COMP 633 - Parallel Computing

Lecture 14 October 14, 2021

Programming Accelerators

Some CUDA examples

• Sequence reduction

- Illustrating control divergence
- Matrix multiplication
 - Illustrating shmem reuse
- Nbody computation
 - Illustrating a computation we know

Example 1: Parallel Sum Reduction

Parallel Sum Reduction

- Parallel implementation

- halve # of active threads in each step, add two values per thread in each step
- Takes log(n) steps for n elements, requires n/2 threads

In-place reduction using shared memory within a block

- The original vector of floats is in device memory
- The shared memory is used to hold a partial sum vector
- Each step brings the partial sum vector closer to the sum
- The final sum will be in element 0 of the partial sum vector
- Reduces global memory traffic due to partial sum values

Some Observations on the naïve reduction kernel

- In each iteration, two control flow paths will be sequentially traversed for each warp
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition still consume execution resources

- Half or fewer of threads will be executing after the first step

- All odd-index threads are disabled after first step
- After the 5th step, entire warps in each block will fail the if test, poor resource utilization but no divergence
 - This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024), where each active warp only has one productive thread until all warps in a block retire

Thread Index Usage Matters

- In some algorithms, one can shift the index usage to improve the divergence behavior
 - Commutative and associative operators
- For reduction, compact the partial sums to the front locations in the partialSum[] array
- Keep the active threads consecutive

Example with 4 threads

Thread 0 Thread 1 Thread 2 Thread 3

12

A Better Reduction Kernel

A Quick Analysis

For a 1024 thread block

- No divergence in the first 5 steps
 - 1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
 - All threads in each warp either all active or all inactive
- The final 5 steps will still have divergence

- Matrix multiplication
 - Illustrating shmem use

Matrix Multiplication

Tiled Matrix Multiplication

- Break up the execution of each thread into phases
- so data accesses by the thread block in each phase are focused on one tile of M and one tile of N
- The tile is of BLOCK SIZE elements in each dimension

Loading a Tile

- All threads in a block participate
 - Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block (0,0)

Phase 0 Use for Block (0,0) (iteration 0)

Phase 0 Use for Block (0,0) (iteration 1)

Phase 1 Load for Block (0,0)

Phase 1 Use for Block (0,0) (iteration 0)

Phase 1 Use for Block (0,0) (iteration 1)

Execution Phases of Toy Example

	Phase 0			Phase 1			
thread _{0,0}	$\begin{array}{c} \mathbf{M_{0,0}} \\ \downarrow \\ \mathbf{Mds}_{0,0} \end{array}$	$egin{array}{c} \mathbf{N}_{0,0} \ \downarrow \ \mathbf{Nds}_{0,0} \end{array}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0} *Nds_{0,0} + \\ Mds_{0,1} *Nds_{1,0} \end{array}$	$\mathbf{M_{0,2}} \ \downarrow \ \mathbf{Mds_{0,0}}$	$\begin{array}{c} \mathbf{N_{2,0}} \\ \downarrow \\ \mathbf{Nds}_{0,0} \end{array}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0} *Nds_{0,0} + \\ Mds_{0,1} *Nds_{1,0} \end{array}$	
thread _{0,1}	$\begin{matrix} \mathbf{M_{0,1}} \\ \downarrow \\ Mds_{0,1} \end{matrix}$	$\begin{array}{c} \mathbf{N_{0,1}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{array}$	$\begin{array}{l} PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1} \end{array}$	$\mathbf{M}_{0,3}$ \downarrow $\mathrm{Mds}_{0,1}$	$\begin{array}{c} \mathbf{N_{2,1}} \\ \downarrow \\ \mathbf{Nds}_{0,1} \end{array}$	$\begin{array}{l} PValue_{0,1} += \\ Mds_{0,0} *Nds_{0,1} + \\ Mds_{0,1} *Nds_{1,1} \end{array}$	
thread _{1,0}	$\begin{matrix} \mathbf{M_{1,0}} \\ \downarrow \\ Mds_{1,0} \end{matrix}$	$\begin{array}{c} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{array}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}^*Nds_{0,0} + \\ Mds_{1,1}^*Nds_{1,0} \end{array}$	$\mathbf{M_{1,2}} \\ \downarrow \\ \mathbf{Mds}_{1,0}$	$\mathbf{N_{3,0}} \\ \downarrow \\ \mathbf{Nds}_{1,0}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}^*Nds_{0,0} + \\ Mds_{1,1}^*Nds_{1,0} \end{array}$	
thread _{1,1}	$M_{1,1}$ \downarrow $Mds_{1,1}$	$N_{1,1} \\\downarrow \\ Nds_{1,1}$	$\begin{array}{l} PValue_{1,1} += \\ Mds_{1,0}^*Nds_{0,1} + \\ Mds_{1,1}^*Nds_{1,1} \end{array}$	$\mathbf{M}_{1,3} \\ \downarrow \\ \mathbf{Mds}_{1,1}$	$N_{3,1}$ \downarrow $Nds_{1,1}$	$\begin{array}{l} PValue_{1,1} += \\ Mds_{1,0} *Nds_{0,1} + \\ Mds_{1,1} *Nds_{1,1} \end{array}$	

