
1Heterogeneous ProgrammingCOMP 633 - Prins

COMP 633 - Parallel Computing

Lecture 14
October 14, 2021

Programming Accelerators

2

Some CUDA examples

• Sequence reduction
– Illustrating control divergence

• Matrix multiplication
– Illustrating shmem reuse

• Nbody computation
– Illustrating a computation we know

CUDA GPU programmingCOMP 633 - Prins

3

Example 1: Parallel Sum Reduction

4

Parallel Sum Reduction
– Parallel implementation

– halve # of active threads in each step, add two values per thread in each step
– Takes log(n) steps for n elements, requires n/2 threads

– In-place reduction using shared memory within a block
– The original vector of floats is in device memory
– The shared memory is used to hold a partial sum vector
– Each step brings the partial sum vector closer to the sum
– The final sum will be in element 0 of the partial sum vector
– Reduces global memory traffic due to partial sum values

10

Some Observations on the naïve reduction kernel

– In each iteration, two control flow paths will be sequentially
traversed for each warp

– Threads that perform addition and threads that do not
– Threads that do not perform addition still consume execution resources

– Half or fewer of threads will be executing after the first step
– All odd-index threads are disabled after first step
– After the 5th step, entire warps in each block will fail the if test, poor resource utilization

but no divergence
– This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024),

where each active warp only has one productive thread until all warps in a block retire

11

Thread Index Usage Matters
– In some algorithms, one can shift the index usage to improve the

divergence behavior
– Commutative and associative operators

– For reduction, compact the partial sums to the front locations in
the partialSum[] array

– Keep the active threads consecutive

12

Example with 4 threads
Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

25

Thread 1 Thread 2 Thread 3

13

A Better Reduction Kernel

for (unsigned int stride = blockDim.x; stride > 0; stride /= 2)
{

__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}

14

A Quick Analysis
– For a 1024 thread block

– No divergence in the first 5 steps
– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each

step
– All threads in each warp either all active or all inactive

– The final 5 steps will still have divergence

15

Example 2

• Matrix multiplication
– Illustrating shmem use

CUDA GPU programmingCOMP 633 - Prins

16

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a
column of N

– Each thread block – a strip of M and a
strip of N

17

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Tiled Matrix Multiplication
– Break up the execution of each

thread into phases
– so data accesses by the thread

block in each phase are focused
on one tile of M and one tile of N

– The tile is of BLOCK_SIZE
elements in each dimension

18

Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

19

Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

20

Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

21

Phase 0 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

22

Phase 1 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

23

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

24

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

25

Execution Phases of Toy Example

26

Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple threads

27

Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase

28CUDA GPU programmingCOMP 633 - Prins

Example 3: all-pairs n-body computation (3D)

29CUDA GPU programmingCOMP 633 - Prins

Force calculation

• Recall simple force calculation

• Softening factor ε 2 > 0 to limit forces

∑∑
≠
≤≤

≠
≤≤

⋅==

ij
Nj ij

ijj
i

ij
Nj
iji

m
Gm

1
3

1 r

r
fF

∑
≤≤

 +

⋅≈
Nj

ij

ijj
ii

m
Gm

1 2
3

22
εr

r
F

∑
≤≤

 +

⋅≈=
Nj

ij

ijj

i

i
i

m
G

m 1 2
3

22
εr

rFA

30CUDA GPU programmingCOMP 633 - Prins

Body-body interaction

20 FLOPS per interaction

use reciprocal
square root

rsqrt()

31CUDA GPU programmingCOMP 633 - Prins

Computational Tile

32CUDA GPU programmingCOMP 633 - Prins

Evaluation of a single tile
__device__ float3
tile_calculation(float4 myPosition, float3 accel)
{

int i;
extern __shared__ float4[] shPosition;
for (i = 0; i < p; i++) {

accel = body_body_interaction(myPosition,
shPosition[i], accel);

}
return accel;

}

33CUDA GPU programmingCOMP 633 - Prins

Evaluation of all tiles in a thread block

These p float4 values
occupy consecutive
locations in device

memory. The p loads are
coalesced and transfer at

full memory bandwidth

34CUDA GPU programmingCOMP 633 - Prins

// N bodies, N threads
int p = 256;
dim3 DimBlock(p, 1, 1); // p threads per block
dim3 DimGrid(N/p, 1); // N/p thread blocks

// p bodies in shared memory per tile evaluation
size_t SharedMemBytes = p * sizeof(Float4);

CalculateForces <<< DimGrid, DimBlock, SharedMemBytes >>>
(Posns, Accels);

Execution configuration

35CUDA GPU programmingCOMP 633 - Prins

Performance (p = 256) GTX 8800 (2007 !)

