COMP 633 - Parallel Computing

Lecture 19
November 2-4, 2021

MPI:. Message Passing Interface

« Skim

— B. Barney (LLNL)
» MPI tutorial and reference

Topics

« Optimal BSP matrix multiply

« Short overview of basic issues in message passing

 MPI: A message-passing interface for distributed-memory parallel
programming

» Collective communication operations

COMP 633 - J.F. Prins MPI

Exercise

* The version of matrix product we developed had BSP cost

3 2
™ (n, p) = 2% + [MJ-g + 2-L

Jp

- The BSP Q & A paper suggests this can be improved to

3 2
MM 2n n
P

e How?

COMP 633 - Prins BSP (3) Sorting

Basic Interprocess Communication

« Basic building block

— message passing: send and receive operations between processes (address
spaces)

process P1 process P2

%send m to P2
I

receive x from P1

How will this really be performed?

COMP 633 - J.F. Prins MPI

Synchronous Message Passing

« Communication upon synchronization
— Hoare’s Communicating Sequential Processes (1978)

« BLOCKING send and receive operations
— unbuffered communication

— several steps in protocol
» synchronization, data movement, completion

— delays participating processes

COMP 633 - J.F. Prins MPI

Asynchronous Message Passing

 Buffered communication

— send/receive via OS-maintained buffers
» e.g. pipes or TCP connections
» may increase concurrency (e.g. producer/consumer)
» may increase transit time

— send operation
» send operation completes when message is completely copied to buffer
» generally non-blocking but will block if buffer is full

— receive operation — two flavors

» BLOCKING
* receive operation completes when message has been delivered

» NON-BLOCKING

* receive operation provides location for message
+ notified when receive complete (via flag or interrupt)

COMP 633 - J.F. Prins MPI

Asynchronous Message Passing

process P1

- (09)
. Buffering

Esend m to P2 —»

(0S)
Buffering e
process P2

—|' receive x from P1

COMP 633 - J.F. Prins MPI

Deadlock in message passing

« Can concurrent execution of P1 and P2 lead to deadlock?
— assuming synchronous message passing?
— assuming asynchronous message passing?

process P1 process P2
%send m1 to P2 %send m2 to P1
greceive y from P2 _receive x from P1

COMP 633 - J.F. Prins MPI

Non-determinism in Message Passing

* |In what order should the receive operations be performed?

Two producers One consumer

..

' process P1

process P3

gsend m1 to P3

. receive x from ?

.. . receive y from ?
process P2 ’

§send m2 to P3
Here we want

receive x from any process

S-o.coo.c‘o..co..co..co..co..c-o.coo.c‘o..‘o..co..co..co..c'o.c-o.cno.c‘o..co..co§ receive y‘ from any_proce S S

COMP 633 - J.F. Prins MPI

Safe communication

* MPI has four pairwise message passing modes

— Synchronous
» unbuffered, but all send-receive pairs must synchronize

— Buffered (asynchronous)
» Programmer supplies (sufficient) buffer space

— Ready
» Receiver guaranteed to be ready to receive at the time of the send

— “Standard”
» OS Buffered for small messages, synchronous for large messages

* Most programs rely on a certain amount of buffering in communication
— SPMD programming models: send, then receive
— Nondeterminacy: receive from left, receive from right

* Most programs use standard model
— Dangerous, as buffer size is system-dependent

COMP 633 - J.F. Prins MPI

Destination naming

How are messages addressed to their receiver?

— Static process to processor mapping
» Fixed set of processes at compile time
» mapper statically assigns processes to processors at run time.
» Ex: Communicating Sequential Processes (CSP)

— Semi-dynamic process to processor mapping (SPMD)
» Unknown set of processes at compile time
» Fixed set of processes at run time
» fixed mapping over execution lifetime
» Ex: MPI communicators

— Dynamic process to processor mapping
» Unknown set of processes at compile time
» Processes may be created or moved dynamically at run time
» Communication requires lookup
» MPI-2

COMP 633 - J.F. Prins MPI

11

Data Representation

In general, prefer to send an abstract data type (ADT) rather than single
elements

— ADTs represent abstractions suited to program

— higher performance can be obtained for large messages
» e.g. aggregate data types

How are components of an ADT combined together?

— data marshalling
» packing components into a send buffer

How is a message represented as a sequence of bits?

— encoding must be suitable for source and destination
» XDR (eXternal Data Representation)

How is a message disassembled into an ADT?