Execution Phases of Toy Example (cont.)

	Phase 0			Phase 1		
thread _{0,0}	$\begin{array}{c} \mathbf{M_{0,0}}\\ \downarrow\\ \mathbf{Mds_{0,0}} \end{array}$	$egin{array}{c} \mathbf{N}_{0,0} \ \downarrow \ \mathbf{Nds}_{0,0} \end{array}$	$PValue_{0,0} += Mds_{0,0}*Nds_{0,0} + Mds_{0,1}*Nds_{1,0}$	$\mathbf{M_{0,2}} \\ \downarrow \\ \mathbf{Mds}_{0,0}$	$\begin{matrix} \mathbf{N_{2,0}} \\ \downarrow \\ \mathbf{Nds}_{0,0} \end{matrix}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0} *Nds_{0,0} + \\ Mds_{0,1} *Nds_{1,0} \end{array}$
thread _{0,1}	$\begin{array}{c} \mathbf{M_{0,1}}\\ \downarrow\\ \mathbf{Mds_{0,1}} \end{array}$	$\begin{matrix} \mathbf{N_{0,1}} \\ \downarrow \\ Nds_{1,0} \end{matrix}$	$PValue_{0,1} += Mds_{0,0}*Nds_{0,1} + Mds_{0,1}*Nds_{1,1}$	$\mathbf{M}_{0,3}$ \downarrow $\mathrm{Mds}_{0,1}$	$\begin{matrix} \mathbf{N_{2,1}} \\ \downarrow \\ \mathbf{Nds}_{0,1} \end{matrix}$	$\begin{array}{l} PValue_{0,1} += \\ Mds_{0,0} *Nds_{0,1} + \\ Mds_{0,1} *Nds_{1,1} \end{array}$
thread _{1,0}	$\begin{matrix} \mathbf{M_{1,0}} \\ \downarrow \\ Mds_{1,0} \end{matrix}$	$\begin{array}{c} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{array}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}^*Nds_{0,0} + \\ Mds_{1,1}^*Nds_{1,0} \end{array}$	$\mathbf{M_{1,2}} \\ \downarrow \\ \mathbf{Mds}_{1,0}$	$\begin{matrix} \mathbf{N_{3,0}} \\ \downarrow \\ \mathbf{Nds}_{1,0} \end{matrix}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}^*Nds_{0,0} + \\ Mds_{1,1}^*Nds_{1,0} \end{array}$
thread _{1,1}	$\begin{matrix} \mathbf{M_{1,1}} \\ \downarrow \\ Mds_{1,1} \end{matrix}$	$\begin{matrix} \mathbf{N_{1,1}} \\ \downarrow \\ \mathbf{Nds}_{1,1} \end{matrix}$	$ \begin{array}{l} PValue_{1,1} += \\ Mds_{1,0} *Nds_{0,1} + \\ Mds_{1,1} *Nds_{1,1} \end{array} $	$\mathbf{M_{1,3}} \\ \downarrow \\ Mds_{1,1}$	$\begin{vmatrix} \mathbf{N}_{3,1} \\ \downarrow \\ \mathrm{Nds}_{1,1} \end{vmatrix}$	$\begin{array}{l} PValue_{1,1} += \\ Mds_{1,0} *Nds_{0,1} + \\ Mds_{1,1} *Nds_{1,1} \end{array}$