This is about 10B interactions/sec (single precision)

36

Performance (p=256) Titan V100 (2018)

CUDA GPU programmingCOMP 633 - Prins

GPU n inter/s GFLOPS inter/s GFLOPS
GTX 8800 16384 10B 200 - -

V100 16384 314B 6300 100B 3000
V100 65536 370B 7400 135B 3900
V100 1,048,576 463B 9300 161B 4840

SP DP

• 10 timesteps

Sheet1

						SP				DP

		GPU		n		inter/s		GFLOPS		inter/s		GFLOPS

		GTX 8800		16384		10B		200		-		-

		V100		16384		314B		6300		100B		3000

		V100		65536		370B		7400		135B		3900

		V100		1,048,576		463B		9300		161B		4840

38CUDA GPU programmingCOMP 633 - Prins

Variable Type Restrictions

• Pointers can only point to memory allocated or declared in global
memory:
– Allocated in the host and passed to the kernel:
__global__ void KernelFunc(float* ptr)

– Obtained as the address of a global variable: float* ptr =
&GlobalVar;

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

39CUDA GPU programmingCOMP 633 - Prins

Common Runtime Component

• Provides:
– Built-in vector types

• [u]char[1..4], [u]short[1..4], [u]int[1..4],
[u]long[1..4], float[1..4]

– Structures accessed with x, y, z, w fields:
uint4 param;

int y = param.y;

• dim3
– Based on uint3

– Used to specify dimensions

– A subset of the C runtime library supported in both host and device
codes

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

40CUDA GPU programmingCOMP 633 - Prins

Runtime Component: Mathematical Functions

• pow, sqrt, cbrt, hypot
• exp, exp2, expm1
• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round
• (more)

– When executed on the host, a given function uses the C
runtime implementation if available

– These functions are only supported for scalar types, not vector
types

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1

41CUDA GPU programmingCOMP 633 - Prins

Host Runtime Component

• Provides functions to deal with:
– Device management (including multi-device systems)

• Initializes the first time a runtime function is called
• A host thread can invoke device code on only one device

– Multiple host threads required to run on multiple devices

– Memory management
• Device memory allocation

– cudaMalloc(), cudaFree()
• Memory copy* from host to device, device to host, device to device

– cudaMemcpy(), cudaMemcpy2D(), cudaMemcpyToSymbol(),
cudaMemcpyFromSymbol()

• Memory addressing*
– cudaGetSymbolAddress()

– Error handling

* Not needed when using unified
memory model for host/device

42

Heterogeneous Parallel Computers
• Composed of

– CPU(s)
• Low-latency processor optimized for sequential execution
• large memory size and deep memory hierarchy

– 1-8 Accelerator(s)
• high throughput SIMD or MIMD processors optimized for data-parallel

execution
• high-performance local memory with limited size (16-24 GB) and small

depth memory hierarchy
• Example

– Multisocket compute server
• Host: two-socket 20 – 40 Intel Xeon cores with 128 – 512 GB CC-NUMA

shared memory
• Accelerators: 1-8 accelerators (e.g. Nvidia Cuda cards connected via

PCIe x16 interfaces (16GB/s)
– host controls data to/from accelerator memory

Heterogeneous ProgrammingCOMP 633 - J. F. Prins

43

Basic Programming Models

• Offload model
– idea: offload computational kernels

• send data
• call kernel(s)
• retrieve data

– accelerator-specific compiler support
• Cuda compiler (nvcc) for Nvidia GPUs

– accelerator-neutral OpenCL
• Cuda-like notation
• OpenCL compiler can target Nvidia or Intel Xeon Phi

Heterogeneous ProgrammingCOMP 633 - J. F. Prins

GPU

CPU

44

Emerging Programming Models

• directive model
– idea: identify sections of code to be compiled for accelerator(s)

• data transfer and kernel invocation generated by compiler

– accelerator-neutral efforts
• OpenACC

– #pragma acc parallel loop
for (…) { … }

– gang, worker, vector (threadblock, warp, warp in SIMT lockstep)
– gcc 5, PGI, Cray, CAPS, Nvidia compilers

• OpenMP 4.0
– similar directives to (but more general than) OpenACC
– implemented by gcc 4.9 and icc compiler

• accelerator-specific compiler support
– Intel Cilk Plus and C++ compilers for Intel Xeon Phi

Heterogeneous ProgrammingCOMP 633 - J. F. Prins

45

Scaling accelerators and interconnect

• DGX-2 (2018) 16 GPUs and 300GB/s full bisection-width interconnect

Heterogeneous ProgrammingCOMP 633 - J. F. Prins

	COMP 633 - Parallel Computing��Lecture 14 �October 14, 2021��Programming Accelerators
	Some CUDA examples
	Example 1: Parallel Sum Reduction
	Parallel Sum Reduction
	Some Observations on the naïve reduction kernel
	Thread Index Usage Matters
	Example with 4 threads
	A Better Reduction Kernel
	A Quick Analysis
	Example 2
	Matrix Multiplication
	Tiled Matrix Multiplication
	Loading a Tile
	Phase 0 Load for Block (0,0)
	Phase 0 Use for Block (0,0) (iteration 0)
	Phase 0 Use for Block (0,0) (iteration 1)
	Phase 1 Load for Block (0,0)
	Phase 1 Use for Block (0,0) (iteration 0)
	Phase 1 Use for Block (0,0) (iteration 1)
	Execution Phases of Toy Example
	Execution Phases of Toy Example (cont.)
	Barrier Synchronization
	Example 3: all-pairs n-body computation (3D)
	Force calculation
	Body-body interaction
	Computational Tile
	Evaluation of a single tile
	Evaluation of all tiles in a thread block
	Execution configuration
	Performance (p = 256) GTX 8800 (2007 !)
	Performance (p=256) Titan V100 (2018)	
	Variable Type Restrictions
	Common Runtime Component
	Runtime Component: Mathematical Functions
	Host Runtime Component
	Heterogeneous Parallel Computers
	Basic Programming Models
	Emerging Programming Models
	Scaling accelerators and interconnect

