
COMP 633 - Parallel Computing

Lecture 17
Oct 26, 2021

BSP (2)
Parallel Sorting in the BSP model

Topics
1. What work remains this semester:

• written assignment, programming assignment, final exam

2. Quick review of BSP

3. Sorting in BSP

2BSP (2)COMP 633 - J. F. Prins

Parallel sorting: problem definition

• Given
– N values, each of size b bits
– a total order ≤ defined on the values

• Initial distribution
– each processor holds n = N / p values

• Result
proc0 proc1 proc2 ... procp-1

V1 Vk1+1 Vk2+1 Vkp-1+1
...
Vk1

Vk2
Vk3

Vkp

– Vi ≤ Vi+1 for all 1 ≤ i < N = kp
– generally ki = n•i, i.e. evenly distributed across processors

3BSP (2)COMP 633 - J. F. Prins

Parallel sorting: general remarks
• Typically concerned with case of N >> p

– Small N problems don’t require parallel processing
– Use algorithm cascading with efficient sequential sort of n elements

» sequential radix sort of n values has WSORT(n) = Ω(bn)
» sequential comparison-based sort has WSORT(n) = Ω(n lg n) and may be more

appropriate when b is large
– Examine scalability in N and p using BSP model

» three parallel algorithms considered
• Bitonic sort, Radix sort, Sample sort

• What is the lower bound BSP cost for sorting?
– Work bound

» (1/p) * optimal sequential work WSORT(N)
– Communication bound

» each value may have to move between processors from input to output
– BSP lower bound

Lg
p
N

p

NW
pNCp +⋅+≥

)(
),(

SORT
SORT

4BSP (2)COMP 633 - J. F. Prins

Background: Sorting networks for parallel sorting
• Basic component: the comparator module

• Comparator modules can be connected to form a sorting network
– all inputs are presented in parallel

» ex: sorting network for 4 values

a

b

min(a,b)

max(a,b)

a

b

c

d

a’

b’

c’

d’

a

b

c

d

a’

b’

c’

d’

sorting network schematic representation

5BSP (2)COMP 633 - J. F. Prins

Sorting networks
• Sorting networks are oblivious

– predetermined sequence of comparisons sorts any input sequence
– the depth of a comparator is the maximum number of preceding comparators

on any path to an input

• A sorting network specifies a parallel sorting algorithm
– in step i, evaluate all comparators at depth i in parallel

» each step permutes inputs to outputs (EREW)
» at most n comparators evaluated in each step

• let d(n) be the depth of a network of size n, then S(n) = d(n), W(n) = O(n⋅d(n))

step 1 step 2 step 3
a

b

c

d

a’

b’

c’

d’

6BSP (2)COMP 633 - J. F. Prins

Bitonic Sequence
• Definitions

– A sequence of values w is up-down if w = uv with u increasing and v decreasing
» ex: w = 1 3 5 9 6 4 3

– A sequence of values w is bitonic if w is a circular rotation of an up-down sequence
» ex: w = 5 9 6 4 3 1 3

u v

u1 v u0

7BSP (2)COMP 633 - J. F. Prins

Bitonic sequence theorem
• Theorem

– Suppose w is a bitonic sequence of length 2n and we define sequences
r, s of length n as follows

then

• Proof
(by picture)

n n

2n

w

s

r

()
()inii

inii

wws
wwr

+

+

=
=

,max
,min

sequencesbitonic both are (2)
 (1)

sr

srnji ji

,

:,1 ≤≤≤∀ partitions the sorting problem !

bitonic subproblems !

8BSP (2)COMP 633 - J. F. Prins

Bitonic merge
• A bitonic sequence of length n = 2k can be sorted with a depth k sorting network

– apply bitonic sequence theorem recursively

w0 w1 w2 w3 w4 w5 w6 w7

one application of
theorem with n = 8

two applications of
theorem with n = 4

four applications of
theorem with n = 2

9BSP (2)COMP 633 - J. F. Prins

Bitonic Sort
• Combine two length n bitonic merge sequences to form a length 2n bitonic sequence

– given two bitonic sequences s, r of length n let
w = (bitonic merge r) ++ (reverse (bitonic merge s))

– w is a bitonic sequence of length 2n

• Bitonic sort of n = 2k values
– view input as n/2 bitonic sequences of length 2
– combine bitonic sequences k-1 times to create a length n bitonic sequence
– apply final bitonic merge to yield sorted sequence

• ex: n = 8

r s w

n n bitonic merge r reverse
(bitonic merge s)

4 parallel merges
of size 2

2 parallel merges
of size 4

1 merge
of size 8

10BSP (2)COMP 633 - J. F. Prins

Hypercube communication pattern

• Let p = 2k for some k ≥ 0. Processors are numbered 0 ≤ h < p. Let h(j) be the
jth bit in the boolean representation of h, where 1 ≤ j ≤ k

