COMP 633 - Parallel Computing

Lecture 18
November 9, 2017

BSP (3)
Parallel Sorting in the BSP model (contd)

• Reading
 – Skillicorn, Hill, McColl
 » Questions and Answers about BSP (pp 1-25)
Sequential radix sort

Input: A[0 : N-1], with b-bit elements
Radix s = 2^r, r ≥ 1

Result: A[0 : N-1] in sorted order

```
for d := 1 to \left\lceil \frac{b}{r} \right\rceil do
    -- construct histogram T[0 : s-1] of digit values in digit position d of A[0 : N-1]
    T[0:s-1] := 0
    for j := 0 to N-1 do  T[digit in position d of A[j]]++  end do

    -- cumulative histogram W[0 : s-1]
    W[0:s-1] := exclusive_scan(T[0:s-1], +)

    -- construct permutation H[0 : N-1] that sorts A[0 : N-1] into increasing order in digit position d
    for j := 0 to N-1 do  H[j] := W[digit in position d of A[j]]++  end do

    -- permute A[0 : N-1]
end do
```

Complexity:
\[T_s(N) = \left\lceil \frac{b}{r} \right\rceil \left(O(2^r) + O(N) \right) \]
Parallel radix sort

• Idea
 – use sequential algorithm to compute local histogram \(T^{(j)}[0:s-1] \) at each processor \(1 \leq j \leq p \)
 – construct cumulative histogram defined as
 \[
 W^{(j)}[i] = \left(\sum_{i'=0}^{i-1} \sum_{j'=1}^{p} T^{(j')}[i'] \right) + \sum_{j'=1}^{j-1} T^{(j')}[i]
 \]
 – use sequential algorithm to compute local portion of of permutation at each processor \(1 \leq j \leq p \) and apply permutation in parallel

• Example
 – \(N = 20, p = 4, N/p = 5 \), \(b = 2, r = 2, s = 2^r = 4 \)
 – \(A = [3, 1, 0, 1, 3, 2, 0, 0, 2, 0, 2, 2, 2, 2, 0, 1, 3, 2, 2] \)
 – \(H = [17, 5, 0, 6, 18, 8, 1, 2, 9, 3, 10, 11, 12, 13, 14, 4, 7, 19, 15, 16] \)

<table>
<thead>
<tr>
<th>(T^{(j)}[i])</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(W^{(j)}[i])</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>01</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>
Parallel radix sort

- Parallel computation of cumulative histogram – two alternatives
 1. Use s successive parallel prefix operations
 - BSP cost $(s \lg p) (1 + g + L)$
 2. Transpose $T^{(i)}[j]$, use 2-pass prefix sum algorithm, and transpose back
 - BSP cost $(2s) (1 + g) + 2L + (\lg p) (1 + g + L)$

![Diagram showing the process]

- (1) total_exchange
- (2) local sum
- (3) global pfx sum
- (4) local pfx sum
- (5) total_exchange
Parallel radix sort - Analysis

- **Algorithm**
 - $\lceil b/r \rceil$ iterations
 - each iteration ($s = 2^r$)
 - construct histogram $O(N/p + s)$
 - transpose histograms $sg + L$
 - local sum $O(s)$
 - global prefix sum $(\lg p)(1 + g + L)$
 - local prefix sum $O(s)$
 - transpose cumulative histogram $sg + L$
 - compute destinations $O(N/p)$
 - permute values $O((N/p)(b/64))g + L$
 - **BSP cost ($b = 64$)**
 \[
 C^{RADIX}(N, p, r) = \left\lceil \frac{b}{r} \right\rceil \Theta\left(\frac{N}{p} + 2^r\right) + \left\lceil \frac{b}{r} \right\rceil \left(\frac{N}{p} + 2^r\right) \cdot g + \left\lceil \frac{b}{r} \right\rceil (\lg p) \cdot L
 \]
- **How to find optimum choice of radix r?**
 - r small means N/p dominates 2^r
 - r large means b/r is small
Predicted and measured times for radix sort

Figure 1.10 Predicted and measured execution time per key of radix sort on the CM-5.
Breakdown of radix sort running times

Figure 1.11 Predicted and measured execution times per key of various phases in radix sort on 512 processors.
Probabilistic sorting algorithms

• Definitions
 – An unordered collection H with N disjoint values is partitioned by splitters $S = S_1 < ... < S_{p-1}$ into p disjoint subsets $H_1 ... H_p$ such that

 \[H_i = \{ h \mid h \in H \text{ and } S_{i-1} \leq h < S_i \} \]
 (define $S_0 = -\infty$, and $S_p = +\infty$)

