BSP (3)
Parallel Sorting in the BSP model (contd)

• Reading
 – Skillicorn, Hill, McColl
 » Questions and Answers about BSP (pp 1-25)

• Programming assignment pa2
 – online
Recall PRAM radix sort (02-pram1, Aug 13, slide 31)

Auxiliary: FL[1:n], FH[1:n], BL[1:n], BH[1:n]

for h := 0 to b-1 do
 forall i in 1:n do
 FL[i] := (A[i] bit h) == 0
 FH[i] := (A[i] bit h) != 0
 enddo
 BL := PACK(A,FL)
 BH := PACK(A,FH)
 m := #BL
 forall i in 1:n do
 A[i] := if (i ≤ m) then BL[i] else BH[i–m]endif
 enddo
enddo

S(n) = O(b lg n)
W(n) = O(bn)
Sequential radix sort

Input: A[0 : N-1], with b-bit elements
Radix \(s = 2^r \), \(r \geq 1 \)

Result: A[0 : N-1] in sorted order

```plaintext
for d := 1 to [b/r] do
    -- construct histogram T[0 : s-1] of digit values in digit position d of A[0 : N-1]
    T[0:s-1] := 0
    for j := 0 to N-1 do
        T[digit in position d of A[j]]++
    end do

    -- cumulative histogram W[0 : s-1]
    W[0:s-1] := exclusive_scan(T[0:s-1], +)

    -- construct permutation H[0 : N-1] that sorts A[0 : N-1] into increasing order in digit position d
    for j := 0 to N-1 do
    end do

    -- permute A[0 : N-1]
end do
```

Complexity: \(T_s(N) = \left\lfloor \frac{b}{r} \right\rfloor \left(O(2^r) + O(N) \right) \)
Parallel radix sort

- For each digit position \(d \) from least to most significant
 - use sequential algorithm to compute local histogram \(T^{(j)}[0:s-1] \) for digit position \(d \) at each processor \(1 \leq j \leq p \)
 - construct cumulative histogram defined as
 \[
 W^{(j)}[i] = \sum_{j' = 1}^{j-1} \sum_{i' = 0}^{p} T^{(j')}[i'] + \sum_{j' = 1}^{j-1} T^{(j')}[i]
 \]
 - use \(W^{(j)} \) to determine the local portion of permutation \(H \) at each processor \(1 \leq j \leq p \)
 and apply permutation in parallel to rearrange \(A \)

- Example
 - \(N = 20 \), \(p = 4 \), \(N/p = 5 \), \(b = 2 \), \(r = 2 \), \(s = 2r = 4 \)
 - \(A = [3, 1, 0, 1, 3, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 1, 3, 2, 2] \)
 - \(H = [17, 5, 0, 6, 18, 8, 1, 2, 9, 3, 10, 11, 12, 13, 14, 4, 7, 19, 15, 16] \)

<table>
<thead>
<tr>
<th>(T^{(j)}[i])</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(W^{(j)}[i])</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>01</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>
Parallel computation of cumulative histogram

- **Two alternatives**

 1. Perform exclusive parallel prefix-sums across the s successive rows of T
 - Each sum starts with the ending value on the previous row
 - Total BSP cost: $s \cdot (2 \log p) \cdot (1 + g + L)$

 2. Multiscan method
 - Partition digits $0..s-1$ into p contiguous intervals of size $k = s/p$ and construct $T_{(i)}[ik: (i+1)k - 1]$ for i in $0..p-1$
 - Transpose T across processors
 - BSP cost: $s(1 + g + L)$
 - Compute local sum, one parallel prefix sum across processors, followed by a local prefix sum
 - BSP cost: $2s + (\log p)(1 + g + L)$
 - Transpose result to yield $W_{(i)}[ik: (i+1)k - 1]$ for i in $0..p-1$
 - BSP cost: $s(1 + g + L)$
 - Total BSP cost: $(4s + \log p) \cdot (1 + g + L)$
 - Superior when $p > 2$
Example of multiscan

- **Problem parameters**
 - \(N = 20, \ p = 4, \ \frac{N}{p} = 5 \) and \(r = 2, \ s = 2r = 4 \)
 - \(A = [3, 1, 0, 1, 3, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 1, 3, 2, 2] \)