— data unmarshalling
» extracting components from a receive buffer

COMP 633 - J.F. Prins MPI

Message Selection

* Receiving process may need to receive message from multiple potential
senders

— How to specify/distinguish message to be received?
» sender selection (socket, MPI, CSP)
» message data type selection (MPI, CSP)
» condition selection (CSP)
» message “tag” (MPI)

— specification of message to be received can decrease nondeterminacy
» Non-deterministic reception order requires care with blocking sends/receives

1 — I
COMP 633 - J. F. Prins MPI @ 13

Message Passing Interface (MPI)

« A library of communication operations for distributed-memory parallel programming
— history
» TCP/IP,, PVM (1990), MPI (1994), MPI-2 (1997), MPI-3 (2012)

— programming model
» SPMD - single program with library calls

— MPI functionality
» send/receive, synchronization, collective communication
» MPI specifies 129 procedures
» widely implemented and generally efficient

» MPI 2 adds one-sided communication, dynamic processes, parallel I/O and more
* One-sided communication: remote direct memory access — good for BSP.
» Over 15 years from full specification to correct and (generally) efficient implementations
» MPI-3
* Tweaks and shared memory segments between MPI processes

NA

— portability
» MPI is the most portable parallel programming paradigm — it runs on
» shared and distributed memory machines
* homogeneous and heterogeneous systems
* variety of interconnection networks

» BUT functional portability # performance portability !

COMP 633 - J.F. Prins MPI

MPI Example (C + MPI)

#include <mpi.h>
main(int argc, char **argv) {
int nproc, myid;

MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &nproc);
MPI_Comm_rank (MPI_COMM_WORLD, &myid);

printf("Hello world! Here 1is process %d of %d.\n",
myid, nproc);

MPI_Finalize ();

COMP 633 - J.F. Prins MPI

MPI return codes

#include <mpi.h>

#include <stdio.h>

#include <err.h>

main(int argc, char **argv) {
int nproc, myid, ierr;

ierr = MPI_Init(&argc, &argv);
if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Init\n", ierr);

ierr = MPI_Comm_size (MPI_COMM_WORLD, &nproc);
if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Comm_size\n", ierr);

ierr = MPI_Comm_rank (MPI_COMM_WORLD, &myid);
if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Comm_rank\n", ierr);

printf("Hello world! Here is process %d of %d.\n", myid, nproc);

ierr = MPI_Finalize();
if (ierr !'= MPI_SUCCESS) err(4, "Error %d in mpi_finalize\n", ierr);

COMP 633 - J.F. Prins MPI

Point-to-point communication

« Specification of message to receive

» communicator — identifies logical set of processors
* intracommunicator vs. intercommunicator

» sending process rank (= proc id)
» tag

— details of received message via status parameter
» wildcard specifications may result in non-deterministic programs

» Type Specification
— must provide types of transmitted values

» predefined types & user-defined types
» implicit conversions in heterogeneous* systems

* Protocol specification

— send

» blocking / non-blocking / repeated / ...
» standard / buffered / synchronous / “ready”

COMP 633 - J.F. Prins MPI

19

Simple message exchange

 no deadlock

Addr of data to send

« two sequential transfers

Number of elements

#define MYTAG 123 Element type

#define WORLD ME

_COMM MORLD

Destination rank

Process 0:

MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD);
MPI_Recv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD);

Process 1:

MPI_Recv(B, 100, MPI_DOUBLE, 0O, MYTAG, WORLD);
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD);

COMP 633 - J.F. Prins MPI

Non-blocking message exchange

 no deadlock

 possibility of concurrent transfer

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI_Request request,;
MPI_Status status,

Process 0:

MPI_Irecv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD, &request);
MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD);
MPI_wait(&request, &status);

Process 1:

MPI_Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &request);
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD);
MPI_wait(&request, &status);

COMP 633 - J.F. Prins MPI

Overlapping communication and computation

Process 0 and 1:

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI_Request requests[2];
MPI_Status statuses[2];

// p 1s process id of the partner in a pairwise exchange

MPI_Irecv(B, 100, MPI_DOUBLE, p, O, WORLD, &request[1l]);
MPI_Isend(A, 100, MPI_DOUBLE, p, O, WORLD, &request[0]);

.... do some useful work here

MPI_waitall(2, requests, statuses);

* no deadlock
e concurrent transfer

« communication and computation may be overlapped on some machines
— requires hardware communication support

COMP 633 - J.F. Prins MPI

Communicators

MPI_COMM_WORLD is a communicator
— group of processes numbered O ... p-1
— set of logical communication channels between them

Message sent with one communicator cannot be received in another
communicator

— all communication is intra-communicator
— enables development of safe libraries
— restricting communication to subgroups is useful

Creating new communicators
— duplication
— splitting

Intercommunicators
— orchestrate communication between two different communicators

