
1BSP (1)COMP 633 - Prins

COMP 633 - Parallel Computing

Lecture 16
October 19, 2021

BSP (1)
Bulk-Synchronous Processing Model

2BSP (1)COMP 633 - Prins

Models of parallel computation
• Shared-memory model

– Implicit communication
• algorithm design and analysis relatively simple
• but implementation issues shine through

– caches, distribution of data in memories,
consistency, synchronization costs, ….

• limits to scaling in practice

• Distributed-memory model
– explicit communication (message passing)

• design and analysis takes into account
interconnection network and is complex

• results not easily transferred between different
networks

• “Bridging” model
– simplified communication costs

• balance realism with tractability of analysis
• independent of detailed network characteristics (topology, routing, etc.)
• cost model relies on average or “expected” network behavior

3BSP (1)COMP 633 - Prins

Bridging model of parallel computation

• p (processor-memory) pairs
– p separate address spaces (distributed memory)

• Memory references
– segregated into local and remote references
– remote references

• are explicit, typically in the form (proc, addr)
• carry communication cost

• Global barrier synchronization
– has large cost

Mem0

Proc0

Mem1

Proc1

Memp-1

Procp-1

• • •

Network

4BSP (1)COMP 633 - Prins

BSP - Bulk Synchronous Parallel programming model

• BSP algorithm consists of a sequence of supersteps
• Superstep i consists of

– local work: processors compute asynchronously
• access values in local memory
• record remote reads & writes to be performed

– global communication
• let 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖

𝑗𝑗 be the set of values leaving proc 𝑗𝑗 in step 𝑖𝑖

• let 𝐼𝐼𝑛𝑛𝑖𝑖+1
𝑗𝑗 be the set of values arriving at proc 𝑗𝑗 at the start of step 𝑖𝑖 + 1

• the relation 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 ↔ 𝐼𝐼𝑛𝑛𝑖𝑖+1 over all processors specifies the communication
pattern

– global synchronization
• ensure communication phase is

complete
• ensure memory incorporates all updates (consistency)

local memory j
iOut j

iIn 1+

proc j memory during step i

5BSP (1)COMP 633 - Prins

BSP communication cost

• Definition
– the communication size in step 𝑖𝑖 (measured in 8-byte words) is

ℎ𝑖𝑖 = max
0≤𝑗𝑗<𝑝𝑝

max 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖
𝑗𝑗 , |𝐼𝐼𝑛𝑛𝑖𝑖+1

𝑗𝑗 |

– the communication cost for superstep 𝑖𝑖 is ℎ𝑖𝑖 � 𝑔𝑔 + 𝐿𝐿
• g and L are machine-specific parameters

of the cost model where
• g (bandwidth-1 i.e. time per word) is the

per-processor full-load permeability of the network
• L (latency) is the transit time across the

network plus any additional time for barrier
synchronization of the processors

0

1

2

3

0

1

2

3

Source
Proc

Dest
Proc

6BSP (1)COMP 633 - Prins

Basic communication operations (1)

– Send n values from proc 1 to proc 3

0

1

2

3

0

1

2

3

Source
Proc

Dest
Proc

h =

BSP communication cost =

prins
Pencil

7BSP (1)COMP 633 - Prins

Basic communication operations (2)

– Exchange n values between proc 1 and proc 3

0

1

2

3

0

1

2

3

Source
Proc

Dest
Proc

h =

BSP communication cost =

prins
Pencil

8BSP (1)COMP 633 - Prins

Basic communication operations (3)

– Send n values between proc i and proc H(i) forall 0 ≤ i < p, with H a
permutation of 0:p-1

0

1

2

3

0

1

2

3

Source
Proc

Dest
Proc

h =

BSP communication cost =

prins
Pencil

9BSP (1)COMP 633 - Prins

Basic communication operations (4)

– Distribute n = kp values in proc 0 among p procs. Each proc receives
k values from proc 0

0

1

2

3

0

1

2

3

Source
Proc

Dest
Proc

h =

BSP communication cost =

prins
Highlight

prins
Highlight

prins
Pencil

10BSP (1)COMP 633 - Prins

Basic communication operations (5)

– Combine n = kp values into proc 0. Each proc sends k values

0

1

2

3

0

1

2

3

Source
Proc

Dest
Proc

h =

BSP communication cost =

prins
Pencil

11BSP (1)COMP 633 - Prins

– Total exchange (all-to-all exchange) of n = kp values among p
processors. Each processor receives k values from every other
processor

