COMP 633 - Parallel Computing

Lecture 16 October 19, 2021

BSP (1) Bulk-Synchronous Processing Model

Models of parallel computation

- Shared-memory model
 - Implicit communication
 - algorithm design and analysis relatively simple
 - but implementation issues shine through
 - caches, distribution of data in memories, consistency, synchronization costs,
 - · limits to scaling in practice
- Distributed-memory model
 - explicit communication (message passing)
 - design and analysis takes into account interconnection network and is complex
 - results not easily transferred between different networks
- "Bridging" model
 - simplified communication costs
 - balance realism with tractability of analysis
 - independent of detailed network characteristics (topology, routing, etc.)
 - cost model relies on average or "expected" network behavior

Bridging model of parallel computation

• p (processor-memory) pairs

- p separate address spaces (distributed memory)
- Memory references
 - segregated into local and remote references
 - remote references
 - are explicit, typically in the form (proc, addr)
 - carry communication cost
- Global barrier synchronization
 - has large cost

BSP - Bulk Synchronous Parallel programming model

- BSP algorithm consists of a sequence of *supersteps*
- Superstep *i* consists of
 - local work: processors compute asynchronously
 - access values in local memory
 - record remote reads & writes to be performed
 - global communication
 - let Out_i^j be the set of values leaving proc j in step i
 - let In_{i+1}^{j} be the set of values arriving at proc *j* at the start of step i + 1
 - the relation $Out_i \leftrightarrow In_{i+1}$ over all processors specifies the communication pattern

proc j memory during step i

local memory

 Out_i^J

- global synchronization
 - ensure communication phase is complete
 - ensure memory incorporates all updates (consistency)

 In_{i+1}^J

BSP communication cost

Definition

- the communication size in step *i* (measured in 8-byte words) is

$$h_{i} = \max_{0 \le j < p} \left(\max \left(\left| Out_{i}^{j} \right|, \left| In_{i+1}^{j} \right| \right) \right)$$

- the *communication cost* for superstep *i* is $h_i \cdot g + L$

 g and L are machine-specific parameters of the cost model where g (bandwidth⁻¹ i.e. time per word) is the per-processor full-load permeability of the network 	Source Proc O	Dest Proc O
 L (latency) is the transit time across the network plus any additional time for barrier synchronization of the processors 	O 1	o 1
	0 2	o ₂
	0 3	• 3

Basic communication operations (1)

– Send n values from proc 1 to proc 3

BSP communication cost = $n \cdot g \neq L$

Basic communication operations (2)

– Exchange n values between proc 1 and proc 3

BSP communication cost = $n \cdot g + L$

Basic communication operations (3)

– Send n values between proc i and proc H(i) forall $0 \le i < p$, with H a permutation of 0:p-1

Basic communication operations (4)

 Distribute n = kp values in proc 0 among p procs. Each proc receives k values from proc 0

BSP communication cost = $n \cdot g + L$

Basic communication operations (5)

– Combine n = kp values into proc 0. Each proc sends k values

Basic communication operations (6)

Total exchange (all-to-all exchange) of n = kp values among p processors. Each processor receives k values from every other processor
 Source

Basic communication operations (7)

– Broadcast n values from proc 0 to all other processors

BSP programs and execution model

- Basic presentation style is processor-centric
 - not like WT programs
 - number of processors p
 - explicit processor id j
- Single-Program Multiple-Datastream (SPMD) execution model
 - all processors execute same sequential program asynchronously
 - explicitly specify distribution of data over processors
 - specify supersteps
 - for each superstep specify
 - work to be performed by each processor
 - h-relation to be communicated

BSP cost

- Total cost of a BSP algorithm
 - let c be the number of supersteps
 - let p be the number of processors
 - Define

$$w_{i} = \max_{0 \le j < p} \left(\text{work done in FLOPS on superstep } i \text{ by processor } j \right)$$
$$h_{i} = \max_{0 \le j < p} \left(\max \left(Out_{i}^{j} \middle|, \left| In_{i+1}^{j} \right| \right) \right)$$

