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Some CUDA examples

• Sequence reduction
– Illustrating control divergence

• Matrix multiplication
– Illustrating shmem reuse

• Nbody computation
– Illustrating a computation we know
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Example 1:  Parallel Sum Reduction
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Parallel Sum Reduction
– Parallel implementation

– halve # of active threads in each step, add two values per thread in each step
– Takes log(n) steps for n elements, requires n/2 threads

– In-place reduction using shared memory within a block
– The original vector of floats is in device memory
– The shared memory is used to hold a partial sum vector
– Each step brings the partial sum vector closer to the sum
– The final sum will be in element 0 of the partial sum vector
– Reduces global memory traffic due to partial sum values
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Some Observations on the naïve reduction kernel

– In each iteration, two control flow paths will be sequentially 
traversed for each warp

– Threads that perform addition and threads that do not
– Threads that do not perform addition still consume execution resources

– Half or fewer of threads will be executing after the first step
– All odd-index threads are disabled after first step
– After the 5th step, entire warps in each block will fail the if test, poor resource utilization 

but no divergence
– This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024), 

where each active warp only has one productive thread until all warps in a block retire 
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Thread Index Usage Matters
– In some algorithms, one can shift the index usage to improve the 

divergence behavior
– Commutative and associative operators

– For reduction, compact the partial sums to the front locations in 
the partialSum[ ] array

– Keep the active threads consecutive
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Example with 4 threads
Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

25

Thread 1 Thread 2 Thread 3
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A Better Reduction Kernel

for (unsigned int stride = blockDim.x; stride > 0; stride /= 2) 
{

__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}
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A Quick Analysis
– For a 1024 thread block

– No divergence in the first 5 steps
– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each 

step
– All threads in each warp  either all active or all inactive

– The final 5 steps will still have divergence 
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Example 2

• Matrix multiplication
– Illustrating shmem use
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Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a 
column of N

– Each thread block – a strip of M and a 
strip of N
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Tiled Matrix Multiplication
– Break up the execution of each 

thread into phases 
– so data accesses by the thread 

block in each phase are focused 
on one tile of M and one tile of N

– The tile is of BLOCK_SIZE 
elements in each dimension
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Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code
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Execution Phases of Toy Example
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Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple threads 
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Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before 
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase
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Example 3:  all-pairs n-body computation (3D)
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Force calculation

• Recall simple force calculation

• Softening factor ε 2 > 0  to limit forces
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Body-body interaction

20 FLOPS per interaction

use reciprocal 
square root  

rsqrt()
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Computational Tile
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Evaluation of a single tile
__device__ float3
tile_calculation(float4 myPosition, float3 accel)
{

int i;
extern __shared__ float4[] shPosition;
for (i = 0; i < p; i++) {

accel = body_body_interaction(myPosition,
shPosition[i], accel); 

}
return accel;

}
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Evaluation of all tiles in a thread block

These p float4 values 
occupy consecutive 
locations in device 

memory. The p loads are 
coalesced and transfer at 

full memory bandwidth
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// N bodies, N threads
int p = 256;           
dim3 DimBlock(p, 1, 1); // p threads per block
dim3 DimGrid(N/p, 1);   // N/p thread blocks

// p bodies in shared memory per tile evaluation
size_t SharedMemBytes = p * sizeof(Float4); 

CalculateForces <<< DimGrid, DimBlock, SharedMemBytes >>>
(Posns, Accels);

Execution configuration
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Performance (p = 256) GTX 8800 (2007 !)