Basic communication operations (6)

0

1

2

3

Source
Proc

0

1

2

3

Dest
Proc

h =

BSP communication cost =

prins
Pencil

prins
Pencil

12BSP (1)COMP 633 - Prins

Basic communication operations (7)

– Broadcast n values from proc 0 to all other processors

0

1

2

3

0

1

2

3

Source
Proc

Dest
Proc

h =

BSP communication cost =

prins
Pencil

13BSP (1)COMP 633 - Prins

BSP programs and execution model

• Basic presentation style is processor-centric
– not like WT programs

• number of processors p
• explicit processor id j

• Single-Program Multiple-Datastream (SPMD) execution model
– all processors execute same sequential program asynchronously
– explicitly specify distribution of data over processors
– specify supersteps
– for each superstep specify

• work to be performed by each processor
• h-relation to be communicated

14BSP (1)COMP 633 - Prins

BSP cost

• Total cost of a BSP algorithm
– let c be the number of supersteps
– let p be the number of processors
– Define

– then total cost (~ running time) 𝐶𝐶(𝑛𝑛,𝑝𝑝) of a BSP algorithm is

()jiw
pj

i processor by superstepon FLOPSin donework max
0 <≤

=

()()jj
i

pj
i i

InOuth
1

,maxmax
0 +<≤

=

𝐶𝐶 𝑛𝑛, 𝑝𝑝 = �
𝑖𝑖=1

𝑐𝑐

𝑤𝑤𝑖𝑖 + ℎ𝑖𝑖 � 𝑔𝑔 + 𝐿𝐿

= �
𝑖𝑖=1

𝑐𝑐

𝑤𝑤𝑖𝑖 + �
𝑖𝑖=1

𝑐𝑐

ℎ𝑖𝑖 � 𝑔𝑔 + 𝑐𝑐 � 𝐿𝐿

15BSP (1)COMP 633 - Prins

BSP algorithm: Vector summation
• Problem: given 𝑉𝑉𝑛𝑛 distributed evenly over p processors, find s = Sum(V)

• for simplicity, assume 𝑝𝑝 = 2𝑘𝑘 and 𝑝𝑝 divides 𝑛𝑛
• let 0 ≤ 𝑗𝑗 < 𝑝𝑝 be the processor id
• initially processor 𝑗𝑗 holds 𝑟𝑟 = 𝑛𝑛/𝑝𝑝 values: 𝑉𝑉[𝑗𝑗 � 𝑟𝑟 ∶ (𝑗𝑗 + 1) � 𝑟𝑟 − 1]
• on completion, each processor holds the value of 𝑠𝑠

• Algorithm
• Superstep 1

– s := Sum (𝑉𝑉[𝑗𝑗 � 𝑟𝑟 ∶ (𝑗𝑗 + 1) � 𝑟𝑟 − 1])
– read s from proc (𝑗𝑗 + 1) mod 𝑝𝑝 into s’

• Superstep i = 2 to lg p
– s := s + s’
– read s in proc (𝑗𝑗 + 2𝑖𝑖−1) mod 𝑝𝑝 into s’

• Superstep 1+ lg p
– s := s + s’

• BSP cost

16BSP (1)COMP 633 - Prins

BSP algorithm: Vector summation
• Problem: given Vn distributed evenly over p processors, find s = Sum(V)

• for simplicity, assume p divides n
• initially processor i holds r = n/p values: V[i•r: (i+1)•r-1]
• on completion, each processor holds the value of s

• Algorithm
– Let 0 ≤ i < p be processor id

• Superstep 1 𝑤𝑤1 = 𝑛𝑛
𝑝𝑝
− 1, ℎ1 = 0

– s := Sum (V[i•r: (i+1)•r-1])
– read s in proc (i+1) mod p into s’

• Superstep j in 2 .. 1 + lg p 𝑤𝑤𝑗𝑗 = 1, ℎ𝑗𝑗 = 1
– s := s + s’
– read s in proc (i + 2j-1) mod p into s’