 – The skew $W(S)$ of a partition S is the ratio of the maximum partition size to the optimal partition size (N/p)

 \[W(S) = \max_{1 \leq i \leq p} \left(\frac{|H_i|}{N/p} \right) \]
Determining good splitters through sampling

- Determining a set of splitters through sampling
 - sample $k \cdot p$ elements at random from H
 - $k \geq 1$ is the oversampling ratio
 - sort this sample into order $b_1 < b_2 < \ldots < b_{k \cdot p}$ and choose $S_i = b_{k \cdot i}$

- Probabilistic bounds on $W(S)$ of a sampled set of splitters S
 - given some maximum skew W and a failure probability $0 < r < 1$
 \[
 \Pr(W(S) > W) \leq r \quad \text{when} \quad k \geq \frac{2 \ln(p / r)}{(1 - 1/W)^2 W} \quad \text{(provided} \quad p > 1, \quad W > 1.3)\]

 - so if we oversample sufficiently in choosing a set of splitters, the chance of a large skew can be made arbitrarily small
Oversampling ratio k as a function of p

- Example
 - for $p = 100$ processors, we need to sample $k = 4 \ln (p/r) = 74$ values per processor to bound the skew $W(S) < 2$ with failure probability $r = 10^{-6}$
Parallel samplesort

- **Algorithm**
 1. sample k values at random in each processor to limit skew to W w.h.p.
 \(O(k) \)
 2. sort kp sampled keys, extract p-1 splitters, and broadcast to all processors
 a) by sending all samples to one processor and performing a local sort
 \(O(kp) + (k+2)p \cdot g + 2 \cdot L \)
 a) by performing a bitonic sort with k values per processor
 \(O(k \lg^2 p) + k(1+2 \lg p) \cdot g + (1+\lg p) \cdot L \)
 3. compute destination processor for each value by binary search in splitter set
 \(O(N/p \lg p) \)
 4. permute values
 \(WN/p \cdot g + L \)
 5. perform local sort of values in each processor
 \(O(Ts(WN/p)) \)

- **BSP cost**

\[
C^{\text{SAMPLE}}(N, p, W) = \Theta(Wb + \lg p)\left(\frac{N}{p}\right) + W\left(\frac{N}{p}\right) \cdot g + (\lg p) \cdot L \\
+ O(k(W)\lg p)(\lg p \cdot g + L)
\]
Samplesort: predicted and measured times

Figure 1.12 Estimated and measured execution time of parallel sample sort on the CM-5.
Samplesort: breakdown of execution time

Figure 1.13 *Estimated and measured execution times of various phase of parallel sample sort on 512 processors.*
Parallel sorting: performance summary

- 32 bit values
 - for small N/p (not shown), bitonic sort is superior

Figure 1.14 Estimated execution time of four parallel sorting algorithms under LogP with the performance characteristics of the CM-5.
Samplesort issues

- **Implementing the permutation**
 - What is the destination address of a given value? Two strategies:
 - Send-to-queue operation
 - don’t care, maintain queue at destination
 - Compute unique destination for each value
 - planning cost: $O(p) + 2pg + 2L$

- In what order should the values be sent?
 - Global rearrangement defines a permutation, but piecewise implementation may yield poor performance
Samplesort issues

- **How to handle duplicate keys**
 - make each key unique
 - (key, original index)
 - increases comparison cost and network traffic
 - random choice of possible destinations
 - suppose p = 5 and splitters are
 - 10, 20, 20, 30
 - where should we send key 20?

- **What about restoring load balance?**
 - Worst-case communication cost?
Two-phase sample sort

- **Objectives**
 - scramble input data to create a random permutation
 - highly supersample input to minimize skew

```
» Randomly distribute keys into p buckets
» Transpose buckets and processors
  • expected bucket size N/p^2
» Local sort
» Proc 1 selects and broadcasts splitters
  • oversampling ratio k = N/p^2

» Partition local keys into sorted sections according to splitters
  • expected bucket size N/p^2
» Transpose sorted sections and processors
» Local p-way merge
```
Two-phase samplesort

1. Randomly distribute local keys into p local buckets

2. Transpose buckets and processors

3. Local sort

4. Processor 1 selects $(p-1)$ splitters

5. Broadcast splitters

6. Local partitioning of values into p sorted sections

7. Transpose sorted sections and processors

8. Local p-way merge of sorted sections

$$C^{2\text{ph}}(N, p) = O\left(\frac{N}{p} \log N\right) + 2\left(\frac{N}{p}\right) \cdot g + L + O(p \log \left(\frac{N}{p}\right)) + 2p \cdot g + 3 \cdot L$$