This is about 10B interactions/sec (single precision)
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Performance (p=256) Titan V100 (2018)

CUDA GPU programmingCOMP 633  - Prins

GPU n inter/s GFLOPS inter/s GFLOPS
GTX 8800 16384 10B 200 - -

V100 16384 314B 6300 100B 3000
V100 65536 370B 7400 135B 3900
V100 1,048,576 463B 9300 161B 4840

SP DP

• 10 timesteps


Sheet1

						SP				DP

		GPU		n		inter/s		GFLOPS		inter/s		GFLOPS

		GTX 8800		16384		10B		200		-		-

		V100		16384		314B		6300		100B		3000

		V100		65536		370B		7400		135B		3900

		V100		1,048,576		463B		9300		161B		4840
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Variable Type Restrictions

• Pointers can only point to memory allocated or declared in global 
memory:
– Allocated in the host and passed to the kernel: 
__global__ void KernelFunc(float* ptr)

– Obtained as the address of a global variable: float* ptr = 
&GlobalVar;

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
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Common Runtime Component

• Provides:
– Built-in vector types

• [u]char[1..4], [u]short[1..4], [u]int[1..4], 
[u]long[1..4], float[1..4]

– Structures accessed with x, y, z, w fields:
uint4 param;

int y = param.y;

• dim3
– Based on uint3

– Used to specify dimensions

– A subset of the C runtime library supported in both host and device 
codes

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
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Runtime Component:  Mathematical Functions

• pow, sqrt, cbrt, hypot
• exp, exp2, expm1
• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round
• (more)

– When executed on the host, a given function uses the C 
runtime implementation if available

– These functions are only supported for scalar types, not vector 
types

adapted from: David Kirk/NVIDIA and Wen-mei W. Hwu, Fall 2007 ECE 498AL1
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Host Runtime Component

• Provides functions to deal with:
– Device management (including multi-device systems)

• Initializes the first time a runtime function is called
• A host thread can invoke device code on only one device

– Multiple host threads required to run on multiple devices

– Memory management
• Device memory allocation

– cudaMalloc(), cudaFree()
• Memory copy* from host to device, device to host, device to device

– cudaMemcpy(), cudaMemcpy2D(), cudaMemcpyToSymbol(), 
cudaMemcpyFromSymbol()

• Memory addressing*
– cudaGetSymbolAddress()

– Error handling

* Not needed when using unified 
memory model for host/device
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Heterogeneous Parallel Computers
• Composed of

– CPU(s)
• Low-latency processor optimized for sequential execution
• large memory size and deep memory hierarchy

– 1-8 Accelerator(s)
• high throughput SIMD or MIMD processors optimized for data-parallel 

execution
• high-performance local memory with limited size (16-24 GB) and small 

depth memory hierarchy
• Example

– Multisocket compute server
• Host:  two-socket 20 – 40 Intel Xeon cores with 128 – 512 GB CC-NUMA 

shared memory 
• Accelerators:  1-8 accelerators (e.g. Nvidia Cuda cards connected via 

PCIe x16 interfaces (16GB/s) 
– host controls data to/from accelerator memory

Heterogeneous ProgrammingCOMP 633  - J. F. Prins
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Basic Programming Models

• Offload model
– idea:  offload computational kernels 

• send data
• call kernel(s)
• retrieve data

– accelerator-specific compiler support
• Cuda compiler  (nvcc) for Nvidia GPUs

– accelerator-neutral OpenCL
• Cuda-like notation
• OpenCL compiler can target Nvidia or Intel Xeon Phi

Heterogeneous ProgrammingCOMP 633  - J. F. Prins

GPU

CPU



44

Emerging Programming Models

• directive model
– idea:  identify sections of code to be compiled for accelerator(s)

• data transfer and kernel invocation generated by compiler

– accelerator-neutral efforts
• OpenACC

– #pragma acc parallel loop
for (…) { … }

– gang, worker, vector  (threadblock, warp, warp in SIMT lockstep)
– gcc 5, PGI, Cray, CAPS, Nvidia compilers

• OpenMP 4.0
– similar directives to (but more general than) OpenACC
– implemented by gcc 4.9 and icc compiler

• accelerator-specific compiler support
– Intel Cilk Plus and C++ compilers for Intel Xeon Phi

Heterogeneous ProgrammingCOMP 633  - J. F. Prins
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Scaling accelerators and interconnect

• DGX-2 (2018)  16 GPUs and 300GB/s full bisection-width interconnect

Heterogeneous ProgrammingCOMP 633  - J. F. Prins
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