BSP (1)

Bulk-Synchronous Processing Model
Models of parallel computation

- **Shared-memory model**
 - Implicit communication
 - algorithm design and analysis relatively simple
 - but implementation issues shine through
 - caches, distribution of data in memories, consistency, synchronization costs, ….
 - limits to scaling in practice

- **Distributed-memory model**
 - explicit communication (message passing)
 - design and analysis takes into account interconnection network and is complex
 - results not easily transferred to different networks

- **“Bridging” model**
 - simplified communication costs
 - balance realism with tractability of analysis
 - independent of detailed network characteristics (topology, routing, etc.)
 - cost model relies on average or “expected” network behavior
Bridging model of parallel computation

- p (processor-memory) pairs
 - p separate address spaces (distributed memory)

- Memory references
 - segregated into local and remote references
 - remote references
 - are explicit, typically in the form (proc, addr)
 - carry communication cost

- Global barrier synchronization
 - has large cost
BSP - Bulk Synchronous Parallel programming model

- BSP algorithm consists of a sequence of *supersteps*
- Superstep \(i \) consists of
 - local work: processors compute asynchronously
 - access values in local memory
 - record remote reads & writes to be performed
 - global communication
 - let \(Out^j_i \) be the set of values leaving proc \(j \) in step \(i \)
 - let \(In^j_{i+1} \) be the set of values arriving at proc \(j \) at the start of step \(i + 1 \)
 - the relation \(Out^j_i \leftrightarrow In^j_{i+1} \) over all processors specifies the communication pattern
 - global synchronization
 - ensure communication phase is complete
 - ensure memory incorporates all updates
BSP communication cost

- **Definition**
 - the *communication size* in step i (measured in 8-byte *words*) is
 \[
 h_i = \max \left(\max_{0 \leq j < p} (|Out_i^j|, |In_{i+1}^j|) \right)
 \]

 - the *communication cost* for superstep i is $h_i \cdot g + L$
 - g and L are machine-specific parameters of the cost model where
 - g (bandwidth$^{-1}$ i.e. time per word) is the per-processor full-load permeability of the network
 - L (latency) is the transit time across the network plus any additional time for barrier synchronization of the processors

```plaintext
Source Proc  | Dest Proc
0            | 0
1            | 1
2            | 2
3            | 3
```
Basic communication operations (1)

– Send n values from proc 1 to proc 3

Source Proc

Dest Proc

h =

BSP communication cost =
Basic communication operations (2)

- Exchange n values between proc 1 and proc 3

\[
h = \text{BSP communication cost} = \]

Source Proc

\[
0 \quad 1 \\
2 \quad 3
\]

Dest Proc

\[
0 \quad 1 \\
2 \quad 3
\]
Basic communication operations (3)

- Exchange \(n \) values between proc \(i \) and proc \(H(i) \) for all \(0 \leq i < p \), with \(H \) a permutation of \(0:p-1 \)

\[
\begin{array}{c|c}
\text{Source Proc} & \text{Dest Proc} \\
0 & 0 \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
\end{array}
\]

\[h = \]

BSP communication cost =
Basic communication operations (4)

– Distribute \(n = kp \) values in proc 0 over \(p \) procs. Each proc receives \(k \) values from proc 0

\[
\begin{align*}
\text{Source Proc} & : 0 \quad 1 \quad 2 \quad 3 \\
\text{Dest Proc} & : 0 \quad 1 \quad 2 \quad 3
\end{align*}
\]

\[
h = \text{BSP communication cost} =
\]
Basic communication operations (5)

– Combine $n = kp$ values into proc 0. Each proc sends k values

<table>
<thead>
<tr>
<th>Source Proc</th>
<th>Dest Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

$h = \text{BSP communication cost } = \quad$
Basic communication operations (6)

- **Total exchange** (all-to-all exchange) of \(n = kp \) values among \(p \) processors. Each processor receives \(k \) values from every other processor.

\[
\begin{array}{ccc}
\text{Source Proc} & \text{Dest Proc} \\
0 & 0 \\
0 & 1 \\
0 & 2 \\
0 & 3 \\
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
2 & 0 \\
2 & 1 \\
2 & 2 \\
2 & 3 \\
3 & 0 \\
3 & 1 \\
3 & 2 \\
3 & 3 \\
\end{array}
\]

\[
h = \text{BSP communication cost} =
\]
Basic communication operations (7)

– Broadcast n values from proc 0 to all other processors

<table>
<thead>
<tr>
<th>Source Proc</th>
<th>Dest Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\[
h = \text{BSP communication cost} = \]
BSP programming and execution model

• Basic presentation style is processor-centric
 – not like WT programs
 • explicit processor id \(j \)
 • number of processors \(p \)

• Single-Program Multiple-Datastream (SPMD) execution model
 – all processors execute same sequential program asynchronously
 – explicitly specify distribution of data over processors
 – specify supersteps
 – for each superstep specify
 • work to be performed by each processor
 • h-relation to be communicated
BSP cost

