

- Reading
 - Kumar et al., Basic Communication Operations
- PA2
 - Please choose your project by this Friday

Topics

- Interconnection networks for parallel processors
 - components
 - characteristics
 - network models
- Analysis of networks
 - diameter
 - bisection bandwidth
 - degree
 - cost
 - example networks
- Simple cost measures for communication
 - store-and-forward model
 - cut-through model

Kinds of networks

- Wide-area networks (WAN)
 - telephone, internet
- Local-area networks (LAN)
 - ethernet, wireless 802.11x
- System-level networks
 - processor to processor
 - (processor to memory)

These networks differ in sclability, assumptions, cost

– Primary focus in this course is system-level networks

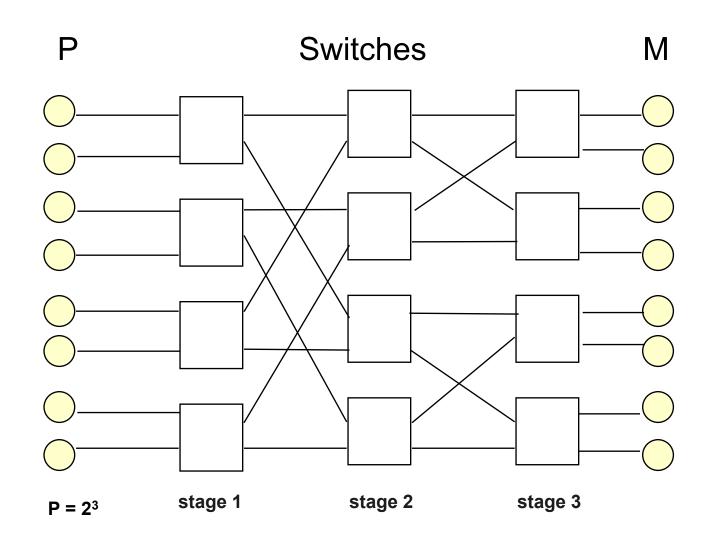
Components of a network

- clusters
 - each processor has a dedicated network interface
- switches
 - k inputs, m outputs, $m \ge k$
 - simplest: k = m = 2
- Iinks
 - characteristic bandwidth

(# parallel bits per link) • (signaling rate)

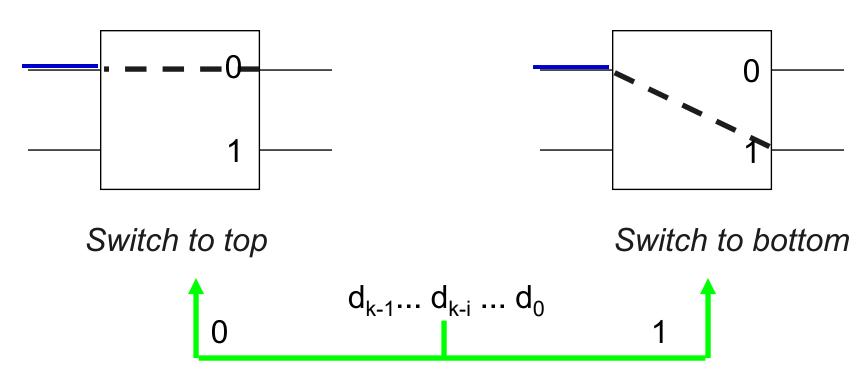
Four characteristics of networks

- Network topology
 - physical interconnection structure of network
 - analogy: Roadmap showing interstates
- Routing algorithm
 - rules that specify which routes a message may follow
 - analogy: To go from Durham to DC, take I-85N to I-95N to I-495
- Switching Strategy
 - determines how a message traverses a route
 - analogy: Presidential convoy reserves entire route in advance, while a group of travelers in separate cars make individual switching decisions
- Flow control
 - determines when a message makes progress
 - analogy: Traffic signals and rules: two cars cannot occupy the same location at the same time


