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Models of parallel computation
• Shared-memory model

– Implicit communication
• algorithm design and analysis relatively simple
• but implementation issues shine through

– caches, distribution of data in memories,
consistency, synchronization costs, ….

• limits to scaling in practice

• Distributed-memory model
– explicit communication (message passing)

• design and analysis takes into account 
interconnection network and is complex

• results not easily transferred between different 
networks

• “Bridging” model
– simplified communication costs

• balance realism with tractability of analysis
• independent of detailed network characteristics (topology, routing, etc.)
• cost model relies on average or “expected” network behavior
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Bridging model of parallel computation

• p (processor-memory) pairs
– p separate address spaces (distributed memory)

• Memory references 
– segregated into local and remote references
– remote references 

• are explicit, typically in the form (proc, addr)
• carry communication cost

• Global barrier synchronization
– has large cost

Mem0
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BSP - Bulk Synchronous Parallel programming model

• BSP algorithm consists of a sequence of supersteps
• Superstep i consists of

– local work: processors compute asynchronously
• access values in local memory
• record remote reads & writes to be performed

– global communication
• let 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖

𝑗𝑗 be the set of values leaving proc 𝑗𝑗 in step 𝑖𝑖

• let 𝐼𝐼𝑛𝑛𝑖𝑖+1
𝑗𝑗 be the set of values arriving at proc 𝑗𝑗 at the start of step 𝑖𝑖 + 1

• the relation 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖 ↔ 𝐼𝐼𝑛𝑛𝑖𝑖+1 over all processors specifies the communication 
pattern

– global synchronization
• ensure communication phase is 

complete
• ensure memory incorporates all updates (consistency)

local memory j
iOut j

iIn 1+

proc j memory during step i
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BSP communication cost

• Definition
– the communication size in step 𝑖𝑖 (measured in 8-byte words) is

ℎ𝑖𝑖 = max
0≤𝑗𝑗<𝑝𝑝

max 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖
𝑗𝑗 , |𝐼𝐼𝑛𝑛𝑖𝑖+1

𝑗𝑗 |

– the communication cost for superstep 𝑖𝑖 is  ℎ𝑖𝑖 � 𝑔𝑔 + 𝐿𝐿
• g and L are machine-specific parameters 

of the cost model where 
• g (bandwidth-1 i.e. time per word) is the 

per-processor full-load permeability of the network
• L (latency) is the transit time across the 

network plus any additional time for barrier 
synchronization of the processors

0

1

2

3

0

1

2

3

Source 
Proc

Dest
Proc



6BSP (1)COMP 633  - Prins

Basic communication operations (1)

– Send n values from proc 1 to proc 3
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Basic communication operations (2)

– Exchange n values between proc 1 and proc 3
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Basic communication operations (3)

– Send n values between proc i and proc H(i) forall 0 ≤ i < p, with H a 
permutation of 0:p-1
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Basic communication operations (4)

– Distribute n = kp values in proc 0 among p procs.  Each proc receives 
k values from proc 0
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Basic communication operations (5)

– Combine n = kp values into proc 0.  Each proc sends k values
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– Total exchange (all-to-all exchange) of n = kp values among p 
processors.  Each processor receives k values from every other 
processor

Basic communication operations (6)
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Basic communication operations (7)

– Broadcast n values from proc 0 to all other processors
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BSP programs and execution model

• Basic presentation style is processor-centric
– not like WT programs

• number of processors p
• explicit processor id j

• Single-Program Multiple-Datastream (SPMD) execution model
– all processors execute same sequential program asynchronously
– explicitly specify distribution of data over processors
– specify supersteps
– for each superstep specify

• work to be performed by each processor
• h-relation to be communicated
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BSP cost

• Total cost of a BSP algorithm 
– let c be the number of supersteps
– let p be the number of processors
– Define

