
COMP 633 - Parallel Computing

Lecture 19
November 2-4, 2021

MPI: Message Passing Interface

• Skim
– B. Barney (LLNL)

» MPI tutorial and reference

2MPICOMP 633 - J. F. Prins

Topics
• Optimal BSP matrix multiply

• Short overview of basic issues in message passing

• MPI: A message-passing interface for distributed-memory parallel
programming

• Collective communication operations

3BSP (3) SortingCOMP 633 - Prins

Exercise
• The version of matrix product we developed had BSP cost

• The BSP Q & A paper suggests this can be improved to

• How?

Lg
p

n
p
npnT MM

P ⋅+⋅









+= 222),(

23

LOg
p
nO

p
npnT MM

P ⋅+⋅









+=)1(2),(3/2

23

4MPICOMP 633 - J. F. Prins

Basic Interprocess Communication
• Basic building block

– message passing: send and receive operations between processes (address
spaces)

process P1

. . .

send m to P2

. . .

process P2

. . .

receive x from P1

. . .

How will this really be performed?

5MPICOMP 633 - J. F. Prins

Synchronous Message Passing
• Communication upon synchronization

– Hoare’s Communicating Sequential Processes (1978)

• BLOCKING send and receive operations
– unbuffered communication
– several steps in protocol

» synchronization, data movement, completion
– delays participating processes

process P1

. . .

send m to P2

. . .

process P2

. . .

receive x from P1

. . .

6MPICOMP 633 - J. F. Prins

Asynchronous Message Passing
• Buffered communication

– send/receive via OS-maintained buffers
» e.g. pipes or TCP connections
» may increase concurrency (e.g. producer/consumer)
» may increase transit time

– send operation
» send operation completes when message is completely copied to buffer
» generally non-blocking but will block if buffer is full

– receive operation – two flavors
» BLOCKING

• receive operation completes when message has been delivered
» NON-BLOCKING

• receive operation provides location for message
• notified when receive complete (via flag or interrupt)

7MPICOMP 633 - J. F. Prins

Asynchronous Message Passing

process P1

. . .

send m to P2

. . .

process P2

. . .

receive x from P1

. . .

(OS)
Buffering

(OS)
Buffering

8MPICOMP 633 - J. F. Prins

Deadlock in message passing
• Can concurrent execution of P1 and P2 lead to deadlock?

– assuming synchronous message passing?
– assuming asynchronous message passing?

process P2

. . .

send m2 to P1

receive x from P1

. . .

process P1

. . .

send m1 to P2

receive y from P2

. . .

9MPICOMP 633 - J. F. Prins

Non-determinism in Message Passing

process P1

. . .

send m1 to P3

. . .

process P2

. . .

send m2 to P3

. . .

process P3

. . .

receive x from ?

. . .

receive y from ?

. . .

• In what order should the receive operations be performed?

Here we want
receive x from any_process
receive y from any_process

Two producers One consumer

10MPICOMP 633 - J. F. Prins

Safe communication
• MPI has four pairwise message passing modes

– Synchronous
» unbuffered, but all send-receive pairs must synchronize

– Buffered (asynchronous)
» Programmer supplies (sufficient) buffer space

– Ready
» Receiver guaranteed to be ready to receive at the time of the send

– “Standard”
» OS Buffered for small messages, synchronous for large messages

• Most programs rely on a certain amount of buffering in communication
– SPMD programming models: send, then receive
– Nondeterminacy: receive from left, receive from right

• Most programs use standard model
– Dangerous, as buffer size is system-dependent

11MPICOMP 633 - J. F. Prins

Destination naming
• How are messages addressed to their receiver?

– Static process to processor mapping
» Fixed set of processes at compile time
» mapper statically assigns processes to processors at run time.
» Ex: Communicating Sequential Processes (CSP)

– Semi-dynamic process to processor mapping (SPMD)
» Unknown set of processes at compile time
» Fixed set of processes at run time
» fixed mapping over execution lifetime
» Ex: MPI communicators

– Dynamic process to processor mapping
» Unknown set of processes at compile time
» Processes may be created or moved dynamically at run time
» Communication requires lookup
» MPI-2

12MPICOMP 633 - J. F. Prins

Data Representation
• In general, prefer to send an abstract data type (ADT) rather than single

elements
– ADTs represent abstractions suited to program
– higher performance can be obtained for large messages

» e.g. aggregate data types

• How are components of an ADT combined together?
– data marshalling

» packing components into a send buffer

• How is a message represented as a sequence of bits?
– encoding must be suitable for source and destination

» XDR (eXternal Data Representation)