– then total cost (~ running time) C(n, p) of a BSP algorithm is

$$C(n,p) = \sum_{i=1}^{c} (w_i + h_i \cdot g + L)$$

= $\sum_{i=1}^{c} w_i + \sum_{i=1}^{c} h_i \cdot g + c \cdot L$

BSP algorithm: Vector summation

- Problem: given Vⁿ distributed evenly over p processors, find s = Sum(V)
 - for simplicity, assume $p = 2^k$ and p divides n
 - let $0 \le j < p$ be the processor id
 - initially processor *j* holds r = n/p values: $V[j \cdot r : (j+1) \cdot r 1]$
 - on completion, each processor holds the value of *s*
- Algorithm
 - Superstep 1

$$-s := Sum (V[j \cdot r : (j+1) \cdot r - 1])$$

- read s from proc $(j + 1) \mod p$ into s'
- Superstep i = 2 to lg p
 - s := s + s'
 - read s in proc $(j + 2^{i-1}) \mod p$ into s'
- Superstep 1+ lg p

BSP cost

BSP algorithm: Vector summation

- Problem: given Vⁿ distributed evenly over p processors, find s = Sum(V)
 - for simplicity, assume p divides n
 - initially processor i holds r = n/p values: V[i•r: (i+1)•r-1]
 - on completion, each processor holds the value of s
- Algorithm
 - Let $0 \le i < p$ be processor id
 - Superstep 1

$$w_1 = \frac{n}{p} - 1, \quad h_1 = 0$$

 $w_i = 1, h_i = 1$

- s := Sum (V[i•r: (i+1)•r-1])

– read s in proc (i+1) mod p into s'

• Superstep j in 2 .. 1 + lg p

- read s in proc (i + 2^{j-1}) mod p into s'

$$\mathcal{C}^{\text{sum}}(n,p) = \sum_{j=1}^{1+\lg p} \left(w_j + h_j g + L \right) = \left(\frac{n}{p} - 1 + \lg p \right) + (1 + \lg p) \cdot (g + L)$$
$$\approx \frac{n}{p} + (\lg p) \cdot (g + L)$$

BSP alternate vector summation algorithm

- Problem: given Vⁿ distributed evenly over p processors, find s = Sum(V)
 - for simplicity, assume p divides n
 - initially processor i holds r = n/p values: V[i•r: (i+1)•r-1]
 - on completion, each processor holds the value of s
- Algorithm

BSP algorithm: Matrix * Vector

- Problem: given M^{nxn}, Vⁿ distributed evenly over p processors, compute R = M•V
 - for simplicity, assume p divides n
 - initially each processor holds n²/p values of M, and n/p values of V
 - on completion, each processor should hold n/p values of R
- BSP algorithm
 - Let $0 \le j < p$ be processor id, and let r = n/p
 - Superstep 1
 - get elements of M from other processors so that local $M' = M[j \cdot r: (j+1) \cdot r-1, :]$
 - get elements of V from other processors so that local V' = V
 - Superstep 2
 - perform local computation of $R' = M' \cdot V'$ and observe that $R' = R[j \cdot r: (j+1) \cdot r-1]$
 - therefore each processor holds r = n/p elements of the result
- BSP cost

BSP algorithm: Matrix * Vector

- Problem: given M^{nxn} , V^n distributed evenly over p processors, compute R = M•V
 - for simplicity, assume p divides n
 - initially each processor holds n²/p values of M, and n/p values of V
 - on completion, each processor should hold n/p values of R
- BSP algorithm
 - Let $0 \le j < p$ be processor id, and let r = n/p
 - Superstep 1 $| w_1 = 0, h_1 = nr + n$
 - get elements of M from other processors so that local M' = M[j•r: (j+1)•r-1, :]
 - get elements of V from other processors so that local V' = V
 - Superstep 2 $w_2 = \frac{2n^2}{n}, h_2 = 0$
- - perform local computation of $R' = M' \cdot V'$ and observe that $R' = R[j \cdot r; (j+1) \cdot r-1]$
 - therefore each processor holds r = n/p elements of the result

BSP cost

$$C^{\text{MV}}(n,p) = \frac{2n^2}{p} + \left(\frac{n^2}{p} + n\right) \cdot g + 2 \cdot L$$

