
Local Cache

Registers
SIMD Unit
Control

Chip

Compute Unit
Cache/Local Mem

Registers
SIMD Unit
Threading
CPUs: Latency-minimizing design

- Powerful ALU
 - Reduced operation latency
- Large caches
 - Convert long latency memory accesses to short latency cache accesses
- Sophisticated control
 - Instruction dependency analysis and superscalar operation
 - Branch prediction for reduced branch latency
 - Data forwarding for reduced data latency
GPUs: Throughput-maximizing design

- Small caches
 - High bandwidth main memory
- Energy efficient ALUs
 - A large number of high latency, ALUs heavily pipelined for high throughput
- Simple control
 - No branch prediction
 - No data forwarding
- Requires large number of threads to tolerate latencies
 - Threading logic
 - Thread state
Performance scaling has encountered major limitations:

- cannot increase clock frequency
- cannot increase power
- can increase transistor count
Using accelerators in HPC systems

• Accelerators
 – generic term for compute-intensive attached devices

• Barriers
 – not general purpose, only good for some problems
 – difficult to program
 – interface to host system can be a bottleneck
 – low precision arithmetic (this is now a feature!)

• Incentives
 – cheap
 – increasingly general-purpose and simpler to program
 – improving host interfaces and performance
 – IEEE double precision
 – very high compute and local memory performance

• They are being used!
 – NSC China Tianhe-2: 48,000 Intel Xeon Phi
 – ORNL USA Summit: 27,600 Nvidia Tesla V100

• Current trends
 – Simplified access from host
 – Improved integration of multiple GPUs
 – Low- and mixed-precision FP arithmetic
Host and accelerator interface

(dual socket Intel Xeon E5 v3)

Host system diagram (Phaedra)

Accelerators:
- Intel Xeon Phi 5110P
- Nvidia Titan V100

16 GB/s bidirectional connection
Nvidia GPU organization

- **GPU**
 - device is a set of N (1 - 84) streaming multiprocessors (SM)
 - each SM executes one or more blocks of threads
 - each SM has M (1 - 4) sets of 32 SIMD processors
 - at each clock cycle, a SIMD processor executes a single instruction on a group of 32 threads called a warp
 - total of N * M * 32 arithmetic operations per clock

- **Volta V100** N=80, M=2 up to 5120 SP floating point operations per clock
Volta V100 chip organization

- up to 84 SMs
- shared L2 cache (6MB)
- interfaces: 8 memory controllers, 6 NVLink intfc's, PCIe host intfc
Volta V100 SM organization

- 64 single-precision FP32 arithmetic units
- 32 double-precision FP64 arithmetic units
- 64 integer arithmetic units
- 16 special function units
- 8 tensor cores (4 x 4 matrix multiply)
- 32 load/store units
- 64K registers
 - allocated across threads
- 128KB data cache / shared memory
 - L1 cache
 - user-allocated shared memory
- 4 warps can be running concurrently
 - up to 2 instructions per warp concurrently
CUDA memory hierarchy

- **Host memory**
- **Device memory**
 - shared between N multiprocessors
 - global, constant, and texture memory (4-32 GB total)
 - can be accessed by host
- **Shared Memory**
 - shared by SIMD processors
 - R/W shared memory and L1 cache
 - R/O constant/texture cache
- **SIMD register memory**
 - set of 32-bit registers
CUDA Control Hierarchy

• A CUDA context consists of streams
 – A stream is a sequence of kernels
 • kernels execute in sequence
 • kernels share device memory
 • different streams may run concurrently
 – A kernel is a grid of blocks
 • blocks share device memory
 • blocks are scheduled across SMs and run concurrently
 – A block is a collection of threads that
 • may access shared memory
 • can synchronize execution
 • are executed as a set of warps
 – A warp is 32 SIMD threads
 • Multiple warps may be active concurrently
Execution Model

• A grid consists of multiple blocks
 – each block has a 1D, 2D, or 3D Block ID
 – a block is assigned to an SM
 – multiple blocks are required to fully utilize all SMs
 • more blocks per grid are better