Shared memory allows each value to be accessed by multiple threads

Barrier Synchronization

- Synchronize all threads in a block
 - __syncthreads()
- All threads in the same block must reach the __syncthreads() before any of the them can move on
- Best used to coordinate the phased execution tiled algorithms
 - To ensure that all elements of a tile are loaded at the beginning of a phase
 - To ensure that all elements of a tile are consumed at the end of a phase

Example 3: all-pairs n-body computation (3D)

Force calculation

• Recall simple force calculation

$$\mathbf{F}_{i} = \sum_{\substack{1 \le j \le N \\ j \ne i}} \mathbf{f}_{ij} = Gm_{i} \cdot \sum_{\substack{1 \le j \le N \\ j \ne i}} \frac{m_{j}\mathbf{r}_{ij}}{\left\|\mathbf{r}_{ij}\right\|^{3}}$$

• Softening factor $\varepsilon^2 > 0$ to limit forces

$$\mathbf{F}_{i} \approx Gm_{i} \cdot \sum_{1 \leq j \leq N} \frac{m_{j} \mathbf{r}_{ij}}{\left(\left\| \mathbf{r}_{ij} \right\|^{2} + \varepsilon^{2} \right)^{3/2}}$$

$$\mathbf{A}_{i} = \frac{\mathbf{F}_{i}}{m_{i}} \approx G \cdot \sum_{1 \leq j \leq N} \frac{m_{j} \mathbf{r}_{ij}}{\left(\left\| \mathbf{r}_{ij} \right\|^{2} + \varepsilon^{2} \right)^{3/2}}$$

Body-body interaction

Listing 31-1. Updating Acceleration of One Body as a Result of Its Interaction with Another Body

```
device float3
body body interaction(float4 bi, float4 bj, float3 ai)
  float3 r;
 // r ij [3 FLOPS]
 r.x = bj.x - bi.x;
 r.y = bj.y - bi.y;
 r.z = bj.z - bi.z;
 // distSqr = dot(r ij, r ij) + EPS<sup>2</sup> [6 FLOPS]
  float distSqr = r.x * r.x + r.y * r.y + r.z * r.z + EPS2;
 // invDistCube =1/distSqr^(3/2) [4 FLOPS (2 mul, 1 sqrt, 1 inv)]
  float distSixth = distSqr * distSqr * distSqr;
  float invDistCube = 1.0f/sqrtf(distSixth);
 // s = m j * invDistCube [1 FLOP]
                                                         use reciprocal
  float s = bj.w * invDistCube;
                                                          square root
                                                              rsqrt()
 //ai = ai + s * rij [6 FLOPS]
 ai.x += r.x * s;
 ai.y += r.y * s;
 ai.z += r.z * s;
                                            20 FLOPS per interaction
 return ai;
```


Figure 31-2. A Schematic Figure of a Computational Tile

Left: Evaluation order. Right: Inputs needed and outputs produced for the p² interactions calculated in the tile.

Evaluation of a single tile

Evaluation of all tiles in a thread block

Listing 31-3. The CUDA Kernel Executed by a Thread Block with *p* Threads to Compute the Gravitational Acceleration for *p* Bodies as a Result of All *N* Interactions

```
global void
calculate forces (void *devX, void *devA)
 extern shared float4[] shPosition;
 float4 *globalX = (float4 *)devX;
 float4 *globalA = (float4 *)devA;
 float4 myPosition;
 int i, tile;
 float3 acc = \{0.0f, 0.0f, 0.0f\};
 int gtid = blockIdx.x * blockDim.x + threadIdx.x;
                                                        These p float4 values
                                                         occupy consecutive
 myPosition = globalX[gtid];
                                                          locations in device
 for (i = 0, tile = 0; i < N; i += p, tile++) .</pre>
                                                      memory. The p loads are
   int idx = tile * blockDim.x + threadIdx.x;
   shPosition[threadIdx.x] = globalX[idx];
                                                      coalesced and transfer at
     syncthreads();
                                                        full memory bandwidth
   acc = tile calculation(myPosition, acc);
     syncthreads();
 // Save the result in global memory for the integration step.
 float4 acc4 = {acc.x, acc.y, acc.z, 0.0f};
 globalA[gtid] = acc4;
```

- // N bodies, N threads
- **int** p = 256;
- dim3 DimBlock(p, 1, 1); // p threads per block
- dim3 DimGrid(N/p, 1); // N/p thread blocks

// p bodies in shared memory per tile evaluation
size_t SharedMemBytes = p * sizeof(Float4);

CalculateForces <<< DimGrid, DimBlock, SharedMemBytes >>> (Posns, Accels);

Performance (p = 256) GTX 8800 (2007 !)