COMP 633 - J.F. Prins MPI

Collective Communication

« Operations involve all processes in an (intra)communicator

— encapsulate important communication patterns (cf. BSP)
» broadcast
» total exchange (transpose)
» reduction + scan
» barrier

— operations do not necessarily imply a barrier synchronization

» however, all processes must issue the same collective communication operations
in the same order

» Type specification
— predefined or user-defined types
— predefined or user-defined associative operation for reduction & scan

« Distinguished process
— for broadcast or reduction operations

1 — I
COMP 633 - J. F. Prins MPI @ 24

Collective communication operations

» classified by
— source of values
» one/all processor(s)

— target of result

» one/all processors(s)
— operation

» broadcast

» exchange

» accumulate (reduce)

— size of values
» 1orn

» duality of communication operations
— communication patterns are related
— broadcast & reduction are duals
— exchange is its own dual

COMP 633 - J.F. Prins MPI

Ex:

source target

e

one-to-all broadcast (1)

7

operation

|

size of value

Broadcast: single source, single value

Processors —»

Processors —»

é AO AO AO AO

Memory Memory

one-to-all broadcast (1) A,

MPI Bcast(..l..)

Processors —»

Processors —»

e Aol |Bo] |Co] [Po

MPI Reduce (..1..) temory Memory

all-to-one sum (1) R,

COMP 633 - J.F. Prins MPI

Broadcast: single source, multiple values

Processors —»

Processors —»

one-to-all broadcast (n) Ao Aof [Aof [Aof |A0
Memory A Memory Al A [A] (A

MPI Bcast (..n..)
- A, Axl A2 [A2] |A2
L 1As Lo 1As] |As] |As] [As
Processors —» Processors —»
R Ayl |Bol |Co| |D
all-to-one sum (n) 2 D d =/
Memory R Memory Aq] |B4] |C4] [Ps
MPI Reduce (..n..) R, Al [8,] [c,] [o,
v R, v Azl |Bs| |Cs] [Ds

R,=A ®B,&C, D,

COMP 633 - J.F. Prins MPI

Broadcast: multiple source, single value

Processors —» Processors —»

all-to-all broadcast (1) Al |B,| |c,| |D, Aol 1A 1Al |A,

MPI Allgather (.n..) "em¥ Memory

Processors —»

all-to-all sum (1) Ro| [R4] [Rz] |Rs o> Aol |Bo] |Cof [Do

MPI Reduce scatter (..n..)

R,=A ®B,&C, D,

COMP 633 - J.F. Prins MPI

Exchange: single source or single target

« One-to-all exchange (n)
MPI Scatter(..)

« All-to-one exchange (1)
MPI Gather(..)

Processors — Processors —

Ao scatter Rof [Ad] [Af [As
E>
Memory A Memory
A2 l
gather
\ 4 A3 A\ 4

COMP 633 - J.F. Prins MPI

Exchange: multiple source, multiple values

- all-to-all exchange (n)
MPI Alltoall (..)

— BSP “total exchange” or transpose

Processors — Processors —

E>
alltoall
Az| |B2]| [C2] [D: +—— Co| |C4] [C2] [Cs

COMP 633 - J.F. Prins MPI

Reductions: multiple source, multiple values

Processors —»

Processors —»

Ry
Ao| [Bo] |Co] |Po R,=A, ®B,;®C,®D,
Memory R,
Memory Aqf [B4] [C4] [Ps
R,
A [B] [c4] [D >
\ 4 R3
L 1As] |Bs| |Cs) |Ds

@ all-to-one sum (n)
@M \ MPI Reduce (..n..)

Processors —»

Processors —»

R,| [R,| [R,| [Rs R,| |R,| [Rs] IR,

Memory Memory

all-to-all sum (1) all-to-all sum (n)
MPI Reduce scatter (..n..) MPI Allreduce (..n..)

COMP 633 - J.F. Prins MPI

	COMP 633 - Parallel Computing��Lecture 19�November 2-4, 2021�� MPI: Message Passing Interface
	Topics
	Exercise
	Basic Interprocess Communication
	Synchronous Message Passing
	Asynchronous Message Passing
	Asynchronous Message Passing
	Deadlock in message passing
	Non-determinism in Message Passing
	Safe communication
	Destination naming
	Data Representation
	Message Selection
	Message Passing Interface (MPI)
	MPI Example (C + MPI)
	MPI return codes
	Point-to-point communication
	Simple message exchange
	Non-blocking message exchange
	Overlapping communication and computation
	Communicators
	Collective Communication
	Collective communication operations
	Broadcast: single source, single value
	Broadcast: single source, multiple values
	Broadcast: multiple source, single value
	Exchange: single source or single target
	Exchange: multiple source, multiple values
	Reductions: multiple source, multiple values

