COMP 633 - Parallel Computing

Lecture 17
Oct 26, 2021

BSP (2)
Parallel Sorting in the BSP model

Topics
1. What work remains this semester:
written assignment, programming assignment, final exam

2. Quick review of BSP

3. Sorting in BSP

Parallel sorting: problem definition

« Given
— N values, each of size b bits
— a total order < defined on the values

« Initial distribution
— each processor holdsn =N / p values

* Result
proc, proc, proc, ... proc,
Vi, Vi, Vi Vi

- Vi<V forall1<i<N=k,
— generally k; = n+i, i.e. evenly distributed across processors

N

1 — I
COMP 633 - J.F. Prins BSP (2) @

Parallel sorting: general remarks

» Typically concerned with case of N>>p
— Small N problems don’t require parallel processing
— Use algorithm cascading with efficient sequential sort of n elements

» sequential radix sort of n values has WSORT(n) = Q(bn)

» sequential comparison-based sort has WSORT(n) = Q(n Ig n) and may be more
appropriate when b is large

— Examine scalability in N and p using BSP model

» three parallel algorithms considered
+ Bitonic sort, Radix sort, Sample sort

« What is the lower bound BSP cost for sorting?

— Work bound
» (1/p) * optimal sequential work WSORT(N)
— Communication bound
» each value may have to move between processors from input to output

— BSP lower bound SORT
SORT W (N) N
Ch (N,p) = +—-g+L
% p

]
COMP 633 - J.F. Prins BSP (2) @

w

Background: Sorting networks for parallel sorting

« Basic component: the comparator module

a— — min(a,b)

b—j — max(a,b)

« Comparator modules can be connected to form a sorting network

— all inputs are presented in parallel
» ex: sorting network for 4 values

a— a: a I] ::
=X DA I B B
d d’ d I l d’

sorting network schematic representation

COMP 633 - J. F. Prins BSP (2)

Sorting networks

» Sorting networks are oblivious
— predetermined sequence of comparisons sorts any input sequence

— the depth of a comparator is the maximum number of preceding comparators
on any path to an input

» A sorting network specifies a parallel sorting algorithm

— in step i, evaluate all comparators at depth i in parallel
» each step permutes inputs to outputs (EREW)

» at most n comparators evaluated in each step
* let d(n) be the depth of a network of size n, then S(n) = d(n), W(n) = O(n-d(n))

step1 step?2 step 3

N 0
T,
S N

COMP 633 - J. F. Prins BSP (2)

Bitonic Sequence

* Definitions
— A sequence of values w is up-down if w = uv with v increasing and v decreasing
» ex: w=1359643

— A sequence of values w is bitonic if w is a circular rotation of an up-down sequence
» ex: w=5964313

N
v
N
v

COMP 633 - J. F. Prins BSP (2)

Bitonic sequence theorem

e Theorem

— Suppose w is a bitonic sequence of length 2n and we define sequences
r, s of length n as follows

I = min(Wi>Wn+i)

s; = max(w;,w,,,)

1°""n+i
then
(1) VI<i,j<n: r<s; < partitions the sorting problem !
(2) r,s areboth bitonic sequences +—— bitonic subproblems !
* Proof
(by picture)

COMP 633 - J. F. Prins BSP (2)

Bitonic merge

A bitonic sequence of length n = 2k can be sorted with a depth k sorting network
— apply bitonic sequence theorem recursively

Wo Wy W, W3 W, W; Wg Wy /\/
_ one application of

... theorem with 1 = 8

... two applications of

theorem with n = 4
/\/

four applications of
theorem with n = 2

COMP 633 - J. F. Prins BSP (2)

Bitonic Sort

« Combine two length n bitonic merge sequences to form a length 2n bitonic sequence
— given two bitonic sequences s, r of length n let
w = (bitonic merge r) ++ (reverse (bitonic merge s))
— W is a bitonic sequence of length 2n

r s /W\
n n bitonic merge r reverse

(bitonic merge s)

« Bitonic sort of n = 2k values
— view input as n/2 bitonic sequences of length 2
— combine bitonic sequences k-1 times to create a length n bitonic sequence
— apply final bitonic merge to yield sorted sequence

* ex:n=38 1 merge
of size 8
4 parallel merges 2 parallel merges /
of size 2 of size 4

COMP 633 - J. F. Prins BSP (2)

Hypercube communication pattern

« Letp=2kforsome k>0. Processors are numbered 0<h<p. Leth¥be the
jih bit in the boolean representation of h, where 1 <j < k
— ex p=8k=3 A p)
h =4 = 1 00

« For 0 <h <p, processor nb;(h) is the neighbor of processor h in dimension j.
The bits of nb(h) are specified as follows, for 1 <r<k

) h() if r=j 110 111
tnb; (W)} ‘{1_ B ifr=j / /
010 011
. 100 101
dim2[idlm3 / /
000

001

dim 1

COMP 633 - J. F. Prins BSP (2)

Bitonic sort of A[0:p-1] using p processors

« Assumptions
— p = 2k and A[h] is stored in variable a on processor h
— CE(x)y) = (min(x,y), max(x,y))

« SPMD program for processor h

for i := 1 to k do
for j := i downto 1 do
b := value of a at nb, (h) 2 supersteps
a,b := CE(a,b)
if (h® % h¢tD)) then a,b := b,a
end do
end do