• BSP cost

𝐶𝐶sum 𝑛𝑛,𝑝𝑝 = �
𝑗𝑗=1

1+lg 𝑝𝑝

𝑤𝑤𝑗𝑗 + ℎ𝑗𝑗𝑔𝑔 + 𝐿𝐿 =
𝑛𝑛
𝑝𝑝
− 1 + lg 𝑝𝑝 + (1 + lg 𝑝𝑝) � 𝑔𝑔 + 𝐿𝐿

≈
𝑛𝑛
𝑝𝑝

+ (lg𝑝𝑝) � 𝑔𝑔 + 𝐿𝐿

17BSP (1)COMP 633 - Prins

BSP alternate vector summation algorithm
• Problem: given Vn distributed evenly over p processors, find s = Sum(V)

• for simplicity, assume p divides n
• initially processor i holds r = n/p values: V[i•r: (i+1)•r-1]
• on completion, each processor holds the value of s

• Algorithm

18BSP (1)COMP 633 - Prins

BSP algorithm: Matrix * Vector

• Problem: given Mnxn, Vn distributed evenly over p processors,
compute R = M•V

• for simplicity, assume p divides n
• initially each processor holds n2/p values of M, and n/p values of V
• on completion, each processor should hold n/p values of R

• BSP algorithm
– Let 0 ≤ j < p be processor id, and let r = n/p

• Superstep 1
– get elements of M from other processors so that local M’ = M[j•r: (j+1)•r-1, :]
– get elements of V from other processors so that local V’ = V

• Superstep 2
– perform local computation of R’ = M’ • V’ and observe that R’ = R[j•r: (j+1)•r-1]
– therefore each processor holds r = n/p elements of the result

• BSP cost

19BSP (1)COMP 633 - Prins

BSP algorithm: Matrix * Vector

• Problem: given Mnxn, Vn distributed evenly over p processors, compute R = M•V
• for simplicity, assume p divides n
• initially each processor holds n2/p values of M, and n/p values of V
• on completion, each processor should hold n/p values of R

• BSP algorithm
– Let 0 ≤ j < p be processor id, and let r = n/p

• Superstep 1 𝑤𝑤1 = 0, ℎ1 = 𝑛𝑛𝑛𝑛 + 𝑛𝑛
– get elements of M from other processors so that local M’ = M[j•r: (j+1)•r-1, :]
– get elements of V from other processors so that local V’ = V

• Superstep 2 𝑤𝑤2 = 2𝑛𝑛2

𝑝𝑝
, ℎ2 = 0

– perform local computation of R’ = M’ • V’ and observe that R’ = R[j•r: (j+1)•r-1]
– therefore each processor holds r = n/p elements of the result

• BSP cost
Lgn

p
n

p
npnC ⋅+⋅










++= 22),(

22
MV

20BSP (1)COMP 633 - Prins

BSP algorithm: Matrix * Matrix

• Problem: given A, B ∈ ℜnxn distributed evenly over p processors,
compute C = A•B

• assume p1/2 integral and divides n
• initially each proc holds n2/p values of A and B
• on completion, each proc should hold n2/p values of C

• BSP algorithm
– Let (i,j) in (0.. p1/2 -1, 0.. p1/2 -1) be the processor id, and let s = n/p1/2

• Superstep 1
– get elts of A from other processors so that A’ = A[i•s: (i+1)•s-1 , :]
– get elts of B from other processors so that B’ = B[: , j•s: (j+1)•s-1]

• Superstep 2
– perform local computation of C’ = A’ • B’ to compute s × s portion of C

• BSP cost

21BSP (1)COMP 633 - Prins

BSP algorithm: Matrix * Matrix

• Problem: given A, B ∈ ℜnxn distributed evenly over p procs, compute C = A•B
• assume p1/2 integral and divides n
• initially each proc holds n2/p values of A and B
• on completion, each proc should hold n2/p values of C

• BSP algorithm
– Let (i,j) in (0.. p1/2 -1, 0.. p1/2 -1) be the processor id, and let s = n/p1/2

• Superstep 1 𝑤𝑤1 = 0, ℎ1 = 2 𝑛𝑛/ 𝑝𝑝 𝑛𝑛 = 2𝑛𝑛2

𝑝𝑝

– get elts of A from other processors so that A’ = A[i•s: (i+1)•s-1 , :]
– get elts of B from other processors so that B’ = B[: , j•s: (j+1)•s-1]