• How is a message disassembled into an ADT?
– data unmarshalling

» extracting components from a receive buffer

13MPICOMP 633 - J. F. Prins

Message Selection
• Receiving process may need to receive message from multiple potential

senders

– How to specify/distinguish message to be received?
» sender selection (socket, MPI, CSP)
» message data type selection (MPI, CSP)
» condition selection (CSP)
» message “tag” (MPI)

– specification of message to be received can decrease nondeterminacy
» Non-deterministic reception order requires care with blocking sends/receives

14MPICOMP 633 - J. F. Prins

Message Passing Interface (MPI)
• A library of communication operations for distributed-memory parallel programming

– history
» TCP/IP, …., PVM (1990), MPI (1994), MPI-2 (1997), MPI-3 (2012)

– programming model
» SPMD - single program with library calls

– MPI functionality
» send/receive, synchronization, collective communication
» MPI specifies 129 procedures

• widely implemented and generally efficient
» MPI 2 adds one-sided communication, dynamic processes, parallel I/O and more

• One-sided communication: remote direct memory access – good for BSP.
• Over 15 years from full specification to correct and (generally) efficient implementations

» MPI-3
• Tweaks and shared memory segments between MPI processes

– portability
» MPI is the most portable parallel programming paradigm – it runs on

• shared and distributed memory machines
• homogeneous and heterogeneous systems
• variety of interconnection networks

» BUT functional portability ≠ performance portability !

15MPICOMP 633 - J. F. Prins

MPI Example (C + MPI)
#include <mpi.h>

main(int argc, char **argv) {

int nproc, myid;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &nproc);

MPI_Comm_rank (MPI_COMM_WORLD, &myid);

printf("Hello World! Here is process %d of %d.\n",

myid, nproc);

MPI_Finalize ();

}

16MPICOMP 633 - J. F. Prins

MPI return codes
#include <mpi.h>

#include <stdio.h>

#include <err.h>

main(int argc, char **argv) {

int nproc, myid, ierr;

ierr = MPI_Init(&argc, &argv);

if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Init\n", ierr);

ierr = MPI_Comm_size (MPI_COMM_WORLD, &nproc);

if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Comm_size\n", ierr);

ierr = MPI_Comm_rank (MPI_COMM_WORLD, &myid);

if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Comm_rank\n", ierr);

printf("Hello World! Here is process %d of %d.\n", myid, nproc);

ierr = MPI_Finalize();

if (ierr != MPI_SUCCESS) err(4, "Error %d in mpi_finalize\n", ierr);

}

19MPICOMP 633 - J. F. Prins

Point-to-point communication
• Specification of message to receive

» communicator – identifies logical set of processors
• intracommunicator vs. intercommunicator

» sending process rank (= proc id)
» tag

– details of received message via status parameter
» wildcard specifications may result in non-deterministic programs

• Type Specification
– must provide types of transmitted values

» predefined types & user-defined types
» implicit conversions in heterogeneous* systems

• Protocol specification
– send

» blocking / non-blocking / repeated / …
• standard / buffered / synchronous / “ready”

20

• no deadlock

• two sequential transfers

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

Process 0:

MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD);
MPI_Recv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD);

Process 1:

MPI_Recv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD);
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD);

MPICOMP 633 - J. F. Prins

Simple message exchange

Addr of data to send

Number of elements

Element type

Destination rank

21MPICOMP 633 - J. F. Prins

Non-blocking message exchange
• no deadlock

• possibility of concurrent transfer
#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI_Request request;
MPI_Status status;

Process 0:

MPI_Irecv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD, &request);
MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD);
MPI_Wait(&request, &status);

Process 1:

MPI_Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &request);
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD);
MPI_Wait(&request, &status);

22MPICOMP 633 - J. F. Prins

Overlapping communication and computation
Process 0 and 1:

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI_Request requests[2];
MPI_Status statuses[2];

// p is process id of the partner in a pairwise exchange

MPI_Irecv(B, 100, MPI_DOUBLE, p, 0, WORLD, &request[1]);
MPI_Isend(A, 100, MPI_DOUBLE, p, 0, WORLD, &request[0]);

.... do some useful work here

MPI_Waitall(2, requests, statuses);

• no deadlock

• concurrent transfer

• communication and computation may be overlapped on some machines
– requires hardware communication support

23MPICOMP 633 - J. F. Prins

Communicators
• MPI_COMM_WORLD is a communicator

– group of processes numbered 0 ... p-1
– set of logical communication channels between them

• Message sent with one communicator cannot be received in another
communicator

– all communication is intra-communicator
– enables development of safe libraries
– restricting communication to subgroups is useful