 \(\leftarrow \frac{N}{p} \rightarrow \)

 - 4 processors →

 - # of 0: 1 3 0 1
 - # of 1: 2 0 0 1
 - # of 2: 0 2 5 2
 - # of 3: 2 0 0 1

 input: local histogram – count of occurrences of each “digit” 0 .. 3 within each processor’s local section of \(A \) (\(\frac{N}{p} = 5 \))

 \(\rightarrow \) (1) transpose

 \(1 \ 2 \ 0 \ 2 \)

 \(3 \ 0 \ 2 \ 0 \)

 \(0 \ 0 \ 5 \ 0 \)

 \(1 \ 1 \ 2 \ 1 \)

 \(5 \ 3 \ 9 \ 3 \)

 \(5 \ 8 \ 17 \ 20 \)

 memory

 (2) local sum

 \(\rightarrow \) (3) global excl prefix sum

 COMP 633 - Prins

 BSP (3) Sorting
Multiscan example (contd)

- **Problem parameters**
 - \(N = 20, p = 4, \frac{N}{p} = 5 \) and \(r = 2, s = 2^r = 4 \)
 - \(A = [3, 1, 0, 1, 3, 2, 0, 0, 2, 0, 2, 2, 2, 2, 2, 0, 1, 3, 2, 2] \)

![Diagram depicting problem parameters and operations.](image)

- 4 processors

 ![Memory](image)

 - (4) Local exclusive prefix sum

 ![Memory](image)

 - (5) Transpose

 Cumulative histogram \(W^{(i)}[j] \) – the destination index of the first occurrence of digit \(i \) held within processor \(j \)
Parallel radix sort - Analysis

- **Algorithm**
 - ⌈b/r⌉ iterations
 - each iteration (s = 2^r) (using multiscan)
 - construct histogram \(O(N/p + s) \)
 - transpose histograms \(s \cdot g + L \)
 - local sum \(O(s) \)
 - global prefix sum \((\lg p)(1 + g + L) \)
 - local prefix sum \(O(s) \)
 - transpose cumulative histogram \(s \cdot g + L \)
 - compute destinations \(O(N/p) \)
 - permute values \(O((N/p)(b/64))g + L \)

- **BSP cost (b = 64)**

\[
C^{RADIX}(N, p, r) = \left\lceil \frac{b}{r} \right\rceil \Theta \left(\frac{N}{p} + 2^r \right) + \left\lceil \frac{b}{r} \right\rceil \left(\frac{N}{p} + 2^r \right) \cdot g + \left\lceil \frac{b}{r} \right\rceil (\lg p) \cdot L
\]

- **How to find optimum choice of radix r?**
 - r small means \(N/p \) dominates \(2^r \)
 - r large means \(b/r \) is small
Figure 1.10 Predicted and measured execution time per key of radix sort on the CM-5.
Breakdown of radix sort running times

Figure 1.11 Predicted and measured execution times per key of various phases in radix sort on 512 processors.
Probabilistic sorting algorithms

• Definitions
 – An unordered collection H with N disjoint values is \textit{partitioned by splitters} $S = S_1 < ... < S_{p-1}$ into p disjoint subsets $H_1 \ldots H_p$ such that

 $$H_i = \{h \mid h \in H \text{ and } S_{i-1} \leq h < S_i\} \quad (\text{define } S_0 = -\infty, \text{ and } S_p = +\infty)$$

 – The \textit{skew} $W(S)$ of a partition S is the ratio of the maximum partition size to the optimal partition size (N/p)

 $$W(S) = \max_{1 \leq i \leq p} \left(\frac{|H_i|}{N/p} \right)$$
Determining good splitters through sampling

- Determining a set of splitters through sampling
 - sample $k \cdot p$ elements at random from H
 - $k \geq 1$ is the oversampling ratio
 - sort this sample into order $b_1 < b_2 < \ldots < b_{k \cdot p}$ and choose $S_i = b_{k \cdot i}$