- Total cost of a BSP algorithm
 - let c be the number of supersteps
 - let p be the number of processors
 - Define
 \begin{align*}
 w_i &= \max_{0 \leq j < p} \text{ (work done in FLOPS on superstep } i \text{ by processor } j) \\
 h_i &= \max_{0 \leq j < p} \left(\max \left(\left| \text{Out}_i^j \right|, \left| \text{In}_i^{j+1} \right| \right) \right)
 \end{align*}

 - then total cost (~ running time) $C(n, p)$ of a BSP algorithm is
 \begin{align*}
 C(n, p) &= \sum_{i=1}^{c} (w_i + h_i \cdot g + L) \\
 &= \sum_{i=1}^{c} w_i + \sum_{i=1}^{c} (h_i \cdot g + L)
 \end{align*}
BSP algorithm: Vector summation

- **Problem:** given V^n distributed evenly over p processors, find $s = \text{Sum}(V)$
 - for simplicity, assume $p = 2^k$ and p divides n
 - let $0 \leq j < p$ be the processor id
 - initially processor j holds $r = n/p$ values: $V[j \cdot r : (j + 1) \cdot r - 1]$
 - on completion, each processor holds the value of s

- **Algorithm**
 - **Superstep 1**
 - $s := \text{Sum} (V[j \cdot r : (j + 1) \cdot r - 1])$
 - read s from proc $(j + 1) \mod p$ into s'
 - **Superstep $i = 2$ to $\log_2 p$**
 - $s := s + s'$
 - read s in proc $(j + 2^{i-1}) \mod p$ into s'
 - **Superstep $1 + \log_2 p$**
 - $s := s + s'$

- **BSP cost**
BSP algorithm: Matrix * Vector

- Problem: given M^{nxn}, V^n distributed evenly over p processors, compute $R = M \cdot V$
 - for simplicity, assume p divides n
 - initially each processor holds n^2/p values of M, and n/p values of V
 - on completion, each processor should hold n/p values of R

- BSP algorithm
 - Let $0 \leq j < p$ be processor id, and let $r = n/p$
 - Superstep 1
 - get elements of M from other processors so that local $M' = M[j \cdot r: (j+1) \cdot r-1, :]$
 - get elements of V from other processors so that local $V' = V$
 - Superstep 2
 - perform local computation of $R' = M' \cdot V'$ and observe that $R' = R[j \cdot r: (j+1) \cdot r-1]$
 - therefore each processor holds $r = n/p$ elements of the result

- BSP cost
BSP algorithm: Matrix * Matrix

- **Problem:** given $A, B \in \mathbb{R}^{n \times n}$ distributed evenly over p processors, compute $C = A \cdot B$
 - assume $p^{1/2}$ integral and divides n
 - initially each proc holds n^2/p values of A and B
 - on completion, each proc should hold n^2/p values of C

- **BSP algorithm**
 - Let (i,j) in $(0.. p^{1/2} - 1, 0.. p^{1/2} - 1)$ be the processor id, and let $s = n/p^{1/2}$
 - **Superstep 1**
 - get elts of A from other processors so that $A' = A[i\cdot s: (i+1)\cdot s-1, :]$
 - get elts of B from other processors so that $B' = B[:, j\cdot s: (j+1)\cdot s-1]$
 - **Superstep 2**
 - perform local computation of $C' = A' \cdot B'$ to compute $s \times s$ portion of C

- **BSP cost**
BSP cost model: units

- Goal: architecture-independent performance analysis
 - \(g \) and \(L \) are expressed in FLOPS
 - \(h \) is expressed in words (8 bytes)
 - \(g = 10 \) means 10 FLOPS can be performed for every word communicated

- Relating BSP cost to running time
 - \(T_p(n,p) = s \cdot C(n,p) \)
 - parallel running time \(T_p(n,p) \)
 - BSP cost \(C(n,p) \)
 - \(s \) is a processor-specific constant in units of seconds per flop
 - typically \(s = 1/(\text{peak MFLOPS per second}) \)
 - tends to substantially underestimate true time on many machines
BSP metrics: normalized cost

• Normalized BSP cost
 – ratio of BSP cost to optimal parallel execution

\[\overline{C}(n, p) = \frac{T_P^{BSP}(n, p)}{W(n)/p} = a + b \cdot g + c \cdot L \]

– work efficiency goal
 • \(a \approx 1 \)

– communication efficiency goal
 • \(b \ll 1/g \)
 • \(c \ll 1/L \)
More BSP metrics: asymptotic efficiency

- Recall \[C(n, p) = \sum_{i=1}^{c} w_i + \sum_{i=1}^{c} (h_i \cdot g + L) \]

- Asymptotic efficiency measures
 - work efficiency \(\pi \)
 - also measures load-balance
 - goal \(\pi \) close to 1

 - communication overhead \(\mu \)
 - goal \(\mu < 1 \)

- Examples
 - Matrix * Vector
 - \(\pi = 1, \mu = g/2 \)
 - highly dependent on network performance at all problem sizes

 - Matrix * Matrix
 - \(\pi = 1, \mu = 0 \)
 - insensitive to network performance, for sufficiently large problems