Network topology

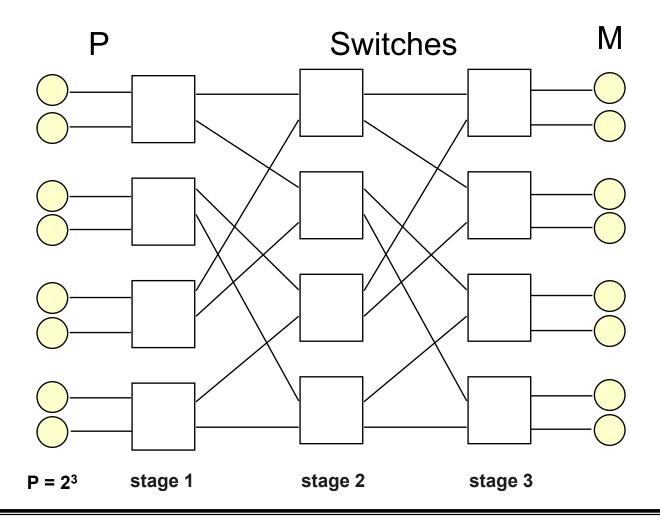
- Connected undirected graph G = (N, C)
 - N = set of nodes
 - C = set of channels (bidirectional links)
- Indirect network (switching fabric)
 - contains switch nodes without an attached processor or memory
 - switching nodes do not generate traffic
 - typical case in modern networks
- Direct network
 - every node can be a producer and/or consumer of messages
 - no pure switching nodes

Indirect networks


- Processor to memory interconnect in shared-memory machines
- Connect p processors to p memory banks
 - Example: bus
 - $\Theta(p)$ switches
 - simultaneous references always serialize
 - Example: crossbar
 - $\Theta(p^2)$ switches
 - simultaneous references in disjoint banks serviced in parallel
 - Example: multistage network
 - Θ(p lg p) switches and links
 - $\Theta(\lg p)$ stages of $\Theta(p)$ switches each
 - simultaneous reference of disjoint memories may be serialized
 - contention within the network

Multistage Butterfly indirect network (*p* = 8)

Routing in butterfly networks


- based on destination address
 - destination address $d_{k-1} \dots d_0$
 - in stage i, switch setting is determined by d_{k-i}
 - switch to top or bottom

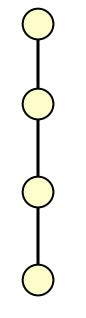
Multistage Omega network (*p* = 8)

• Isomorphic to butterfly network

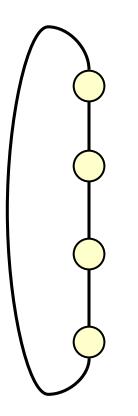
- same "perfect shuffle" connection pattern between successive stages

Network Topology: Graph-theoretic measures

• Diameter: Maximum length of shortest path between any pair of nodes

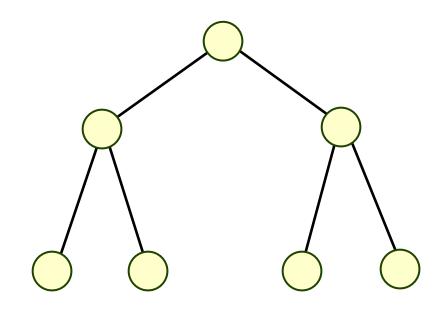

$$\max_{u,v\in N} \left(\min_{u\to v\in C^*} |u\to v| \right)$$

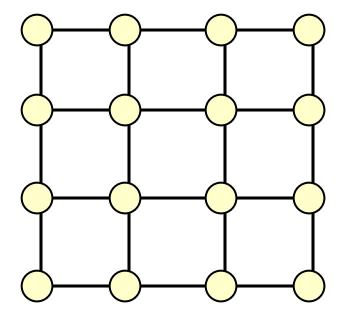
- i.e. distance between maximally separated nodes - related to latency


- Bisection width: Minimum number of edges crossing approximately equal bipartition of nodes
 - related to bandwidth with full applied load
 - a scalable network has bisection width $\Omega(p)$
- Degree: number of edges (links) per node (switch)
 - related to cost and switch complexity
 - fixed degree is simpler and more scalable
- Cost: number of wires
 - length of wires and wiring regularity is also an issue

Linear array

- |C| = p-1
- Diameter = p-1
- Degree ≤ 2
- Bisection width = 1

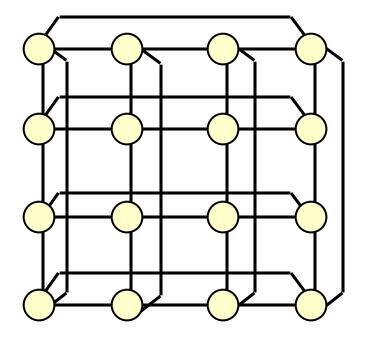



- |C| = p
- Diameter = p/2
- Degree = 2
- Bisection width = 2

Binary Tree

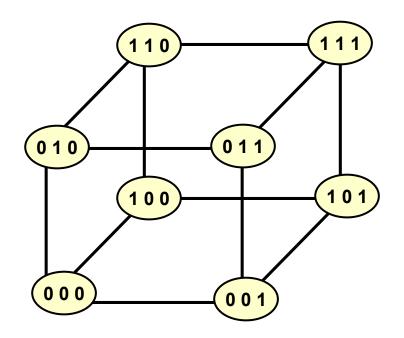
- |C| = p 1
- Diameter = 2 lg p
- Degree ≤ 3
- Bisection width = 1