– ex p = 8, k = 3
h = 4 = 1 0 0

• For 0 ≤ h < p, processor nbj(h) is the neighbor of processor h in dimension j.
The bits of nbj(h) are specified as follows, for 1 ≤ r ≤ k

h(3) h(1)

0 1 0 0 1 1

0 0 0 0 0 1

1 1 0 1 1 1

1 0 0 1 0 1

dim 1

dim 3dim 2

𝑛𝑛𝑏𝑏𝑗𝑗 ℎ
(r) = � ℎ(𝑟𝑟)

1 − ℎ 𝑟𝑟
if 𝑟𝑟 ≠ 𝑗𝑗
if 𝑟𝑟 = 𝑗𝑗

11BSP (2)COMP 633 - J. F. Prins

Bitonic sort of A[0:p-1] using p processors
• Assumptions

– p = 2k and A[h] is stored in variable a on processor h
– CE(x,y) = (min(x,y), max(x,y))

• SPMD program for processor h

for i := 1 to k do
for j := i downto 1 do

b := value of a at nbj(h)
a,b := CE(a,b)
if (h(j) ≠ h(i+1)) then a,b := b,a

end do
end do

• BSP cost

2 supersteps

()

() ()

()LgpO

kkLgOLgO

LgOpC

ki ij

ki ij

++=

+
⋅+⋅+=⋅+⋅+=

⋅+⋅+=

∑ ∑

∑ ∑

= =

= =

1)(lg

2
)1(21)1(121)1(

21)1()(

2
,1 ,1

,1 ,1

12BSP (2)COMP 633 - J. F. Prins

Extending bitonic sort to N > p
• Simulate larger parallel machine

– Let 𝑁𝑁 = 𝑛𝑛𝑛𝑛 where 𝑛𝑛 = 2𝑞𝑞 and 𝑛𝑛 = 2𝑘𝑘 so 𝑁𝑁 = 2 𝑘𝑘+𝑞𝑞

for i:= 1 to k+q do

for j := i downto 1 do

CE on dimension j

• BSP cost of CE on dimension j
– lower dimensions in memory, higher dimensions across processors

• BSP cost for algorithm

>+⋅+
≤

=
qjLgnnO
qjnO

nTj if
 if

,)(
),(

)(

+⋅⋅Θ+⋅Θ=

+⋅+

⋅

 +

=

=

∑ ∑

∑ ∑

+

+= +=

+

= =

Lg
p
Np

p
NN

Lg
p
N

p
NONN

pNTpNC

qk

qi

i

qj

qk

i

i

j
j

2)(lg)(lg

2
2

)lg1)((lg

)/(),(

22

1 1

1 1

13BSP (2)COMP 633 - J. F. Prins

Improving work-efficiency
• What can be done?

– first q iterations of outer loop create sorted sequences in processor memories
» replace with efficient localsort (O(n) radix sort is assumed here for simplicity)

– for each value i > q in outer loop, last q iterations of inner loop perform a
bitonic merge in processor memories

» replace with efficient O(n) sequential algorithm for bitonic merge (sbmerge)

• Updated program
localsort(n)

for i:= q+1 to k+q do

for j := i downto q+1 do

CE on dimension j

sbmerge(n)

• BSP cost

+⋅⋅Θ+⋅Θ=

+

+⋅+

⋅

+
+

Θ=

Lg
p
Np

p
Np

p
NOLg

p
N

p
NOpp

p
NpNC

)(lg)(lg

2
2
lg1)(lg),(

22

14BSP (2)COMP 633 - J. F. Prins

Improving communication efficiency
• What can be done?

– combine communication for up to lg p successive CE operations

• Updated program
localsort(n)

for i:= q+1 to k+q do

transpose(n)

(i-q) successive CE(n) on local data

transpose(n)

sbmerge(n)

• BSP cost

+⋅⋅Θ+⋅Θ=

Θ+

Θ⋅++

+⋅+

Θ=

Lg
p
Np

p
Np

p
N

p
NpLg

p
Np

p
NpNC

)(lg)(lg

)lg1(2)(lg),(

2

15BSP (2)COMP 633 - J. F. Prins

BSP predicted and measured times for bitonic sort

16BSP (2)COMP 633 - J. F. Prins

BSP breakdown of time in optimized bitonic sort

	COMP 633 - Parallel Computing��Lecture 17 �Oct 26, 2021�� BSP (2) �Parallel Sorting in the BSP model
	Parallel sorting: problem definition
	Parallel sorting: general remarks
	Background: Sorting networks for parallel sorting
	Sorting networks
	Bitonic Sequence
	Bitonic sequence theorem
	Bitonic merge
	Bitonic Sort
	Hypercube communication pattern
	Bitonic sort of A[0:p-1] using p processors
	Extending bitonic sort to N > p
	Improving work-efficiency
	Improving communication efficiency
	BSP predicted and measured times for bitonic sort
	BSP breakdown of time in optimized bitonic sort