Figure 31-6. Performance Increase as N Grows

This is about 10B interactions/sec (single precision)

35

Performance (p=256) Titan V100 (2018)

• 10 timesteps

		SP		DP	
GPU	n	inter/s	GFLOPS	inter/s	GFLOPS
GTX 8800	16384	10B	200	-	-
V100	16384	314B	6300	100B	3000
V100	65536	370B	7400	135B	3900
V100	1,048,576	463B	9300	161B	4840

- Pointers can only point to memory allocated or declared in global memory:
 - Allocated in the host and passed to the kernel:

__global___ void KernelFunc(float* ptr)

- Obtained as the address of a global variable: float* ptr =
&GlobalVar;

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

Common Runtime Component

- Provides:
 - Built-in vector types
 - [u]char[1..4], [u]short[1..4], [u]int[1..4],
 [u]long[1..4], float[1..4]
 - Structures accessed with x, y, z, w fields:

```
uint4 param;
int y = param.y;
```

- dim3
 - Based on uint3
 - Used to specify dimensions
- A subset of the C runtime library supported in both host and device codes

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

Runtime Component: Mathematical Functions

- pow, sqrt, cbrt, hypot
- exp, exp2, expm1
- log, log2, log10, log1p
- sin, cos, tan, asin, acos, atan, atan2
- sinh, cosh, tanh, asinh, acosh, atanh
- ceil, floor, trunc, round
- (more)
 - When executed on the host, a given function uses the C runtime implementation if available
 - These functions are only supported for scalar types, not vector types

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

Host Runtime Component

- Provides functions to deal with:
 - Device management (including multi-device systems)
 - Initializes the first time a runtime function is called
 - A host thread can invoke device code on only one device
 - Multiple host threads required to run on multiple devices
 - Memory management
 - Device memory allocation
 - cudaMalloc(), cudaFree()
 - Memory copy* from host to device, device to host, device to device
 - cudaMemcpy(), cudaMemcpy2D(), cudaMemcpyToSymbol(), cudaMemcpyFromSymbol()
 - Memory addressing*
 - cudaGetSymbolAddress()

* Not needed when using unified memory model for host/device

Error handling

Heterogeneous Parallel Computers

- Composed of
 - CPU(s)
 - Low-latency processor optimized for sequential execution
 - large memory size and deep memory hierarchy
 - 1-8 Accelerator(s)
 - high throughput SIMD or MIMD processors optimized for data-parallel execution
 - high-performance local memory with limited size (16-24 GB) and small depth memory hierarchy
- Example
 - Multisocket compute server
 - Host: two-socket 20 40 Intel Xeon cores with 128 512 GB CC-NUMA shared memory
 - Accelerators: 1-8 accelerators (e.g. Nvidia Cuda cards connected via PCIe x16 interfaces (16GB/s)
 - host controls data to/from accelerator memory

Basic Programming Models

- Offload model
 - idea: offload computational kernels
 - send data
 - call kernel(s)
 - retrieve data
 - accelerator-specific compiler support
 - Cuda compiler (nvcc) for Nvidia GPUs
 - accelerator-neutral OpenCL
 - Cuda-like notation
 - OpenCL compiler can target Nvidia or Intel Xeon Phi

Emerging Programming Models

- directive model
 - idea: identify sections of code to be compiled for accelerator(s)
 - · data transfer and kernel invocation generated by compiler
 - accelerator-neutral efforts
 - OpenACC
 - #pragma acc parallel loop
 for (...) { ... }
 - gang, worker, vector (threadblock, warp, warp in SIMT lockstep)
 - gcc 5, PGI, Cray, CAPS, Nvidia compilers
 - OpenMP 4.0
 - similar directives to (but more general than) OpenACC
 - implemented by gcc 4.9 and icc compiler
- accelerator-specific compiler support
 - Intel Cilk Plus and C++ compilers for Intel Xeon Phi

Scaling accelerators and interconnect

• DGX-2 (2018) 16 GPUs and 300GB/s full bisection-width interconnect