– then total cost (~ running time) 𝐶𝐶(𝑛𝑛,𝑝𝑝) of a BSP algorithm is

( )jiw
pj

i processor by   superstepon  FLOPSin  donework max
0 <≤

=

( )( )jj
i

pj
i i

InOuth
1

,maxmax
0 +<≤

=

𝐶𝐶 𝑛𝑛, 𝑝𝑝 = �
𝑖𝑖=1

𝑐𝑐

𝑤𝑤𝑖𝑖 + ℎ𝑖𝑖 � 𝑔𝑔 + 𝐿𝐿

= �
𝑖𝑖=1

𝑐𝑐

𝑤𝑤𝑖𝑖 + �
𝑖𝑖=1

𝑐𝑐

ℎ𝑖𝑖 � 𝑔𝑔 + 𝑐𝑐 � 𝐿𝐿
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BSP algorithm: Vector summation
• Problem: given 𝑉𝑉𝑛𝑛 distributed evenly over p processors, find s = Sum(V)

• for simplicity, assume 𝑝𝑝 = 2𝑘𝑘 and 𝑝𝑝 divides 𝑛𝑛
• let 0 ≤ 𝑗𝑗 < 𝑝𝑝 be the  processor id
• initially processor 𝑗𝑗 holds 𝑟𝑟 = 𝑛𝑛/𝑝𝑝 values:  𝑉𝑉[𝑗𝑗 � 𝑟𝑟 ∶ (𝑗𝑗 + 1) � 𝑟𝑟 − 1]
• on completion, each processor holds the value of 𝑠𝑠

• Algorithm 
• Superstep 1

– s := Sum ( 𝑉𝑉[𝑗𝑗 � 𝑟𝑟 ∶ (𝑗𝑗 + 1) � 𝑟𝑟 − 1] )
– read s from proc (𝑗𝑗 + 1) mod 𝑝𝑝 into s’

• Superstep i = 2  to lg p
– s := s + s’
– read s in proc (𝑗𝑗 + 2𝑖𝑖−1) mod 𝑝𝑝 into s’

• Superstep 1+ lg p
– s := s + s’

• BSP cost
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BSP algorithm: Vector summation
• Problem: given Vn distributed evenly over p processors, find s = Sum(V)

• for simplicity, assume p divides n
• initially processor i holds r = n/p values:  V[i•r: (i+1)•r-1]
• on completion, each processor holds the value of s

• Algorithm
– Let 0 ≤ i < p  be processor id

• Superstep 1 𝑤𝑤1 = 𝑛𝑛
𝑝𝑝
− 1, ℎ1 = 0

– s := Sum ( V[i•r: (i+1)•r-1] )
– read s in proc (i+1) mod p into s’

• Superstep j in 2 .. 1 + lg p 𝑤𝑤𝑗𝑗 = 1, ℎ𝑗𝑗 = 1
– s := s + s’
– read s in proc (i + 2j-1) mod p into s’

• BSP cost 

𝐶𝐶sum 𝑛𝑛,𝑝𝑝 = �
𝑗𝑗=1

1+lg 𝑝𝑝

𝑤𝑤𝑗𝑗 + ℎ𝑗𝑗𝑔𝑔 + 𝐿𝐿 =
𝑛𝑛
𝑝𝑝
− 1 + lg 𝑝𝑝 + (1 + lg 𝑝𝑝) � 𝑔𝑔 + 𝐿𝐿

≈
𝑛𝑛
𝑝𝑝

+ (lg𝑝𝑝) � 𝑔𝑔 + 𝐿𝐿
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BSP alternate vector summation algorithm
• Problem: given Vn distributed evenly over p processors, find s = Sum(V)

• for simplicity, assume p divides n
• initially processor i holds r = n/p values:  V[i•r: (i+1)•r-1]
• on completion, each processor holds the value of s

• Algorithm
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BSP algorithm: Matrix * Vector

• Problem: given Mnxn, Vn distributed evenly over p processors,
compute R = M•V

• for simplicity, assume p divides n
• initially each processor holds n2/p values of M, and n/p values of V
• on completion, each processor should hold n/p values of R

• BSP algorithm
– Let 0 ≤ j < p  be processor id, and let r = n/p

• Superstep 1
– get elements of M  from other processors so that local M’ = M[j•r: (j+1)•r-1,  : ] 
– get elements of V  from other processors so that local V’ = V

• Superstep 2
– perform local computation of R’ = M’ • V’  and observe that R’ = R[j•r: (j+1)•r-1]
– therefore each processor holds r = n/p elements of the result

• BSP cost
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BSP algorithm: Matrix * Vector