d-dimensional mesh

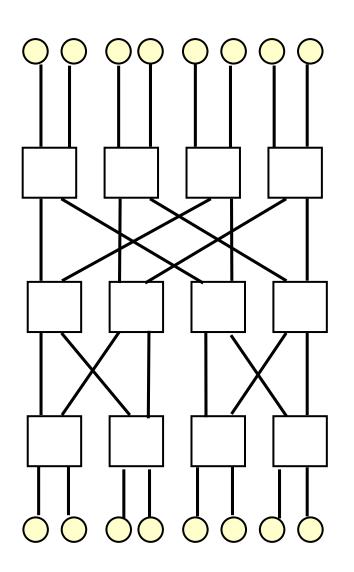

- $p = k^d$
 - Cartesian product of *d* linear arrays with $k = p^{1/d}$ nodes each

• |C| < 2dp

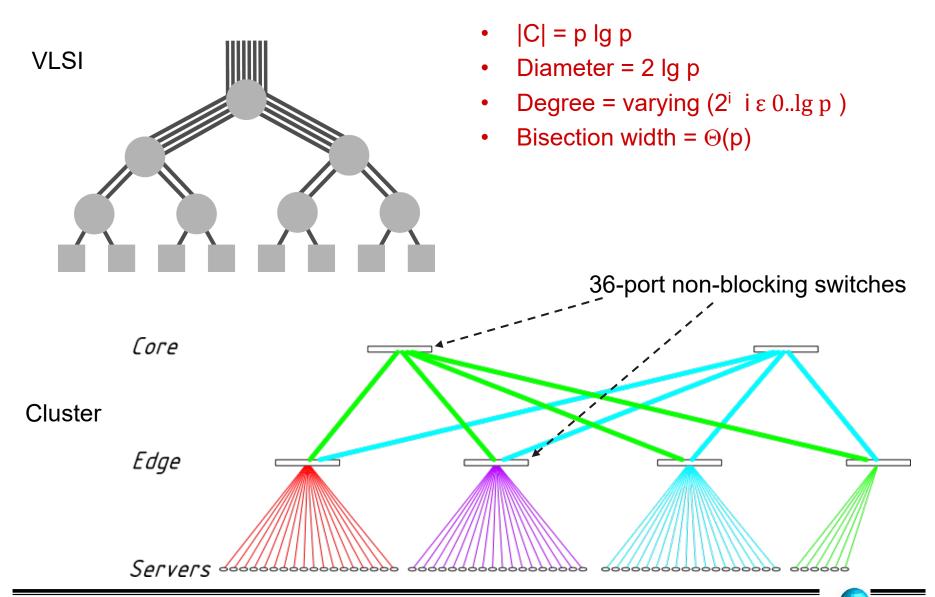
- short wires when $d \leq 3$
- Diameter = $dp^{1/d}$
- $d \le Degree \le 2d$
- Bisection width = $p^{(1-1/d)}$


$$-2\text{-D mesh}, d=2$$
$$\sqrt{p} \times \sqrt{p}$$

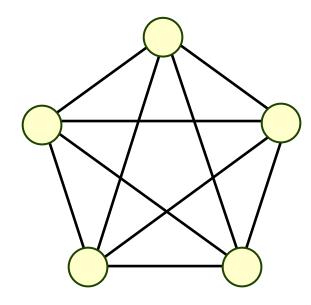
k-ary d-cubes

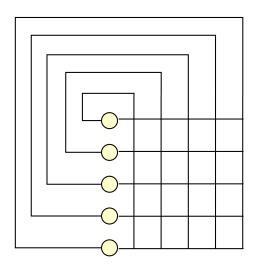

- $p = k^d$
 - Cartesian product of d rings with $k = p^{1/d}$ nodes each
- $|C| = 2dp = 2dk^d$
- Diameter = $dp^{1/d}/2$
- Degree = 2*d*
- Bisection width = $2 p^{(1-1/d)} = 2k^{d-1}$
 - Ring: *p*-ary 1-cube
 - 2-D Torus: \sqrt{p} ary 2 cube
 - 3-D Torus: $\sqrt[3]{p}$ ary 3 cube
 - Hypercube: 2-ary (lg p)-cube