* BSPcost C(p)= ¥ Y(0M)+1-g+2-L)
i=1,k j=1,i

oM +1-g+2-L) Y 1 = (O)+1-g+2-L)
=1,k j=1,i

k(k +1)

=O(lg” p)(1+g+1L)

COMP 633 - J. F. Prins BSP (2)

Extending bitonic sortto N> p

« Simulate larger parallel machine
— LetN =np where n=29and p=2kso N = 2(k+d
for i:= 1 to k+q do
for j := i downto 1 do
CE on dimension j

* BSP cost of CE on dimension j
— lower dimensions in memory, higher dimensions across processors
0, if j<
T.(n) = (n), Tj=q
/ Omn)+n-g+L, if j>q

k+q i

- BSP cost for algorithm C(N,p)= >, > .T;(N/p)
i=l j=1

:((1gN)(1+1gN)j,O(ﬂj+k§’ 5 E,g”L]

2 p i=q+1 j=g+1 p

=@(1g2N)ﬂ+®(1g2p)-£5-g+2L
p p

COMP 633 - J. F. Prins BSP (2)

Improving work-efficiency

 What can be done?
— first q iterations of outer loop create sorted sequences in processor memories

» replace with efficient localsort (O(n) radix sort is assumed here for simplicity)

— for each value i > g in outer loop, last g iterations of inner loop perform a

bitonic merge in processor memories
» replace with efficient O(n) sequential algorithm for bitonic merge (sbmerge)

« Updated program
lTocalsort(n)
for i:= g+1 to k+qg do

for j := i downto g+1 do
CE on dimension j
sbmerge(n)

. BSP cost C(N,p)=®(ﬂj+(lgp)(l+lgp ,[O(E}Lﬁ.gjLZL}LO[EJJ
D 2 p) p P

N N
:®(1g219)‘;Jr@(lgzp)'(;'ngLj

COMP 633 - J. F. Prins BSP (2)

Improving communication efficiency

« What can be done?

— combine communication for up to Ig p successive CE operations

« Updated program
Tocalsort(n)
for i:= g+1 to k+qg do
transpose(n)

(1-q) successive CE(n) on local data
transpose(n)
sbmerge(n)

« BSP cost

C(N, p) = @(Ej n (lgp)(Z(E g+ Lj +(1+Igp)- @)(Ej + @(ED
p p & g

=®<lg2p>ﬂ+®agp>-(5'g+Lj
P P

COMP 633 - J. F. Prins BSP (2)

BSP predicted and measured times for bitonic sort

Predicted Measured
80 T BO
Y 70 ‘L-___ e T
\ e e e e e i 512
B0 + AR SR e 6O T mih e
A S B Eeioe e el e 256
] - —— - 5. 50 —- |
o @ S
LI g R e s R & S s e e S R o s 128
[+ e - 0 =
® o AP P L e |G = S .
30 1 LR e e T | “
I [
20 20 1
I Sttt s
L0 10 1
0 t t 0 | } }]
-+ o w0 o = o0 L5 = @ [1=] [al] =+ @ 1]
@ w om [= o [@ oo (o] = =+ @« =
[ar] [ul (=] = (57} (V] £ = [Ty] [] -—] uwy
o o uwl - oy =t o L] o uwy — [} =+ o
- [[i=]] 1] od =5 = o] 90 o [1a] | =
- (Y] Ly (=] — [a1] Ty (=]
N/P N/P

Figure 1.4 Predicted and measured execution time per key of bitonic sort on the CM-5.

Times are shown to sort between 16K and 1M keys per processor on 32, 64, 128, 256 and 512
Processors.

BSP breakdown of time in optimized bitonic sort

Predicted Measured
80 T
B Remap B-C
| Remap C-B
z z
< = B Mergesort
N o
- = o
L | Swap
M Localsort

= o w0 ol = @ w0 =+ &0 1e] o = o w
@ w o = =+ o = W i] = =t [+] [
[y = uw =] v~ o [Ty] 4] = u [=] — o Uy
Lis) o u = ol = @ [ia] o) [T5] — (o] -+ o
e o w o o ol = = L] s} & [} (4] =
- 4] uwy =] — (3] w =]

= -

N/P N/P

Figure 1.5 Predicted and measured execution times per key on 512 processors for the
phases of bitonic sort. The time for the single gather is included in the time for the remap
from a blocked to a cyclic layout; likewise, the time for the scatter is included in the time for
the remap from a cyclic to a blocked layout.

COMP 633 - J.F. Prins BSP (2) @

16

	COMP 633 - Parallel Computing��Lecture 17 �Oct 26, 2021�� BSP (2) �Parallel Sorting in the BSP model
	Parallel sorting: problem definition
	Parallel sorting: general remarks
	Background: Sorting networks for parallel sorting
	Sorting networks
	Bitonic Sequence
	Bitonic sequence theorem
	Bitonic merge
	Bitonic Sort
	Hypercube communication pattern
	Bitonic sort of A[0:p-1] using p processors
	Extending bitonic sort to N > p
	Improving work-efficiency
	Improving communication efficiency
	BSP predicted and measured times for bitonic sort
	BSP breakdown of time in optimized bitonic sort