• Problem: given Mnxn, Vn distributed evenly over p processors, compute R = M•V
• for simplicity, assume p divides n
• initially each processor holds n2/p values of M, and n/p values of V
• on completion, each processor should hold n/p values of R

• BSP algorithm
– Let 0 ≤ j < p  be processor id, and let r = n/p

• Superstep 1 𝑤𝑤1 = 0, ℎ1 = 𝑛𝑛𝑟𝑟 + 𝑛𝑛
– get elements of M  from other processors so that local M’ = M[j•r: (j+1)•r-1,  : ] 
– get elements of V  from other processors so that local V’ = V

• Superstep 2    𝑤𝑤2 = 2𝑛𝑛2

𝑝𝑝
, ℎ2 = 0

– perform local computation of R’ = M’ • V’  and observe that R’ = R[j•r: (j+1)•r-1]
– therefore each processor holds r = n/p elements of the result

• BSP cost
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BSP algorithm: Matrix * Matrix

• Problem:  given A, B ∈ ℜnxn distributed evenly over p processors,
compute C = A•B

• assume p1/2 integral and divides n
• initially each proc holds n2/p values of A and B
• on completion, each proc should hold n2/p values of C

• BSP algorithm
– Let (i,j) in (0.. p1/2 -1, 0.. p1/2 -1) be the processor id, and let s = n/p1/2

• Superstep 1
– get elts of A from other processors so that A’ = A[i•s: (i+1)•s-1 ,  : ]
– get elts of B from other processors so that B’ = B[ : ,  j•s: (j+1)•s-1]

• Superstep 2
– perform local computation of C’ = A’ • B’ to compute s × s  portion of C

• BSP cost
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BSP algorithm: Matrix * Matrix

• Problem:  given A, B ∈ ℜnxn distributed evenly over p procs,  compute C = A•B
• assume p1/2 integral and divides n
• initially each proc holds n2/p values of A and B
• on completion, each proc should hold n2/p values of C

• BSP algorithm
– Let (i,j) in (0.. p1/2 -1, 0.. p1/2 -1) be the processor id, and let s = n/p1/2

• Superstep 1    𝑤𝑤1 = 0, ℎ1 = 2 𝑛𝑛/ 𝑝𝑝 𝑛𝑛 = 2𝑛𝑛2

𝑝𝑝

– get elts of A from other processors so that A’ = A[i•s: (i+1)•s-1 ,  : ]
– get elts of B from other processors so that B’ = B[ : ,  j•s: (j+1)•s-1]

• Superstep 2 𝑤𝑤1 = 2𝑛𝑛 𝑛𝑛
𝑝𝑝

2
= 2𝑛𝑛3

𝑝𝑝
, ℎ1 = 0

– perform local computation of C’ = A’ • B’ to compute s × s  portion of C

• BSP cost Lg
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BSP cost model: units

• Goal: architecture-independent performance analysis
– g and L are expressed in FLOPS
– h is expressed in words (8 bytes)

• g = 10 means 10 FLOPS can be performed for every word communicated

• Relating BSP cost to running time
– Tp(n,p) = s⋅C(n,p)

• parallel running time Tp(n,p)
• BSP cost C(n,p)
• s is a processor-specific constant in units of seconds per flop 

– typically s = 1/(peak MFLOPS per second)
– tends to substantially underestimate true time on many machines



23BSP (1)COMP 633  - Prins

g, L, s values for some (old) machines

• Notes
• Bisection bandwidth is for the complete network and is measured in megabytes 

per second
• Peak computing  rate is total for p processor machine and is measured in 

megaflops per second
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BSP metrics:  normalized cost

• Normalized BSP cost
– ratio of BSP cost to optimal parallel execution

– work efficiency goal
• a  ~  1

– communication efficiency goal
• b  << 1/g
• c  << 1/L
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More BSP metrics: asymptotic efficiency

• Recall

• Asymptotic efficiency
– work efficiency π

• also measures load-balance
• goal π close to 1

– communication overhead µ
• goal µ < 1

• Examples
– Matrix * Vector

• π = 1,    µ = g/2
• highly dependent on network performance at all problem sizes

– Matrix * Matrix
• π = 1,    µ = 0
• insensitive to network performance, for sufficiently large problems
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