• Each block consists of multiple threads
 – each thread has a 1D, 2D, or 3D Thread ID
 – threads are executed concurrently SIMD style one warp at a time
 – hardware switches between warps on any stall (e.g. load)
 – multiple threads are required to keep hardware busy
 • 64 - 1024 threads can be used to hide latency

• Each warp consists of 32 threads
 – execution of a warp is like the synchronous CRCW PRAM model
Compute capability

<table>
<thead>
<tr>
<th>Feature</th>
<th>Kepler GK180</th>
<th>Maxwell GM200</th>
<th>Pascal GP100</th>
<th>Volta GV100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Capability</td>
<td>3.5</td>
<td>5.2</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Threads / Warp</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Max Warps / SM</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Max Threads / SM</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>Max Thread Blocks / SM</td>
<td>16</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Max 32-bit Registers / SM</td>
<td>65536</td>
<td>65536</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>Max Registers / Block</td>
<td>65536</td>
<td>32768</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>Max Registers / Thread</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Max Thread Block Size</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>FP32 Cores / SM</td>
<td>192</td>
<td>128</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Ratio of SM Regs to FP32 Cores</td>
<td>341</td>
<td>512</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>Shared Memory Size / SM</td>
<td>16/32/48 KB</td>
<td>96KB</td>
<td>64KB</td>
<td>config 96KB</td>
</tr>
</tbody>
</table>
Comparison of Nvidia Tesla GPUs

<table>
<thead>
<tr>
<th>Tesla Product</th>
<th>Tesla K40</th>
<th>Tesla M40</th>
<th>Tesla P100</th>
<th>Tesla V100</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>GK10 (Kapler)</td>
<td>GM200 (Maxwell)</td>
<td>GP100 (Pascal)</td>
<td>GV100 (Volta)</td>
</tr>
<tr>
<td>SMs</td>
<td>15</td>
<td>24</td>
<td>56</td>
<td>80</td>
</tr>
<tr>
<td>TPCs</td>
<td>15</td>
<td>24</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>FP32 Cores / SM</td>
<td>192</td>
<td>128</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>FP32 Cores / GPU</td>
<td>2880</td>
<td>3072</td>
<td>3584</td>
<td>5120</td>
</tr>
<tr>
<td>FP64 Cores / SM</td>
<td>64</td>
<td>4</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>FP64 Cores / GPU</td>
<td>960</td>
<td>96</td>
<td>1792</td>
<td>2560</td>
</tr>
<tr>
<td>Tensor Cores / SM</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
</tr>
<tr>
<td>Tensor Cores / GPU</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>640</td>
</tr>
<tr>
<td>GPU Boost Clock</td>
<td>810/875 MHz</td>
<td>1114 MHz</td>
<td>1480 MHz</td>
<td>1530 MHz</td>
</tr>
<tr>
<td>Peak FP32 TFLOPS(^1)</td>
<td>5</td>
<td>6.8</td>
<td>10.6</td>
<td>15.7</td>
</tr>
<tr>
<td>Peak FP64 TFLOPS(^1)</td>
<td>1.7</td>
<td>.21</td>
<td>5.3</td>
<td>7.8</td>
</tr>
<tr>
<td>Peak Tensor TFLOPS(^1)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>125</td>
</tr>
<tr>
<td>Texture Units</td>
<td>240</td>
<td>192</td>
<td>224</td>
<td>320</td>
</tr>
<tr>
<td>Memory Interface</td>
<td>384-bit GDDR5</td>
<td>384-bit GDDR5</td>
<td>4096-bit HBM2</td>
<td>4096-bit HBM2</td>
</tr>
<tr>
<td>Memory Size</td>
<td>Up to 12 GB</td>
<td>Up to 24 GB</td>
<td>16 GB</td>
<td>16 GB</td>
</tr>
<tr>
<td>L2 Cache Size</td>
<td>1536 KB</td>
<td>3072 KB</td>
<td>4096 KB</td>
<td>6144 KB</td>
</tr>
<tr>
<td>Shared Memory Size / SM</td>
<td>16 KB/32 KB/48 KB</td>
<td>96 KB</td>
<td>64 KB</td>
<td>Configurable up to 96 KB</td>
</tr>
<tr>
<td>Register File Size / SM</td>
<td>256 KB</td>
<td>256 KB</td>
<td>256 KB</td>
<td>256 KB</td>
</tr>
<tr>
<td>Register File Size / GPU</td>
<td>3840 KB</td>
<td>6144 KB</td>
<td>14336 KB</td>
<td>20480 KB</td>
</tr>
<tr>
<td>TDP</td>
<td>235 Watts</td>
<td>250 Watts</td>
<td>300 Watts</td>
<td>300 Watts</td>
</tr>
<tr>
<td>Transistors</td>
<td>7.1 billion</td>
<td>8 billion</td>
<td>15.3 billion</td>
<td>21.1 billion</td>
</tr>
<tr>
<td>GPU Die Size</td>
<td>551 mm(^2)</td>
<td>601 mm(^2)</td>
<td>610 mm(^2)</td>
<td>815 mm(^2)</td>
</tr>
<tr>
<td>Manufacturing Process</td>
<td>28 nm</td>
<td>28 nm</td>
<td>16 nm FinFET+</td>
<td>12 nm FFN</td>
</tr>
</tbody>
</table>