(Boolean) Hypercube


- $|C| = p \lg p$
- Diameter = $\lg p$
- Degree = $\lg p$
- Bisection width = $\Theta(p)$

Butterfly (Indirect)




- |C| = p lg p
- Diameter = lg p
- Degree = 2
- "Bisection" width (congestion)
 - There are some bad permutations $\Theta(p^{1/2})$
 - Overwhelming majority have bisection of $\Theta(p)$

Fat-tree (Indirect)

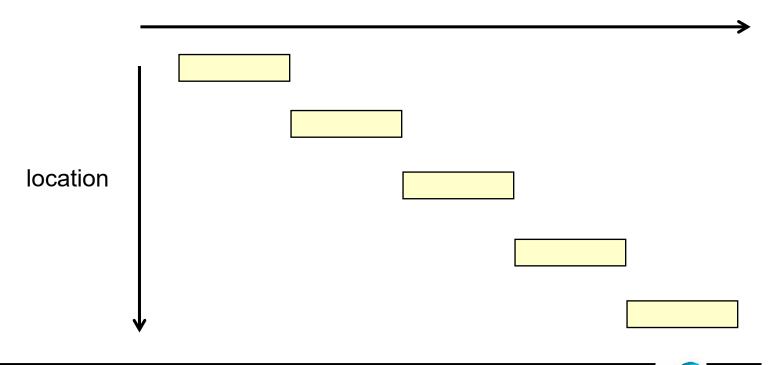
Crossbar

- Complete graph on p nodes
- |C| = p(p-1)/2
- Diameter = 1
- Degree = p-1
- Bisection width = $p^2/4$

Networks in current parallel computers

- Modern interconnects are indirect
 - Hardware routing between source and destination
- Indirect networks
 - Cluster of commodity nodes
 - Fat-tree (assembled using 36 port non-blocking switches)
 - IBM Summit (ORNL)
 - Fat-tree Infiniband [4,608 nodes] (24,000 GPU, 202,752 cores)
 - Fujitsu Fugaku
 - 6D torus [160,000 nodes k-ary d-cube, ? k~7 d=6] (3M+ cores)
- Processor memory interconnects (p procs, m memories)
 - Tera MTA
 - 3D torus (p = 256, m = 4,096)
 - NEC SX-9
 - crossbar (p = 16 procs * 16 channels/proc = 256, m = 8,192)

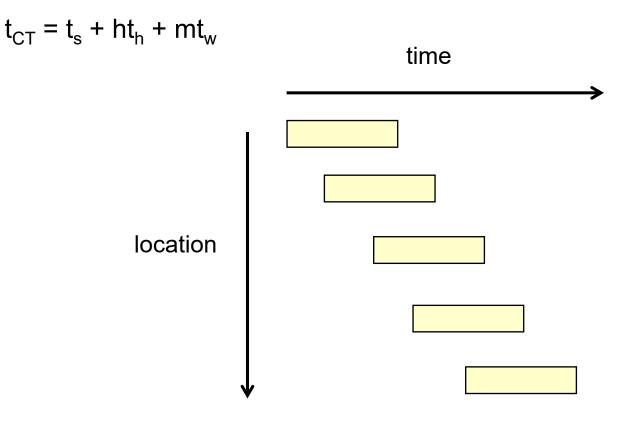
Routing and flow control


- System-level networks
 - Tradeoffs are very different than WAN (TCP)
 - use flow control instead of dropping packets
 - mostly static routing instead of dynamic routing
 - Routing algorithm
 - prescribes a unique path from source to destination
 - e.g. dimension ordered routing on hypercube and lower dimensional d-cubes
 - some networks dynamically "misroute" if a needed link is unavailable
 - routing can be store-and-forward or cut-through
 - Flow control
 - contention for output links in a switch can block progress
 - · generally low-latency per-link flow control is used
 - delay in access to a link rapidly propagates back to sender

- Message size **m** bits
- Number of hops (links) to travel h
- Channel width W and link cycle time t_c
 - Per-bit transfer time $t_w = t_c/W$
 - assuming m is sufficiently large
- Startup time *t_s*
 - overhead to insert message into network
- Node latency or per-hop time t_h
 - time taken by message header cross channel and be interpreted at destination

Store-and-forward routing

- flow-control mechanism at message or packet level
- packet s are transferred one link at a time
- large buffers, high latency
- cost


$$t_{SF} = t_s + (t_h + m t_w) h$$

time

Cut-through routing

- flow control is per-link and payload transmission is pipelined
- message spread out across multiple links in the network
- small buffers, low latency
- cost