• Superstep 2 𝑤𝑤1 = 2𝑛𝑛 𝑛𝑛
𝑝𝑝

2
= 2𝑛𝑛3

𝑝𝑝
, ℎ1 = 0

– perform local computation of C’ = A’ • B’ to compute s × s portion of C

• BSP cost Lg
p

n
p
npnC ⋅+⋅










+= 222),(

23
MM

22BSP (1)COMP 633 - Prins

BSP cost model: units

• Goal: architecture-independent performance analysis
– g and L are expressed in FLOPS
– h is expressed in words (8 bytes)

• g = 10 means 10 FLOPS can be performed for every word communicated

• Relating BSP cost to running time
– Tp(n,p) = s⋅C(n,p)

• parallel running time Tp(n,p)
• BSP cost C(n,p)
• s is a processor-specific constant in units of seconds per flop

– typically s = 1/(peak MFLOPS per second)
– tends to substantially underestimate true time on many machines

23BSP (1)COMP 633 - Prins

g, L, s values for some (old) machines

• Notes
• Bisection bandwidth is for the complete network and is measured in megabytes

per second
• Peak computing rate is total for p processor machine and is measured in

megaflops per second

Machine

Network
topology

pmax

Bisection
b/w B
(MB/s)

Peak
rate r

(Mflops)

g = 8r/B
(flops/wd)

L

(flops)

s

(sec/flop)
PC

bus 4 250 250p 8p 1200 4x10-9

SGI O2000 hypercube 128 250p 500p 16 800 2x10-9

Cray T3E 3D Torus 1024 600p2/3 900p 12p1/3 500 1.1x10-9

NEC SX-5 crossbar 16 64000p 8000p 1 400 0.13x10-9

		

Machine

		
Network
topology

		

pmax

		Bisection
b/w B (MB/s)

		Peak rate r (Mflops)

		
g = 8r/B

(flops/wd)

		
L
(flops)

		
s
(sec/flop)

		PC

		bus

		4

		250

		250p

		8p

		1200

		4x10-9

		SGI O2000

		hypercube

		128

		250p

		500p

		16

		800

		2x10-9

		Cray T3E

		3D Torus

		1024

		600p2/3

		900p

		12p1/3

		500

		1.1x10-9

		NEC SX-5

		crossbar

		16

		64000p

		8000p

		1

		400

		0.13x10-9

24BSP (1)COMP 633 - Prins

BSP metrics: normalized cost

• Normalized BSP cost
– ratio of BSP cost to optimal parallel execution

– work efficiency goal
• a ~ 1

– communication efficiency goal
• b << 1/g
• c << 1/L

Lcgba
pnW
pnTpnC

BSP
P

⋅+⋅+=

=
/)(

),(),(

25BSP (1)COMP 633 - Prins

More BSP metrics: asymptotic efficiency

• Recall

• Asymptotic efficiency
– work efficiency π

• also measures load-balance
• goal π close to 1

– communication overhead µ
• goal µ < 1

• Examples
– Matrix * Vector

• π = 1, µ = g/2
• highly dependent on network performance at all problem sizes

– Matrix * Matrix
• π = 1, µ = 0
• insensitive to network performance, for sufficiently large problems



















=
∑
=

∞→ pnW

w
pnc

i
i

n /)(

),(

1limπ

()


















+⋅

=
∑
=

∞→ pnW

lgh
pnc

i
i

n /)(

),(

1limµ

()∑∑
==

+⋅+=
c

i
i

c

i
i LghwpnC

11
),(

	COMP 633 - Parallel Computing��Lecture 16 �October 19, 2021�� BSP (1) �Bulk-Synchronous Processing Model
	Models of parallel computation
	Bridging model of parallel computation
	BSP - Bulk Synchronous Parallel programming model
	BSP communication cost
	Basic communication operations (1)
	Basic communication operations (2)
	Basic communication operations (3)
	Basic communication operations (4)
	Basic communication operations (5)
	Basic communication operations (6)
	Basic communication operations (7)
	BSP programs and execution model
	BSP cost
	BSP algorithm: Vector summation
	BSP algorithm: Vector summation
	BSP alternate vector summation algorithm
	BSP algorithm: Matrix * Vector
	BSP algorithm: Matrix * Vector
	BSP algorithm: Matrix * Matrix
	BSP algorithm: Matrix * Matrix
	BSP cost model: units
	g, L, s values for some (old) machines
	BSP metrics: normalized cost
	More BSP metrics: asymptotic efficiency