\(^1\) Peak TFLOPS rates are based on GPU Boost Clock
CUDA Application Programming Interface

- The cuda API is an extension to the C programming language
 - Language extensions
 - To target portions of the code for execution on the device
 - A runtime library split into:
 - A common component for host and device codes providing
 - built-in vector types and a
 - subset of the C runtime library
 - A host component to control and access CUDA devices
 - A device component providing device-specific functions

- Tools for cuda
 - nvcc compiler
 - runs cuda compiler on .cu files, and gcc on other files
 - nvprof profiler
 - reports on device performance including host-device transfers
CUDA C Language Extensions: Type Qualifiers

<table>
<thead>
<tr>
<th>Type Qualifiers</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__device__ __local__</code></td>
<td></td>
<td>local</td>
<td>thread</td>
</tr>
<tr>
<td><code>__device__ __shared__</code></td>
<td></td>
<td>shared</td>
<td>block</td>
</tr>
<tr>
<td><code>__device__</code></td>
<td></td>
<td>global</td>
<td>grid</td>
</tr>
<tr>
<td><code>__device__ __constant__</code></td>
<td></td>
<td>constant</td>
<td>grid</td>
</tr>
</tbody>
</table>

__device__ __local__ int LocalVar;
__device__ __shared__ int SharedVar;
__device__ int GlobalVar;
__device__ __constant__ int ConstantVar;

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
Language Extensions: Built-in Variables

- `dim3 gridDim;`
 - Dimensions of the grid in blocks
- `dim3 blockDim;`
 - Dimensions of the block in # threads
- `dim3 blockIdx;`
 - Block index within the grid
- `dim3 threadIdx;`
 - Thread index within the block

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
CUDA Function Declarations

<table>
<thead>
<tr>
<th>device float DeviceFunc()</th>
<th>Executed on the:</th>
<th>Only callable from the:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>device</td>
<td>device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>global void KernelFunc()</th>
<th>Executed on the:</th>
<th>Only callable from the:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>device</td>
<td>host</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>host float HostFunc()</th>
<th>Executed on the:</th>
<th>Only callable from the:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>host</td>
<td>host</td>
</tr>
</tbody>
</table>

- __global__ defines a kernel function
 - Must return **void**

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
Calling a Kernel Function

• A kernel function must be called with an **execution configuration**:

```c
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50);  // 5000 thread blocks
dim3 DimBlock(4, 8, 8);  // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
```

• Any call to a kernel function is asynchronous in the host from CUDA 1.0 on, explicit synchronization needed to await completion

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
Host and device memory

- Separate address spaces (compute capability <6.0)
 - `cudaMemCopy` to move data back and forth

- Unified address space (compute capability >= 6.0)
 - Host and device “page” out of a single address space

- Tesla V100 has compute capability 7.0
A simple example

```c
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>> (A, B, C);
    ...
}
```

• single block, with N threads
 – also need to allocate and initialize A and B, return C
 – easiest with unified memory model

• How large can the vectors be?

• What kind of performance could we expect?