BSP algorithm: Matrix * Matrix

- Problem: given A, B ∈ ℜ^{nxn} distributed evenly over p processors, compute C = A•B
 - assume p^{1/2} integral and divides n
 - initially each proc holds n²/p values of A and B
 - on completion, each proc should hold n²/p values of C
- BSP algorithm
 - Let (i,j) in (0.. $p^{1/2}$ -1, 0.. $p^{1/2}$ -1) be the processor id, and let s = n/p^{1/2}
 - Superstep 1
 - get elts of A from other processors so that A' = A[i•s: (i+1)•s-1, :]
 - get elts of B from other processors so that $B' = B[:, j \cdot s: (j+1) \cdot s-1]$
 - Superstep 2
 - perform local computation of C' = A' \cdot B' to compute s \times s portion of C
- BSP cost

BSP algorithm: Matrix * Matrix

- Problem: given A, $B \in \Re^{nxn}$ distributed evenly over p procs, compute C = A•B
 - assume p^{1/2} integral and divides n
 - initially each proc holds n²/p values of A and B
 - on completion, each proc should hold n²/p values of C
- BSP algorithm
 - Let (i,j) in (0.. $p^{1/2}$ -1, 0.. $p^{1/2}$ -1) be the processor id, and let s = $n/p^{1/2}$
 - Superstep 1 $w_1 = 0, h_1 = 2(n/\sqrt{p})n = \frac{2n^2}{\sqrt{p}}$
 - get elts of A from other processors so that A' = A[i•s: (i+1)•s-1, :]
 - get elts of B from other processors so that $B' = B[:, j \cdot s: (j+1) \cdot s-1]$

• Superstep 2 $w_1 = (2n) \left(\frac{n}{\sqrt{p}}\right)^2 = \frac{2n^3}{p}, \quad h_1 = 0$

– perform local computation of C' = A' \cdot B' to compute s \times s portion of C

BSP cost
$$C^{\text{MM}}(n,p) = \frac{2n^3}{p} + \left(\frac{2n^2}{\sqrt{p}}\right) \cdot g + 2 \cdot L$$

COMP 633 - Prins

BSP cost model: units

- Goal: architecture-independent performance analysis
 - g and L are expressed in FLOPS
 - h is expressed in words (8 bytes)
 - g = 10 means 10 FLOPS can be performed for every word communicated
- Relating BSP cost to running time
 - $-T_p(n,p) = s \cdot C(n,p)$
 - parallel running time T_p(n,p)
 - BSP cost C(n,p)
 - s is a processor-specific constant in units of seconds per flop
 - typically s = 1/(peak MFLOPS per second)
 - tends to substantially underestimate true time on many machines

g, L, s values for some (old) machines

Machine	Network topology	p _{max}	Bisection b/w B (MB/s)	Peak rate r (Mflops)	g = 8r/B (flops/wo	L I) (flops)	s (sec/flop)
PC	bus	4	250	250p	8	3p 1200	4x10 ⁻⁹
SGI 02000	hypercube	128	250p	500p	1	6 800	2x10 ⁻⁹
Cray T3E	3D Torus	1024	600p ^{2/3}	900p	12p	^{1/3} 500	1.1x10 ⁻⁹
NEC SX-5	crossbar	16	64000p	8000p		1 400	0.13x10 ⁻⁹

- Notes
 - Bisection bandwidth is for the complete network and is measured in megabytes per second
 - Peak computing rate is total for p processor machine and is measured in megaflops per second

BSP metrics: normalized cost

Normalized BSP cost

- ratio of BSP cost to optimal parallel execution

$$\overline{C}(n,p) = \frac{T_P^{BSP}(n,p)}{W(n)/p}$$
$$= a + b \cdot g + c \cdot L$$

- work efficiency goal
 - a ~ 1
- communication efficiency goal
 - b << 1/g
 - c << 1/L

More BSP metrics: asymptotic efficiency

• **Recall**
$$C(n,p) = \sum_{i=1}^{c} w_i + \sum_{i=1}^{c} (h_i \cdot g + L)$$

- Asymptotic efficiency
 - work efficiency π
 - also measures load-balance
 - goal π close to 1
 - communication overhead μ
 - goal μ < 1
- Examples
 - Matrix * Vector
 - $\pi = 1$, $\mu = g/2$
 - highly dependent on network performance at all problem sizes
 - Matrix * Matrix
 - $\pi = 1$, $\mu = 0$
 - insensitive to network performance, for sufficiently large problems

$$\mu = \lim_{n \to \infty} \begin{pmatrix} c(n,p) \\ \sum (h_i \cdot g + l) \\ \frac{i=1}{W(n)/p} \end{pmatrix}$$