- Probabilistic bounds on $W(S)$ of a sampled set of splitters S
 - given some maximum skew W and a failure probability $0 < r < 1$

 $\Pr(W(S) > W) \leq r \quad \text{when} \quad k \geq \frac{2 \ln (p/r)}{(1 - 1/W)^2 W}$ (provided $p > 1, \ W > 1.3$)

 - if we oversample sufficiently in choosing a set of splitters, the chance of a large skew can be made arbitrarily small
Oversampling ratio k as a function of p

- **Example**
 - for $p = 100$ processors, we need to sample $k = 4 \ln (p/r) = 74$ values per processor to bound the skew $W(S) < 2$ with failure probability $r = 10^{-6}$
Parallel samplesort

- **Algorithm**
 1. sample k values at random in each processor to limit skew to W w.h.p.

 \[O(k) \]
 2. sort kp sampled keys, extract p-1 splitters, and broadcast to all processors

 a) by sending all samples to one processor and performing a local sort

 \[O(kp) + (k+2)p \cdot g + 2 \cdot L \]

 a) by performing a bitonic sort with k values per processor

 \[O(k \lg^2 p) + k(1+2 \lg p) \cdot g + (1+\lg p) \cdot L \]
 3. compute destination processor for each value by binary search in splitter set

 \[O(N/p \lg p) \]
 4. permute values

 \[WN/p \cdot g + L \]
 5. perform local sort of values in each processor

 \[O(Ts(WN/p)) \]

- **BSP cost**

 \[C^{SAMPLE}(N, p, W) = \Theta(W + \lg p)\left(\frac{N}{p}\right) + W\left(\frac{N}{p}\right) \cdot g + (\lg p) \cdot L \]

 \[+ O(k \lg p)(\lg p \cdot g + L) \]
Samplesort: predicted and measured times

Figure 1.12 Estimated and measured execution time of parallel sample sort on the CM-5.
Samplesort: breakdown of execution time

Figure 1.13 Estimated and measured execution times of various phase of parallel sample sort on 512 processors.
Parallel sorting: performance summary

- 32 bit values
 - for small N/p (not shown), bitonic sort is superior

![Graph showing performance of different sorting algorithms](image)

Figure 1.14 Estimated execution time of four parallel sorting algorithms under LogP with the performance characteristics of the CM-5.
Samplesort issues

- **Implementing the permutation**
 - What is the destination address of a given value? Two strategies:
 - Send-to-queue operation
 - don’t care, maintain queue at destination
 - Compute unique destination for each value
 - planning cost: $O(p) + 2pg + 2L$
 - In what order should the values be sent?
 - Global rearrangement defines a permutation, but piecewise implementation may yield poor performance
Samplesort issues

• How to handle duplicate keys
 – make each key unique
 » (key, original index)
 • increases comparison cost and network traffic
 – random choice of possible destinations
 » suppose p = 5 and splitters are
 10, 20, 20, 30
 where should we send key 20?

• What about restoring load balance?
 – Worst-case communication cost?
Two-phase sample sort

Objectives
- scramble input data to create a random permutation
- highly supersample input to minimize skew

- Randomly distribute keys into \(p \) buckets
- Transpose buckets and processors
 - expected bucket size \(\frac{N}{p^2} \)
- Local sort
- Proc 1 selects and broadcasts splitters
 - oversampling ratio \(k = \frac{N}{p^2} \)
- Partition local keys into sorted sections according to splitters
 - expected bucket size \(\frac{N}{p^2} \)
- Transpose sorted sections and processors
- Local p-way merge
Two-phase samplesort

1. Randomly distribute local keys into \(p \) local buckets

2. Transpose buckets and processors

3. Local sort

4. Processor 1 selects \((p-1)\) splitters

5. Broadcast splitters

6. Local partitioning of values into \(p \) sorted sections

7. Transpose sorted sections and processors

8. Local \(p \)-way merge of sorted sections

\[
C^{2ph}(N, p) = O\left(\frac{N}{p} \lg N\right) + 2\left(\frac{N}{p}\right) \cdot g + L \\
+ O(p \lg \left(\frac{N}{p}\right)) + 2p \cdot g + 3 \cdot L
\]