• Creating new communicators
– duplication
– splitting

• Intercommunicators
– orchestrate communication between two different communicators

24MPICOMP 633 - J. F. Prins

Collective Communication
• Operations involve all processes in an (intra)communicator

– encapsulate important communication patterns (cf. BSP)
» broadcast
» total exchange (transpose)
» reduction + scan
» barrier

– operations do not necessarily imply a barrier synchronization
» however, all processes must issue the same collective communication operations

in the same order

• Type specification
– predefined or user-defined types
– predefined or user-defined associative operation for reduction & scan

• Distinguished process
– for broadcast or reduction operations

25MPICOMP 633 - J. F. Prins

Collective communication operations
• classified by

– source of values
» one/all processor(s)

– target of result
» one/all processors(s)

– operation
» broadcast
» exchange
» accumulate (reduce)

– size of values
» 1 or n

• duality of communication operations
– communication patterns are related
– broadcast & reduction are duals
– exchange is its own dual

Ex:
one-to-all broadcast (1)

source target

operation size of value

26MPICOMP 633 - J. F. Prins

Broadcast: single source, single value

Processors

Memory

R0

Processors

Memory

A0 B0 C0 D0

Processors

Memory

A0

Processors

Memory

A0 A0 A0 A0
one-to-all broadcast (1)

MPI_Bcast(…1…)

all-to-one sum (1)

MPI_Reduce(…1…)

R0 = A0 ⊕ B0 ⊕ C0 ⊕ D0

⊕

27MPICOMP 633 - J. F. Prins

Processors

Memory

A0 A0 A0 A0

A1 A1 A1 A1

A2 A2 A2 A2

A3 A3 A3 A3

Processors

Memory

A0

A1

A2

A3

Broadcast: single source, multiple values

Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Processors

Memory

R0

R1

R2

R3

⊕

Ri = Ai ⊕ Bi ⊕ Ci ⊕ Di

one-to-all broadcast (n)

MPI_Bcast(…n…)

all-to-one sum (n)

MPI_Reduce(…n…)

28MPICOMP 633 - J. F. Prins

Broadcast: multiple source, single value

⊕

Ri = Ai ⊕ Bi ⊕ Ci ⊕ Di

all-to-all broadcast (1)

MPI_Allgather(…n…)

all-to-all sum (1)

MPI_Reduce_scatter(…n…)

Processors

Memory

A0 A0 A0 A0

B0 B0 B0 B0

C0 C0 C0 C0

D0 D0 D0 D0

Processors

Memory

A0 B0 C0 D0

Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Processors

Memory

R0 R1 R2 R3

29MPICOMP 633 - J. F. Prins

Exchange: single source or single target
• One-to-all exchange (n)

MPI_Scatter(…)

• All-to-one exchange (1)
MPI_Gather(…)

Processors

Memory

A0 A1 A2 A3

Processors

Memory

A0

A1

A2

A3

scatter

gather

30MPICOMP 633 - J. F. Prins

Exchange: multiple source, multiple values
• all-to-all exchange (n)

MPI_Alltoall(…)

– BSP “total exchange” or transpose

Processors

Memory

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

alltoall

31MPICOMP 633 - J. F. Prins

Reductions: multiple source, multiple values
Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Processors

Memory

R0

R1

R2

R3

⊕

Ri = Ai ⊕ Bi ⊕ Ci ⊕ Di

all-to-one sum (n)
MPI_Reduce(…n…)

all-to-all sum (1)
MPI_Reduce_scatter(…n…)

Processors

Memory

R0 R1 R2 R3

Processors

Memory

R0 R0 R0 R0

R1 R1 R1 R1

R2 R2 R2 R2

R3 R3 R3 R3

all-to-all sum (n)
MPI_Allreduce(…n…)

⊕
⊕

	COMP 633 - Parallel Computing��Lecture 19�November 2-4, 2021�� MPI: Message Passing Interface
	Topics
	Exercise
	Basic Interprocess Communication
	Synchronous Message Passing
	Asynchronous Message Passing
	Asynchronous Message Passing
	Deadlock in message passing
	Non-determinism in Message Passing
	Safe communication
	Destination naming
	Data Representation
	Message Selection
	Message Passing Interface (MPI)
	MPI Example (C + MPI)
	MPI return codes
	Point-to-point communication
	Simple message exchange
	Non-blocking message exchange
	Overlapping communication and computation
	Communicators
	Collective Communication
	Collective communication operations
	Broadcast: single source, single value
	Broadcast: single source, multiple values
	Broadcast: multiple source, single value
	Exchange: single source or single target
	Exchange: multiple source, multiple values
	Reductions: multiple source, multiple values

